
OpenCReports 0.8.14 Manual
Zoltán Böszörményi

OpenCReports 0.8.14 Manual
Zoltán Böszörményi
Copyright © 2019-2025 Zoltán Böszörményi

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free
Documentation License".

Table of Contents
1. Introduction and concepts ... 1

1.1. The predecessor: RLIB .. 1
1.2. Concepts .. 1

1.2.1. What is a report generator? .. 1
1.2.2. XML based report description ... 1
1.2.3. Comprehensive API for report creation ... 1
1.2.4. Strict expression parser .. 1
1.2.5. Expression optimization ... 2
1.2.6. Report variables ... 2
1.2.7. Report breaks ... 2
1.2.8. Extensive and extensible set of functions .. 2
1.2.9. UTF-8 string handling ... 2
1.2.10. High precision numeric data type ... 2
1.2.11. Datetime and interval data types .. 2
1.2.12. Automatic input data conversion .. 2
1.2.13. Versatile field alignment and multi-row fields .. 3
1.2.14. Multi-column reports ... 3
1.2.15. Miscellaneous layout details .. 3
1.2.16. Multiple output formats .. 3
1.2.17. Extensive set of unit tests ... 3
1.2.18. Standard Linux dependencies .. 3

1.3. OpenCReports planned features ... 4
1.3.1. Graph and chart support in HTML and PDF output 4
1.3.2. Visual editor for report XML descriptions ... 4

2. Data sources and queries .. 5
2.1. Data sources ... 5

2.1.1. SQL based data sources ... 5
2.1.2. File based data sources .. 6
2.1.3. Application data based datasource ... 8
2.1.4. Application defined data sources ... 8

2.2. Queries .. 8
2.2.1. SQL queries .. 8
2.2.2. File queries .. 9
2.2.3. Data queries .. 9
2.2.4. Relation between queries ... 9

3. Expressions in OpenCReports .. 11
3.1. Introduction .. 11
3.2. Constants ... 11

3.2.1. String literals .. 11
3.2.2. Numeric constants ... 12
3.2.3. Boolean constants ... 13
3.2.4. Datetime constants .. 13
3.2.5. Constant expressions ... 13

3.3. Delayed (precalculated) expressions .. 13
3.4. Identifiers ... 13

3.4.1. Identifier names .. 14
3.4.2. Query field identifiers .. 14
3.4.3. User defined variables ... 14
3.4.4. Special purpose identifier domains ... 14

3.5. Operators and functions .. 18
3.5.1. Ternary operator ... 18
3.5.2. Boolean logic operators with two operands .. 18
3.5.3. Bitwise operators with two operands .. 18
3.5.4. Equality and inequality comparison operators ... 18
3.5.5. Other comparison operators .. 19

iii

OpenCReports 0.8.14 Manual

3.5.6. Bitwise shifts ... 19
3.5.7. Addition and subtraction .. 19
3.5.8. Multiplication, division and modulo (remainder) 19
3.5.9. Power-of operator ... 19
3.5.10. Factorial operator .. 19
3.5.11. Unary plus and minus, logical and bitwise NOT, prefix increment and
decrement ... 19
3.5.12. Postfix increment and decrement .. 19
3.5.13. Function calls and implicit multiplication ... 20
3.5.14. Parentheses ... 21
3.5.15. A note on token matching, precendence and syntax errors 21

4. Functions .. 22
4.1. Introduction .. 22
4.2. Arithmetic functions .. 22

4.2.1. abs() ... 22
4.2.2. div() ... 22
4.2.3. factorial() ... 22
4.2.4. fmod() ... 22
4.2.5. mod() .. 22
4.2.6. mul() .. 22
4.2.7. remainder() .. 23
4.2.8. uminus() .. 23
4.2.9. uplus() .. 23

4.3. Bitwise functions ... 23
4.3.1. and() ... 23
4.3.2. not() ... 23
4.3.3. or() ... 23
4.3.4. shl() .. 23
4.3.5. shr() .. 23
4.3.6. xor() ... 23

4.4. Boolean logic functions .. 23
4.4.1. land() .. 23
4.4.2. lnot() .. 24
4.4.3. lor() .. 24

4.5. Comparison functions ... 24
4.5.1. eq() ... 24
4.5.2. ge() ... 24
4.5.3. gt() ... 24
4.5.4. le() ... 24
4.5.5. lt() .. 24
4.5.6. ne() ... 24

4.6. Rounding and related functions .. 24
4.6.1. ceil() ... 24
4.6.2. floor() ... 24
4.6.3. rint() ... 25
4.6.4. round() .. 25
4.6.5. trunc() ... 25

4.7. Exponential, logarithmic and related functions .. 25
4.7.1. exp() ... 25
4.7.2. exp10() .. 25
4.7.3. exp2() ... 25
4.7.4. ln() ... 25
4.7.5. log() ... 25
4.7.6. log10() .. 25
4.7.7. log2() .. 25
4.7.8. pow() .. 25
4.7.9. sqr() .. 25
4.7.10. sqrt() ... 26

iv

OpenCReports 0.8.14 Manual

4.8. Trigonometric functions .. 26
4.8.1. acos() .. 26
4.8.2. asin() .. 26
4.8.3. atan() .. 26
4.8.4. cos() ... 26
4.8.5. cot() .. 26
4.8.6. csc() ... 26
4.8.7. sec() ... 26
4.8.8. sin() .. 26
4.8.9. tan() .. 26

4.9. String functions ... 26
4.9.1. concat() ... 26
4.9.2. left() ... 26
4.9.3. lower() .. 27
4.9.4. mid() .. 27
4.9.5. proper() ... 27
4.9.6. right() ... 27
4.9.7. strlen() .. 27
4.9.8. upper() .. 27

4.10. Datetime functions ... 27
4.10.1. chgdateof() ... 27
4.10.2. chgtimeof() ... 27
4.10.3. date() .. 27
4.10.4. dateof() .. 27
4.10.5. day() ... 27
4.10.6. dim() ... 28
4.10.7. dtos() .. 28
4.10.8. dtosf() ... 28
4.10.9. gettimeinsecs() .. 28
4.10.10. interval() .. 28
4.10.11. month() .. 28
4.10.12. now() ... 28
4.10.13. settimeinsecs() ... 28
4.10.14. stdwiy() ... 28
4.10.15. stod() ... 28
4.10.16. stodt() .. 29
4.10.17. stodtsql() .. 29
4.10.18. timeof() .. 29
4.10.19. tstod() .. 29
4.10.20. wiy() ... 29
4.10.21. wiy1() .. 29
4.10.22. wiyo() .. 29
4.10.23. year() ... 29

4.11. Type agnostic functions .. 29
4.11.1. add() ... 29
4.11.2. dec() ... 30
4.11.3. inc() .. 30
4.11.4. sub() ... 30

4.12. Formatting and conversion functions ... 30
4.12.1. format() ... 30
4.12.2. printf() ... 30
4.12.3. str() ... 31
4.12.4. val() .. 31

4.13. Miscellaneous functions .. 31
4.13.1. brrownum() .. 31
4.13.2. error() .. 31
4.13.3. eval() .. 31
4.13.4. fxpval() .. 31

v

OpenCReports 0.8.14 Manual

4.13.5. iif() ... 31
4.13.6. isdatetime() .. 32
4.13.7. iserror() ... 32
4.13.8. isnan() ... 32
4.13.9. isnull() ... 32
4.13.10. isnumeric() ... 32
4.13.11. isstring() ... 32
4.13.12. null() ... 32
4.13.13. nulldt() ... 32
4.13.14. nulln() ... 32
4.13.15. nulls() .. 32
4.13.16. prevval() .. 32
4.13.17. random() .. 32
4.13.18. rownum() ... 33
4.13.19. translate() ... 33
4.13.20. translate2() ... 33

5. Report variables ... 34
5.1. Introduction to report variables .. 34
5.2. Expression variables .. 34

5.2.1. Variables with iterative expressions .. 34
5.2.2. Expression variable examples .. 34

5.3. Variable types for simple statistics ... 34
5.3.1. Statistics variable examples .. 35

5.4. Custom variables ... 35
5.5. Precalculated variables ... 35

6. Report breaks .. 37
6.1. Grouping data ... 37
6.2. Report breaks in OpenCReports ... 37
6.3. Resetting a variable on break boundaries ... 37
6.4. Example ... 37

7. Formatting .. 38
7.1. Formatting functions .. 38
7.2. Format strings ... 38
7.3. Legacy format strings ... 38

7.3.1. Format string for strings ... 38
7.3.2. Format string for numeric values ... 38
7.3.3. Format string for datetime values ... 39

7.4. New style format strings ... 39
7.4.1. New style format string for strings ... 39
7.4.2. New style format string for numeric data ... 39
7.4.3. New style format string for monetary data ... 39
7.4.4. New style format string for datetime values ... 39
7.4.5. New style format string examples .. 39

7.5. Second generation new style format strings .. 39
7.5.1. 2nd gen new style format string for strings .. 40
7.5.2. 2nd gen new style format string for numeric data 40
7.5.3. 2nd gen new style format string for monetary data 40
7.5.4. 2nd gen new style format string for datetime values 40
7.5.5. 2nd gen new style format string examples ... 40

7.6. The swiss army knife of formatting .. 40
8. Report XML description ... 41

8.1. XML description structure .. 41
8.1.1. Notes about XML syntax and attributes .. 42

8.2. OpenCReport element .. 42
8.2.1. Size unit attribute .. 42
8.2.2. No query show NoData .. 43
8.2.3. Report height after last ... 43
8.2.4. Follower match single .. 43

vi

OpenCReports 0.8.14 Manual

8.2.5. Precision bits .. 44
8.2.6. Rounding mode .. 44
8.2.7. Locale ... 44
8.2.8. Translation settings ... 44

8.3. Paths ... 44
8.4. Datasources .. 45

8.4.1. MariaDB (MySQL) database connection ... 45
8.4.2. PostgreSQL database connection .. 46
8.4.3. ODBC database connection .. 47
8.4.4. CSV file datasource ... 47
8.4.5. JSON file datasource ... 48
8.4.6. XML file datasource .. 48
8.4.7. Spreadsheet file datasource ... 48
8.4.8. Array datasource ... 48
8.4.9. Common datasource properties .. 49

8.5. Queries .. 49
8.5.1. SQL queries for SQL datasources .. 49
8.5.2. Queries for file based datasources .. 50
8.5.3. Queries for array based datasources .. 50
8.5.4. Follower queries ... 51

8.6. Report parts .. 52
8.6.1. Part attributes ... 52
8.6.2. Part subsections .. 55

8.7. Part row ... 55
8.7.1. Part row attributes ... 55

8.8. Part column .. 56
8.8.1. Part column attributes .. 56

8.9. Report ... 58
8.9.1. Report attributes ... 59
8.9.2. Report subsections .. 63

8.10. Loaded report .. 65
8.10.1. Loaded Report attributes ... 66

8.11. Variables .. 66
8.12. Variable ... 66

8.12.1. Variable attributes ... 66
8.13. Breaks ... 72
8.14. Break ... 72

8.14.1. Break attributes ... 72
8.14.2. Break subsections .. 73
8.14.3. A complete break example .. 74

8.15. Output ... 76
8.15.1. Output attributes ... 76
8.15.2. Output subsections ... 76

8.16. Line ... 77
8.16.1. Line attributes ... 77
8.16.2. Line subsections .. 78

8.17. Text element ... 79
8.17.1. Text element attributes ... 79

8.18. HorizontalLine .. 85
8.18.1. HorizontalLine attributes .. 85

8.19. Image .. 86
8.19.1. Image attributes .. 86

8.20. Image end .. 88
8.21. Barcode element .. 88

8.21.1. Barcode element attributes .. 88
8.22. Color specification ... 90

9. High level C language API reference .. 92
9.1. Header file ... 92

vii

OpenCReports 0.8.14 Manual

9.2. High level C API .. 92
9.2.1. Report handler initialization .. 92
9.2.2. Load a report XML description ... 92
9.2.3. Parse report XML description from a buffer ... 92
9.2.4. Set report output format ... 93
9.2.5. Get report output format as enum or string .. 93
9.2.6. Set report output parameter ... 93
9.2.7. Run the report .. 94
9.2.8. Dump report result .. 94
9.2.9. Get report result ... 94
9.2.10. Get report content type ... 94
9.2.11. Report handler destruction .. 94
9.2.12. Get library version ... 95

10. Low level C language API reference ... 96
10.1. Low level C API ... 96

10.1.1. Numeric behavior related functions .. 96
10.1.2. Locale related functions .. 96
10.1.3. Data source and query related functions .. 97
10.1.4. Expression related functions .. 105
10.1.5. Column data or expression result related functions 108
10.1.6. Variable related functions .. 111
10.1.7. Break related functions ... 112
10.1.8. Function related functions ... 114
10.1.9. Report part and report related functions ... 115
10.1.10. Layout related functions .. 116
10.1.11. Callback related functions .. 135
10.1.12. Environment related functions .. 138
10.1.13. File handling related functions .. 138
10.1.14. Color related functions .. 139
10.1.15. Paper size related functions .. 139
10.1.16. Memory handling related functions ... 140
10.1.17. List related functions .. 142
10.1.18. String related functions ... 143

11. Implement a datasource input driver .. 146
11.1. Datasource input driver registration API ... 146

11.1.1. Register a datasource input driver ... 146
11.1.2. Get a datasource input driver ... 146

11.2. Datasource input driver details ... 146
11.2.1. Datasource input driver interface .. 146

11.3. Helper functions to implement a datasource input driver 147
11.3.1. Get the parent pointer of a datasource ... 147
11.3.2. Get the name of a datasource ... 148
11.3.3. Get the input driver pointer of a datasource .. 148
11.3.4. Set the private pointer of a datasource ... 148
11.3.5. Get the private pointer of a datasource ... 148
11.3.6. Allocate a query structure ... 148
11.3.7. Get the query name .. 148
11.3.8. Get the datasource pointer of a query .. 148
11.3.9. Set the private pointer of a query .. 148
11.3.10. Get the private pointer of a query ... 148
11.3.11. Set current row of a query all NULL ... 148
11.3.12. Set a column value of a query .. 149

12. PHP language API reference .. 150
12.1. The OpenCReports PHP module ... 150
12.2. The OpenCReport class ... 150
12.3. High level PHP API ... 152

12.3.1. Constructor ... 153
12.3.2. Load a report XML description .. 153

viii

OpenCReports 0.8.14 Manual

12.3.3. Set report output format .. 153
12.3.4. Get report output format ... 153
12.3.5. Get report output format name ... 153
12.3.6. Set report output parameter ... 153
12.3.7. Run the report ... 154
12.3.8. Dump report result ... 154
12.3.9. Get report result .. 155
12.3.10. Get report content type ... 155
12.3.11. Get library version ... 155

12.4. Low level PHP API .. 155
12.4.1. Numeric behavior related methods .. 155
12.4.2. Locale related methods ... 156
12.4.3. Data source and query related methods .. 156
12.4.4. Expression related methods ... 157
12.4.5. Layout part related methods .. 158
12.4.6. Callback related methods .. 159
12.4.7. Environment related methods ... 160
12.4.8. Add "m" domain variable .. 160
12.4.9. Result related methods .. 160
12.4.10. Path related methods .. 161
12.4.11. Color related methods ... 161

12.5. The OpenCReport\Datasource class ... 161
12.5.1. Free a datasource ... 161
12.5.2. Add a query to the datasource .. 162
12.5.3. Set datasource encoding .. 162

12.6. The OpenCReport\Query class .. 162
12.6.1. Get result for a query's current row ... 162
12.6.2. Start navigation for a query ... 163
12.6.3. Navigate to the next row ... 163
12.6.4. Navigate use previous/next row .. 163
12.6.5. Add a query follower ... 163
12.6.6. Add an N:1 query follower .. 163
12.6.7. Free a query ... 164

12.7. The OpenCReport\QueryResult class ... 164
12.7.1. Get number of columns for a query result .. 164
12.7.2. Get the nth column name for a query result .. 164
12.7.3. Get the nth column result for a query result .. 164

12.8. The OpenCReport\Expr class ... 164
12.8.1. Free an expression ... 165
12.8.2. Get the original expression string ... 166
12.8.3. Print an expression ... 166
12.8.4. Get the number of expression tree nodes .. 166
12.8.5. Resolve an expression .. 166
12.8.6. Optimize an expression ... 166
12.8.7. Evaluate an expression ... 166
12.8.8. Get the result of an expression ... 166
12.8.9. Set expression result to a string value .. 166
12.8.10. Set expression result to a long value .. 166
12.8.11. Set expression result to a double value ... 167
12.8.12. Set expression result to a numeric value from string 167
12.8.13. Get number of operands of a expression ... 167
12.8.14. Get nth operands' result of a expression ... 167
12.8.15. Compare the expression's current and previous results 167
12.8.16. Initialize expression results .. 167
12.8.17. Get string value of an expression .. 168
12.8.18. Get long value of an expression .. 168
12.8.19. Get double value of an expression ... 168
12.8.20. Get numeric value of an expression as a string 168

ix

OpenCReports 0.8.14 Manual

12.8.21. Set nth result of an expression to a string value 168
12.8.22. Set nth result of an expression to a long value 168
12.8.23. Set nth result of an expression to a double value 168
12.8.24. Set iterative start flag of an expression ... 169
12.8.25. Set expression to delayed .. 169

12.9. The OpenCReport\Result class ... 169
12.9.1. Free a result object .. 169
12.9.2. Copy a result object ... 169
12.9.3. Print a result object .. 170
12.9.4. Get result object value type ... 170
12.9.5. Detect whether result object value is NULL .. 170
12.9.6. Detect whether result object value is a string .. 170
12.9.7. Detect whether result object value is a number 170
12.9.8. Get string value of a result object ... 170
12.9.9. Get numeric value of a result object as a string 170

12.10. The OpenCReport\Part class ... 171
12.10.1. Get the next report part ... 173
12.10.2. Create a new report part row .. 173
12.10.3. Get the first report part row ... 173
12.10.4. Add iteration callback for the part ... 173
12.10.5. Check whether two parts are identical .. 173
12.10.6. Set or get number of part iterations ... 173
12.10.7. Set or get part font name ... 174
12.10.8. Set or get part font size ... 174
12.10.9. Set or get paper type .. 174
12.10.10. Set or get part orientation .. 174
12.10.11. Set or get part top margin .. 174
12.10.12. Set or get part bottom margin ... 175
12.10.13. Set or get part left margin .. 175
12.10.14. Set or get part right margin .. 175
12.10.15. Set or get part suppression ... 175
12.10.16. Set or get suppression of the page header on the first page 175
12.10.17. Get the part's page header .. 176
12.10.18. Set the report object for the part's page header 176
12.10.19. Get the part's page footer ... 176
12.10.20. Set the report object for the part's page footer 176

12.11. The OpenCReport\Row class .. 176
12.11.1. Get the next part row .. 177
12.11.2. Create a new part column for the row .. 177
12.11.3. Get first column of a part row .. 177
12.11.4. Set or get suppression for the part row ... 177
12.11.5. Set or get new page for the part row .. 178
12.11.6. Set or get layout type for the part row ... 178

12.12. The OpenCReport\Column class .. 178
12.12.1. Get next column .. 179
12.12.2. Create a new report in the column ... 179
12.12.3. Get first report of a part column ... 179
12.12.4. Set or get part column suppression .. 180
12.12.5. Set or get part column width .. 180
12.12.6. Set or get part column height ... 180
12.12.7. Set or get border width ... 180
12.12.8. Set or get border color .. 181
12.12.9. Set or get number of detail columns .. 181
12.12.10. Set or get column padding ... 181

12.13. The OpenCReport\Report class ... 181
12.13.1. Get the next report ... 184
12.13.2. Create a new report variable .. 184
12.13.3. Create a new custom report variable .. 184

x

OpenCReports 0.8.14 Manual

12.13.4. Get the first variable of a report .. 185
12.13.5. Parse and expression for the report .. 185
12.13.6. Get the error after a failed expression parsing 185
12.13.7. Resolve variables of the report ... 185
12.13.8. Evaluate variables of the report .. 185
12.13.9. Create a new report break .. 185
12.13.10. Get a report break by its name .. 186
12.13.11. Get the first report break ... 186
12.13.12. Resolve breaks of the report ... 186
12.13.13. Get the current row number of the main query 186
12.13.14. Add a "report start" callback .. 186
12.13.15. Add a "report done" callback .. 186
12.13.16. Add a "new row" callback ... 187
12.13.17. Add an "iteration done" callback ... 187
12.13.18. Add a "precalculation done" callback ... 187
12.13.19. Check whether two report objects are the same 187
12.13.20. Set the report's main query ... 188
12.13.21. Set the report's main query by name .. 188
12.13.22. Set or get the report suppression ... 188
12.13.23. Set or get number of iterations for the report 188
12.13.24. Set or get the font name for the report .. 188
12.13.25. Set or get the font size for the report .. 189
12.13.26. Set or get the report height ... 189
12.13.27. Set or get the report's field header prioroty .. 189
12.13.28. Get output sections of the report ... 189

12.14. The OpenCReport\Variable class ... 190
12.14.1. Get the base expression of a variable ... 190
12.14.2. Get the ignore expression of a variable .. 190
12.14.3. Get the first intermediary expression of a variable 191
12.14.4. Get the second intermediary expression of a variable 191
12.14.5. Get the result expression of a variable ... 191
12.14.6. Get the variable type .. 191
12.14.7. Get the variable precalculated flag .. 191
12.14.8. Resolve expressions of a variable .. 191
12.14.9. Evaluate expressions of a variable ... 191
12.14.10. Get the next variable of the same report ... 191

12.15. The OpenCReport\ReportBreak class ... 192
12.15.1. Get next break ... 192
12.15.2. Add a breakfield to a break ... 192
12.15.3. Check breakfields ... 192
12.15.4. Reset variables associated with a break .. 193
12.15.5. Add a "trigger" callback to a break ... 193
12.15.6. Get the name of a break .. 193
12.15.7. Get output sections of a break .. 193

12.16. The OpenCReport\Output class ... 193
12.16.1. Set or get suppression of the output section ... 194
12.16.2. Add a (text) line .. 194
12.16.3. Add a horizontal line .. 194
12.16.4. Add an image .. 194
12.16.5. Add a barcode ... 194
12.16.6. Add an image end marker ... 195
12.16.7. Get the first output element ... 195

12.17. The OpenCReport\Line class .. 195
12.17.1. Set or get the font name for the line .. 196
12.17.2. Set or get the font size for the line .. 196
12.17.3. Set or get the font's bold flag for the line .. 197
12.17.4. Set or get the font's italic flag for the line ... 197
12.17.5. Set or get line suppression ... 197

xi

OpenCReports 0.8.14 Manual

12.17.6. Set or get text color for the line .. 197
12.17.7. Set or get background color for the line ... 198
12.17.8. Add a text element to the line .. 198
12.17.9. Add an image element to the line .. 198
12.17.10. Get the first line element ... 198

12.18. The OpenCReport\HorizontalLine class .. 198
12.18.1. Set the line width ... 199
12.18.2. Set or get the line alignment .. 199
12.18.3. Set or get the line indentation ... 200
12.18.4. Set or get the line length ... 200
12.18.5. Set or get the line's font size .. 200
12.18.6. Set or get the suppression flag for the line .. 200
12.18.7. Set or get the line color ... 201

12.19. The OpenCReport\Image class .. 201
12.19.1. Set or get the file name of the image ... 202
12.19.2. Set or get the suppression flag for the image 202
12.19.3. Set or get the image type ... 202
12.19.4. Set or get the image width ... 203
12.19.5. Set or get the image height .. 203
12.19.6. Set or get the image alignment ... 203
12.19.7. Set or get the image background color ... 203
12.19.8. Set or get the image "text width" .. 204

12.20. The OpenCReport\Text class .. 204
12.20.1. Set literal value ... 206
12.20.2. Set or get expression value .. 206
12.20.3. Set or get delayed flag for the field expression 206
12.20.4. Set or get the format string for the field expression 207
12.20.5. Set or get the translation flag for the field expression 207
12.20.6. Set or get the field width ... 207
12.20.7. Set or get the field alignment ... 207
12.20.8. Set or get the field text color .. 208
12.20.9. Set or get the field background color ... 208
12.20.10. Set or get the field font name ... 208
12.20.11. Set or get the field font size ... 208
12.20.12. Set or get the field's bold flag ... 209
12.20.13. Set or get the field's italic flag .. 209
12.20.14. Set or get the field's link .. 209
12.20.15. Set or get the field's memo flag .. 209
12.20.16. Set or get the field's "hyphenate" flag ... 210
12.20.17. Set or get the field's "wrap at characters" flag 210
12.20.18. Set or get the field's maximum number of lines 210

12.21. The OpenCReport\Barcode class ... 210
12.21.1. Set or get the barcode value ... 211
12.21.2. Set or get the barcode value delayed .. 212
12.21.3. Set or get the barcode suppression .. 212
12.21.4. Set or get the barcode type .. 212
12.21.5. Set or get the barcode width .. 213
12.21.6. Set or get the barcode height .. 213
12.21.7. Set or get the barcode image line color .. 213
12.21.8. Set or get the barcode image background color 213

12.22. The OpenCReport\OutputElement class .. 214
12.23. The OpenCReport\LineElement class ... 214
12.24. RLIB compatibility API ... 215

12.24.1. Initialize a report ... 215
12.24.2. Destroy a report ... 215
12.24.3. Get library version ... 215
12.24.4. Add a MySQL/MariaDB datasource .. 215
12.24.5. Add a MySQL/MariaDB datasource from an INI group 216

xii

OpenCReports 0.8.14 Manual

12.24.6. Add a PostgreSQL datasource .. 216
12.24.7. Add an ODBC datasource ... 216
12.24.8. Add an array datasource .. 217
12.24.9. Add an XML datasource ... 217
12.24.10. Add a CSV datasource .. 217
12.24.11. Add a query .. 217
12.24.12. Add a resultset follower .. 218
12.24.13. Add a resultset N:1 follower ... 218
12.24.14. Set datasource encoding .. 218
12.24.15. Add a report XML ... 218
12.24.16. Add a report XML from buffer ... 218
12.24.17. Add a search path ... 219
12.24.18. Set locale .. 219
12.24.19. Setup translation ... 219
12.24.20. Set output format ... 219
12.24.21. Add a custom report function ... 219
12.24.22. Set output encoding .. 220
12.24.23. Add a report parameter .. 220
12.24.24. Set an output parameter ... 220
12.24.25. Refresh array query contents .. 220
12.24.26. Add an event callback ... 220
12.24.27. Execute the report .. 221
12.24.28. Dump the report output ... 221
12.24.29. Get content type ... 221
12.24.30. Set radix character .. 221
12.24.31. Compile and evaluate an expression ... 221
12.24.32. Add graph background region ... 221
12.24.33. Clear graph background region ... 222
12.24.34. Set graph minor tick ... 222
12.24.35. Set graph minor tick by location ... 222

13. Examples .. 223
13.1. Simple report example .. 223

13.1.1. Data .. 223
13.1.2. C program code ... 223
13.1.3. PHP program code ... 224
13.1.4. RLIB compatible PHP program code ... 224
13.1.5. Report description .. 224
13.1.6. Report PDF result .. 226

13.2. Simple report example with data access in code ... 226
13.2.1. Data .. 226
13.2.2. C program code ... 226
13.2.3. PHP program code ... 227
13.2.4. RLIB compatible PHP program code ... 227
13.2.5. Report description .. 228
13.2.6. Report PDF result .. 229

13.3. Colors, images, horizontal lines and fonts ... 229
13.3.1. Data .. 229
13.3.2. C program code ... 230
13.3.3. PHP program code ... 230
13.3.4. RLIB compatible PHP program code ... 231
13.3.5. Report description .. 231
13.3.6. Report PDF result .. 232

13.4. Report variables and breaks ... 232
13.4.1. Data .. 233
13.4.2. C program code ... 233
13.4.3. PHP program code ... 234
13.4.4. RLIB compatible PHP program code ... 234
13.4.5. Report description .. 234

xiii

OpenCReports 0.8.14 Manual

13.4.6. Report PDF result .. 236
13.5. Follower queries .. 236

13.5.1. Data .. 237
13.5.2. C program code ... 237
13.5.3. PHP program code ... 238
13.5.4. RLIB compatible PHP program code ... 239
13.5.5. Report description .. 239
13.5.6. Report PDF result .. 240

13.6. N:1 follower queries ... 240
13.6.1. Data .. 240
13.6.2. C program code ... 242
13.6.3. PHP program code ... 243
13.6.4. RLIB compatible PHP program code ... 243
13.6.5. Report description .. 244
13.6.6. Report PDF result .. 245

13.7. N:1 follower queries (RLIB compatibility limits) ... 245
13.7.1. Data .. 245
13.7.2. C program code ... 246
13.7.3. PHP program code ... 246
13.7.4. RLIB compatible PHP program code ... 247
13.7.5. Report description .. 247
13.7.6. Report PDF result .. 248

14. GNU Free Documentation License .. 249

xiv

Chapter 1. Introduction and concepts
1.1. The predecessor: RLIB

The idea to write OpenCReports1 started with my getting acqauinted with RLIB2 in 2005 and working
with it (and on it) for a very long time, with the original implementors finally losing interest in
developing RLIB further. This was around 2018. Even the original documentation site for RLIB was
retired. But thanks to the Internet Archive, it may still be read3

To overcome some of the shortcomings seen in RLIB, its ideas were used for a completely new
implementation with high level of compatibility to the original.

RLIB is a report generator library, so is OpenCReports. In this documentation, a lot of references
contain comparisons to RLIB.

The name OpenCReports came from the fact that it's implemented in the C programming language in
an open way, and using a free software license.

1.2. Concepts

1.2.1. What is a report generator?
A report generator uses a tabular data source, which contains rows and columns of data. The columns
have labels or names. (An SQL database query is such a tabular data source.) It also uses some kind
of description that specifies how to display the data. The input data is transformed into various output
formats, some for human viewing, some for further machine processing. Such output formats may be
PDF, HTML, XML, plain text or CSV.

1.2.2. XML based report description
The XML file format is widely used. It can describe structured data in a hierarchy with names for its
sections or "nodes".

OpenCReports uses an RLIB-compatible report description with extensions. See Report XML
description and the RLIB documentation4

1.2.3. Comprehensive API for report creation
The Low level C API allows creating a report purely via program code. The High level C API
allows loading an XML report description that contains all details about the report, including database
access. Mixing the high and low level APIs allows a balance anywhere between the two extremes.
For example, load the report description, which contains the complete layout, and pass database
access details via program code. As a comparison, RLIB's API and report description allowed
neither extremes: it relied on the report description to provide the layout, with data access and other
supplementary details controlled from programming code.

1.2.4. Strict expression parser
OpenCReports uses a Flex/Bison based expression parser. The expression grammar doesn't allow
incorrect expressions. See the Expressions chapter.

1 https://github.com/zboszor/OpenCReports
2 https://sourceforge.net/projects/rlib/
3 https://web.archive.org/web/20131116192438/http://newrlib.sicom.com/~rlib/index.php/Main_Page
4 https://web.archive.org/web/20131116192438/http://newrlib.sicom.com/~rlib/index.php/Main_Page

1

https://github.com/zboszor/OpenCReports
https://sourceforge.net/projects/rlib/
https://web.archive.org/web/20131116192438/http://newrlib.sicom.com/~rlib/index.php/Main_Page
https://web.archive.org/web/20131116192438/http://newrlib.sicom.com/~rlib/index.php/Main_Page
https://github.com/zboszor/OpenCReports
https://sourceforge.net/projects/rlib/
https://web.archive.org/web/20131116192438/http://newrlib.sicom.com/~rlib/index.php/Main_Page
https://web.archive.org/web/20131116192438/http://newrlib.sicom.com/~rlib/index.php/Main_Page

Introduction and concepts

1.2.5. Expression optimization
OpenCReports does some expression optimization to reduce runtime cost of computing expression
values. For example, in a*2/3 the part 2/3 is two constants in a division. This is precomputed into a
single constant as an optimization. Naturally, only mathematically valid optimizations are performed.

1.2.6. Report variables
OpenCReports supports standard report variables for calculating sums, minimum, maximum and
average values or custom defined ones. See Report variables

Report variables can also be used as manual expression optimization. A common subexpression can
be moved to a report variable from multiple expressions, which in turn is computed once, and its result
is used in the expressions referencing it.

1.2.7. Report breaks
A report break is a form of data grouping based on value changes. A break (break boundary) occurs
when the value of a watched expression changes from one data row to the next. OpenCReports
supports report breaks defined on arbitrary expressions. Report variables can reset their value on break
boundaries. See Report breaks and Breaks.

1.2.8. Extensive and extensible set of functions
OpenCReports has many operators and functions to be used in expressions. See Operators and
functions in the Expressions chapter.

Custom functions can also be added to a report by programming code. Custom functions may override
stock functions.

1.2.9. UTF-8 string handling
OpenCReports exclusively uses UTF-8 for strings. Input data must be in UTF-8 and output formats
also use UTF-8. This allows text from different languages appear in the same report, provided that
an applicable font is available.

1.2.10. High precision numeric data type
OpenCReports uses a high precision numeric data type. This allows scientific computation or monetary
calculations even with late stage hyperinflation5 prices. See Numeric constants in the Expressions
chapter and the Numeric behavior related functions part in the Low level C API chapter.

1.2.11. Datetime and interval data types
OpenCReports handles both timestamp and time interval data types. The latter allows adding or
subtracting a custom time period to and from timestamp data. See Datetime constants in the
Expressions chapter.

1.2.12. Automatic input data conversion
For maximum portability, databases provide their data in strings. They also indicate the column type.
OpenCReports detects the columns' data type and applies the conversion automatically.

5 https://en.wikipedia.org/wiki/Hyperinflation

2

https://en.wikipedia.org/wiki/Hyperinflation
https://en.wikipedia.org/wiki/Hyperinflation

Introduction and concepts

1.2.13. Versatile field alignment and multi-row fields
In the report output, fields may have a fixed width in which they are displayed. Some field values are
longer than the field width. When displaying them in a single row, fields may be left-, right- or center-
aligned to show the interesting part of the value or for visual reasons.

Fields longer than the designated width may be wrapped either at word or character boundaries. This
way, they become multi-row fields. Multi-row fields are also called "memo" fields. Such fields may
wrap lines at word boundaries or break words at some character. Multi-row fields have configurable
line number limits. Memo fields can break over to the next column or to the next page. Hyphenation
is done automatically when using character wrapping. Memo fields may also use justified alignment.

1.2.14. Multi-column reports
OpenCReports supports both single- and multi-column layout in its PDF output format. Other output
formats may only use single-column layout.

1.2.15. Miscellaneous layout details
OpenCReports implements an RLIB compatibility mode for sizing report layout details, which uses
a mix of units, mostly based on character widths (making it dependent on the font size used) mixed
with points (1/72th inch) for some report elements.

OpenCReports also has a new, consistent size calculation method where everything is measured in
points (1/72th inch).

OpenCReports supports both fixed and proportional fonts even with using the RLIB compatible size
settings.

1.2.16. Multiple output formats
OpenCReports supports several output formats: PDF, HTML, CSV, TXT, XML and JSON.

1.2.17. Extensive set of unit tests
The unit tests ensure that OpenCReports' features keep working when adding new features or fixes.
Units tests exercise many aspects of the high and low level API, report description handling, runtime
behavior and output generation.

1.2.18. Standard Linux dependencies
OpenCReports uses LibXML26, utf8proc7, MPFR8, libpaper9, libcsv10, yajl11, Cairo12, Pango13,
librsvg214, gdk-pixbuf215, PostgreSQL16, MariaDB17 and unixODBC18.

For running the unit tests, Ghostscript19 and compare from Imagemagick20 are also needed.

6 https://gitlab.gnome.org/GNOME/libxml2/-/wikis/home
7 https://juliastrings.github.io/utf8proc/
8 https://www.mpfr.org
9 http://packages.qa.debian.org/libp/libpaper.html
10 https://github.com/rgamble/libcsv
11 http://lloyd.github.com/yajl/
12 https://www.cairographics.org
13 https://pango.gnome.org
14 https://wiki.gnome.org/Projects/LibRsvg
15 https://gitlab.gnome.org/GNOME/gdk-pixbuf
16 https://www.postgresql.org
17 https://mariadb.com
18 http://www.unixodbc.org
19 https://www.ghostscript.com
20 https://imagemagick.org

3

https://gitlab.gnome.org/GNOME/libxml2/-/wikis/home
https://juliastrings.github.io/utf8proc/
https://www.mpfr.org
http://packages.qa.debian.org/libp/libpaper.html
https://github.com/rgamble/libcsv
http://lloyd.github.com/yajl/
https://www.cairographics.org
https://pango.gnome.org
https://wiki.gnome.org/Projects/LibRsvg
https://gitlab.gnome.org/GNOME/gdk-pixbuf
https://www.postgresql.org
https://mariadb.com
http://www.unixodbc.org
https://www.ghostscript.com
https://imagemagick.org
https://gitlab.gnome.org/GNOME/libxml2/-/wikis/home
https://juliastrings.github.io/utf8proc/
https://www.mpfr.org
http://packages.qa.debian.org/libp/libpaper.html
https://github.com/rgamble/libcsv
http://lloyd.github.com/yajl/
https://www.cairographics.org
https://pango.gnome.org
https://wiki.gnome.org/Projects/LibRsvg
https://gitlab.gnome.org/GNOME/gdk-pixbuf
https://www.postgresql.org
https://mariadb.com
http://www.unixodbc.org
https://www.ghostscript.com
https://imagemagick.org

Introduction and concepts

xmllint, xsltproc and fop are used to generate the documentation.

1.3. OpenCReports planned features

1.3.1. Graph and chart support in HTML and PDF
output

Currently Gantt chart and various graph types (like barchart, pie chart and their various subtypes) are
not supported.

1.3.2. Visual editor for report XML descriptions
There are other report generators on the market with nice GUIs to create the report visually.

4

Chapter 2. Data sources and queries
2.1. Data sources

OpenCReport separates data access into two entities: a data source driver and a query.

OpenCReports supports diverse data sources:

• SQL based data sources

• File based data sources

• Application data based data source

• Application defined data sources

2.1.1. SQL based data sources
SQL is the acronym for Standard Query Language. Many database software comply with the standard
to a certain extent. The standard is occasionally revised, and a certain database software version
complies to a specific version of the standard to a certain extent.

In general, database software are designed to store massive amounts of data and retrieve it as fast as
possible. Database software and its data can be accessed through a network connection (even if it's
installed in the same machine) or a faster local connection if both the database server and client are
installed on the same computer.

The SQL based data sources OpenCReports natively supports are:

• MariaDB1 and MySQL2

• PostgreSQL3

• Any SQL database server with a compliant ODBC4 driver

2.1.1.1. MariaDB/MySQL data source

MariaDB5 is a fork of MySQL6 developing in a different direction but still maintaining strong
compatibility with each other. The database client library is compatible with both, therefore
OpenCReports supports both with the same driver.

2.1.1.2. PostgreSQL data source

PostgreSQL7 (in their own words) is The World's Most Advanced Open Source Relational Database.
OpenCReports supports using PostgreSQL.

The PostgreSQL datasource driver in OpenCReports is especially economic with memory by using
a WITH HOLD cursor8 and the PostgreSQL specific FETCH count9 SQL statement to retrieve

1 https://mariadb.org/
2 https://www.mysql.com/
3 https://www.postgresql.org/
4 https://learn.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
5 https://mariadb.org/
6 https://www.mysql.com/
7 https://www.postgresql.org/
8 https://www.postgresql.org/docs/current/sql-declare.html
9 https://www.postgresql.org/docs/current/sql-fetch.html

5

https://mariadb.org/
https://www.mysql.com/
https://www.postgresql.org/
https://learn.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://mariadb.org/
https://www.mysql.com/
https://www.postgresql.org/
https://www.postgresql.org/docs/current/sql-declare.html
https://www.postgresql.org/docs/current/sql-fetch.html
https://mariadb.org/
https://www.mysql.com/
https://www.postgresql.org/
https://learn.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://mariadb.org/
https://www.mysql.com/
https://www.postgresql.org/
https://www.postgresql.org/docs/current/sql-declare.html
https://www.postgresql.org/docs/current/sql-fetch.html

Data sources and queries

a specified number of rows in one round, as opposed to retrieving every row in one round that most
database software supports.

This makes the report run slower for longer query results compared to other databases, but allows
generating the report from extremely large datasets when other databases may fail due to memory
exhaustion.

2.1.1.3. ODBC data source

OpenCReports supports using a generic ODBC connection to any database servers using a compliant
client driver. OpenCReports uses a standard ODBC manager library, so it is able to use any ODBC
DSN (Data Source Name) configured for the system or the user.

2.1.1.4. Special note for SQL datasources

The database client libraries for MariaDB, PostgreSQL and ODBC return all the query rows from the
database server at once by default. As such, it is possible that a long query result doesn't fit into the
computer memory.

The report needs to traverse the query result twice to pre-compute "delayed" values (see precalculated
and Precalculated variables), so it needs to be able to rewind the data set once it was read to the end.

The alternative API in MariaDB to load the rows one by one doesn't allow rewinding, so it's not usable
for the report's purposes.

It is only PostgreSQL that allows using an SQL cursor as a standalone entity, i.e. outside SQL
procedures as defined by the SQL standard. This PostgreSQL extension to the standard allows saving
memory in such a way that it allows processing very long query results. Behind the scenes, a WITH
HOLD cursor is used and 1024 rows are loaded in one go from the server.

2.1.2. File based data sources
The file based data sources OpenCReports supports are:

• Comma-separated values10 a.k.a. CSV

• eXtensible Markup Language11 a.k.a. XML

• JavaScript Object Notation12 a.k.a. JSON

• spreadsheet formats, like XLS, XLSX and ODS

The XML and JSON file types expect the data presented in a certain structure syntax. The semantics is
application defined. The expected format for these file types are described below.

2.1.2.1. CSV file type

CSV ("Comma Separated Values") is a simple tabulated file format. Every line must have the same
number of columns, the values are separated by commas. The first line in the file contains the column
names.

Using only the CSV file, the data type cannot be determined. Because of this, every column is assumed
to be a string, regardless if the values themselves are quoted or not in the file. Data conversion functions
must be used, see for example Section 4.12.4, Section 4.10.16 and Section 4.10.10.

10 https://en.wikipedia.org/wiki/Comma-separated_values
11 https://en.wikipedia.org/wiki/XML
12 https://en.wikipedia.org/wiki/JSON

6

https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/JSON

Data sources and queries

Using either report XML description or programming code, an optional set of type indicators may
be added along with the CSV input file, so the explicit conversion functions may be omitted from
expressions using the data.

2.1.2.2. JSON file type

A JSON file is expected in this format:

{
 "columns": ["colname1", ...],
 "coltypes": ["type", ...],
 "rows": [
 { "colname1": value1, ... },
 ...
]
}

The JSON file is expected to list the column names in a string array called columns.

The column types are optionally listed in the string array called coltypes. If they are listed, the
coltypes array must have the same number of strings as the columns array. The type names
are string, number or datetime. If the column type array is missing, then all data values are
assumed to be strings and data conversion functions must be used, see for example Section 4.12.4,
Section 4.10.16 and Section 4.10.10.

The data rows are listed in a JSON array called rows and column data values for each row are in a
JSON collection with data names from the columns and data types from the coltypes arrays.

The sections columns, coltypes and rows may appear in any order.

When the coltypes part is missing from the JSON input file, then using either report XML
description or programming code, an optional set of type indicators may be added along with the JSON
input file, so the explicit conversion functions may be omitted from expressions using the data.

2.1.2.3. XML file type

An XML file datasource is expected in this format:

<?xml version="1.0"?>
<data>
 <rows>
 <row>
 <col>value</col>
 ...
 </row>
 ...
 </rows>
 <fields>
 <field>column1</field>
 ...
 </fields>
 <coltypes>
 <col>type1</col>
 ...
 </coltypes>
</data>

The XML section names <data>, <rows> and <fields> are the same as they were in RLIB for
its XML data source. The order of <rows> and <fields> is not important. But the order of field
names in <fields> must match the column value order in each <row>.

7

Data sources and queries

The optional section <coltypes> is new in OpenCReports. If it's present, then it must list the data types
in the same order as section <fields>. The types may be string, number or datetime. If this
section is not present, all values are assumed to be strings and data conversion functions must be used,
see for example Section 4.12.4, Section 4.10.16 and Section 4.10.10.

When the coltypes part is missing from the XML input file, then using either report XML
description or programming code, an optional set of type indicators may be added along with the XML
input file, so the explicit conversion functions may be omitted from expressions using the data.

2.1.2.4. Spreadsheet file types

OpenCReports also supports various spreadsheet formats as datasources. For that, it relies on the
Python pandas module and the supporting modules for the actual spreadsheet file format. Such
Python modules are xlrd for the older Microsoft XLS format, pyopenxl for the newer Microsoft
XLSX format, and odfpy for LibreOffice ODS format. Other modules may also be used to support
other spreadsheet file formats.

2.1.3. Application data based datasource
Applications may also have internal data that can be used as input for OpenCReports.

OpenCReports supports using two-dimensional C arrays as directly accessible application data. Such
arrays must be declared as

char *array[ROWS][COLUMNS]

or converted to it if using OpenCReports from a different language. Each element is a pointer to a
zero-terminated C string. The first row contains the names of columns.

Optionally, a set of type indicators may be supplied, similarly to the File based data sources.

2.1.4. Application defined data sources
OpenCReports allows application defined datasource drivers that may even override built-in
datasource drivers.

An application defined data source may be any of the previously listed types: SQL, file or data based.

2.2. Queries
Queries are the actual providers of tabular data. They use specific data source drivers.

Queries have unique names associated with them. This allows using multiple queries that have
identical field (or column) names. See Section 3.4.2

2.2.1. SQL queries
An SQL query uses an SQL data source. An SQL query provides tabular data in rows and columns.
The columns have names. One row of data is made up from individual values in columns.

Examples:

SELECT * FROM table1;

SELECT column1, column2 FROM table1;

For more information, read the specific database server documentation you intend to use.

8

Data sources and queries

2.2.2. File queries
File queries specify the file name and path on the computer. OpenCReports then loads the file into
memory and processes it to present data on the report.

2.2.3. Data queries
Data queries pass the internal data. OpenCReports processes it to present data on the report.

2.2.4. Relation between queries
Reports may use one or more queries. If a report uses more queries, one of them must be the report's
primary query.

Supplementary queries are either followers of the primary query, or independent queries

2.2.4.1. Follower queries

Supplementary queries may be associated with the primary query as so called follower queries. Any
query may be a follower to the primary query.

There are two kinds of follower queries:

• regular, or basic follower queries, and

• so called N:1 (N-to-one) followers

2.2.4.1.1. Regular follower queries

A follower query is run along the primary query and their rows are laid out side by side. The first row of
the follower query is assigned the first row of the primary query. The second row of the follower query
is assigned to the second row of the primary query, and so on. The number of rows of the complete
data set is determined by the primary query. If the follower query runs out of rows before the primary,
the columns values will be presented as empty data, i.e. SQL NULLs.

This is similar to using LEFT OUTER JOIN and using ROWNUM in Oracle or the row_number()
SQL function in PostgreSQL as the matching value between the primary query and the follower query.

2.2.4.1.2. N:1 follower queries

An N:1 follower query, for all intents and purposes, is the right side query in a LEFT OUTER JOIN
query, with the primary query on the left side. Rows of the main query and the follower query are
matched according to a specified boolean expression.

2.2.4.1.3. Note on follower queries

One of the use cases of follower queries is to use data from different datasources. Nowadays, with
foreign queries standardized in SQL and more database servers implementing it in a performant
manner, its use case is more limited. Still, using data from different file based datasources, or using
from an SQL database server and from a file based datasource at the same time is possible with
OpenCReports.

2.2.4.2. Independent queries

Multiple queries may be declared for a report. If a query is neither set as a follower for a previously
declared query, nor set as the report's main query, then it is an independent query.

Independent queries will stay on their first row during the report run, so they can be considered
constant.

9

Data sources and queries

Therefore, column references of independent queries may be used in expressions that would need a
constant value.

10

Chapter 3. Expressions in
OpenCReports
3.1. Introduction

The previous section described Data sources and Queries which provide raw data. Raw data can be
used as is, or can be processed further for the purposes of the report. This is where expressions come in.

There are three main data types in OpenCReports: numeric, string, and datetime.
OpenCReports automatically detects the type of raw data supplied by Queries for SQL and some file
based Data sources, and the application can supply extra data to indicate column data types.

Expressions can use and result in any of these types.

A numeric expression's result is a number. It uses high numeric precision. Most functions and
operators deal with numbers.

For historic record, RLIB was designed for the US and for slower computers. It used a fixed point
numeric representation. For the US, with its strong currency and prices expressed in low numbers, this
was an acceptable design decision at the time. But for countries, where currencies are a few orders
of magnitude weaker and conversely, the prices are similarly higher, the fixed point numeric value
range was easily overflown (especially in report variables that added values), leading to wrong data
in the report output.

Another potential problem with fixed point numeric representation is that converting numbers from
the input data to this internal representation always rounds down. The numeric error (i.e. the difference
between floating point values and fixed point values) can be demonstrated even with small data sets
that add up percentages.

OpenCReports uses high precision floating point values. Technically, it's 256-bit precision GNU
MPFR numerics by default, and the precision can be modified by the application if needed. This
allows handling very large and very small numbers and directly consuming the SQL numeric and
decimal types or arbitrary precision, or using bcmath numerics in PHP. This also allows scientific
computation or monetary calculations even with late stage hyperinflation1 prices.

A string expression's result is arbitrary text. Strings can be concatenated or otherwise processed
by string functions.

A datetime expression may store a date, a time (with or without timezone) or both. Also, it may
store a time interval, e.g. 2 months that can be added to or subtracted from another datetime
value.

There is a further data type: error. Errors usually occur if there is an error in processing, e.g. when a
function argument does not match its expected parameter data type. The error type is a special case
of strings: it stores a string literal, the error message. As opposed to the string data type, an error
cannot be processed further by passing them as function arguments or operator operands. Instead, the
first error is propagated up from subexpressions to the final result of the expression.

3.2. Constants

3.2.1. String literals
String literals in OpenCReports can be either single or double quoted. Some examples:

1 https://en.wikipedia.org/wiki/Hyperinflation

11

https://en.wikipedia.org/wiki/Hyperinflation
https://en.wikipedia.org/wiki/Hyperinflation

Expressions in OpenCReports

"apple"
’apple’
"I’ve eaten an apple"
’This an "apple".’

The values of these strings are:

apple
apple
I’ve eaten an apple
This an "apple".

We can see how the other quoting character can be used as part of the string value.

String literals can also use BASIC language style double quoting to embed a single quoting character
used for quoting the string itself:

’apple’’’
’apple’’pear’
’apple’’’’pear’
"apple"""
"apple""pear"
"apple""""pear"

The values of these strings are:

apple’
apple’pear
apple’’pear
apple"
apple"pear
apple""pear

String literals can also use C language string continuation if there's at least one whitespace character
(space, TAB or new line) between doubled quoting characters. String continuation can also switch
quoting characters without whitespace between quoting.

"apple" "pear"
"apple" ’pear’
"apple"’pear’

The value of all these strings is:

applepear

3.2.2. Numeric constants
Numeric constants can be integer or fractional numbers with or without the so called e-notation or
scientific notation. Some examples:

1
1.234
1e4
1e-4
1.234e-5

E-notation means that that number preceding the letter "e" or "E" is multiplied by ten to the power
of the number after the letter "e" or "E", the latter being an integer value. The values of the above
examples are:

1

12

Expressions in OpenCReports

1.234
10000
0.0001
0.00001234

Numbers greater than 0 and less than 1 can be written with or without the leading zero.

0.123
.123

Technically, there are no negative numeric constants. Instead, the number and the unary minus operator
(see Unary operators) are initially handled separately. Then the expression optimizer merges them,
creating the negative numeric constant.

3.2.3. Boolean constants
Boolean constants evalutate to numeric constans 1 and 0. The boolean constants are:

yes
no
true
false

3.2.4. Datetime constants
There are no datetime constants per se, although expressions like stodt('1980-06-30
16:00:00') or interval('2 months') (i.e. function calls with constant arguments that result
in a datetime value) are implicitly turned into constants by the expression optimizer.

3.2.5. Constant expressions
Constant expressions are ones that only contain constant values (of any type) and operators or
functions.

3.3. Delayed (precalculated) expressions
Reports internally go through the data set twice, the second run generates the report output. The data
set does not (must not) change between the two runs. This makes it possible to use so called delayed
or precalculated values. A precalculated expression keeps the value computed for the last row of the
data set during the first run. The second run uses this value.

By default, expressions are not precalculated. Let's call non-precalculated expressions and values
normal.

Expressions need to be explicitly marked as precalculated. Marking expressions as precalculated is
possible via the report XML description, or by the OpenCReports API. See Precalculated value in
XML, Section 10.1.4.19, and Section 12.8.25.

OpenCReports allows mixing normal and precalculated values in the same expression. For example,
if a normal expression references Precalculated variables, the result would be intuitively expected.

3.4. Identifiers
Expressions may reference query column names, environment variables, internal variables and user
defined Report variables. These references are called identifiers. Their values are evaluated during
the report execution.

13

Expressions in OpenCReports

3.4.1. Identifier names
Identifiers are in the format domain.identifier where the domain name or the dot are optional.

OpenCReports uses UTF-8 encoding even in identifier names. National or accented characters are
accepted in identifiers.

Valid names for domain and identifier may start with an underscore or UTF-8 letters and may
contain underscore, UTF-8 letters and numbers in subsequent characters.

3.4.2. Query field identifiers
Any valid identifier is by default a query column reference, with or without the domain name.
Examples:

field_name
field_name5
myquery1.field_name
oszlop_név
lekérdezés.oszlop_név

In the above example, oszlop_név means field_name, and lekérdezés.oszlop_név
means query.field_name in Hungarian. The accented characters are a courtesy of UTF-8.

Query field identifiers in expressions are resolved by matching them against query names (used as the
domain) and their field names.

If the domain name is specified, a query matching the domain name name must be declared for the
report, either as the primary query, a follower query, or an independent query. That query must have
a column name that matches the identifier name.

If the domain name is not specified, the field name references are matched against all the queries of
the report in the order of their declaration. The first query with a matching column name will be used
for that reference.

For exceptions (and exceptions from under the exceptions!), see below.

3.4.3. User defined variables
Domain v signifies user defined report variables, which can be used to shortcut expressions. Example:

v.my_variable

For details, see Report variables and Variable node.

3.4.4. Special purpose identifier domains
Some domain names carry special meaning for the report.

3.4.4.1. Environment variables

Domain m indicates the domain of environment variables.

The nature of environment variables depends on the languange binding. For example in C, it's the
environment variables in the operating system. In PHP, the identifier name is first matched against
global PHP variables, and if not found, against the operating system environment variables. Example:

m.current_date

14

Expressions in OpenCReports

Since such a setting is controlled outside the report, and for the duration of running the report, its
value cannot (or shouldn't) change, environment variable references are optimized into constants at
the beginning of the report execution.

Environment variables can't change during report execution in single threaded applications, but they
can in multi-threaded ones. By optimizing environment variables into constants in expressions instead
of querying the environment every time the same expression is evaluated, potential data races (that
may result in inconsistent results) are eliminated.

3.4.4.2. Internal report variables

Domain r indicates the domain of internal report variables.

3.4.4.2.1. Current page number

r.pageno

The current page of the report is maintained by the report layout during the report run. For example, if
an expression is evaluated on page 4 of the report, and happens to reference the current page number
variable, then this variable will have the value 4 in the result.

PDF output supports pagination. Other output formats do not. For them the value of this variable is 1.

3.4.4.2.2. Total number of pages

r.totpages

This variable carries the total number of pages in the report. Its value is maintained by the report.

Only the PDF output format supports pagination. For output formats not supporting pagination, the
value of this variable is 1 throughout the report.

This variable is inherently precalculated. Expressions like this will intuitively produce the expected
result:

printf("Page: %d / %d", r.pageno, r.totpages)

For example, on the 3rd page of a 5-page report, the value would be:

Page: 3 / 5

3.4.4.2.3. Line number

r.lineno

This variable gives the current row (line) number in the data set.

It can be thought as an alias to the Query row number function which does the same by default.
But functions may be overridden by user defined functions, while this variable will always work as
described.

3.4.4.2.4. Detail count

r.detailcnt

This variable works similarly to the Line number variable and Query row number function, except it
restarts from 1 when a field header is emitted on the report. See Detail node.

With the default behaviour of the field header regarding breaks (see Report field header priority
attribute), i.e. when field header is printed on the top of every page, r.detailcnt works as a per
page line count value.

15

Expressions in OpenCReports

When the report field header priority is set to low, the effect may be more emphasized because the
value of this variable is reset more often.

3.4.4.2.5. Field value

r.value

Data on the report is represented by field description. Along with the data expression, supplementary
expressions are used for metadata that make up the displaying of the value. Such supplementary
expression exist for the foreground and background colors, the formatting of the value, and others.

The supplementary expressions may reference the field value, without having to type out the field
expression multiple times.

Using r.value also helps reducing the report runtime because the value expression is not computed
multiple times. This is a manual optimization.

Referencing r.value is only possible for supplementary expressions in the same field description.
This variable cannot cross-reference other field descriptions, or anything not in the same scope. For
this purpose, there are user Report variables.

3.4.4.2.6. Report output format value

r.format

This variable returns the current output format name as a string. For example: PDF, HTML, etc.

3.4.4.2.7. Expression self reference

r.self

This variable references the previous result of the expression. It is used in iterative expressions, like
in user-defined Report variables. It can also be used in any user defined expression.

3.4.4.2.8. Subexpressions of user-defined variables

r.baseexpr
r.ignoreexpr
r.intermedexpr
r.intermed2expr

These variables are references for the four subexpressions that potentially make up a user-defined
custom variable. The expressions in order are: base expression, the row ignoring expression and two
intermediary expressions.

Actually, there's a fifth subexpression that exists in every user defined variable, namely the result
expression. It's reference is simply the user variable reference, see User defined variables and Custom
variable attributes.

They are evaluated in this order:

• r.baseexpr

The base expression must not reference any of the others of r.ignoreexpr,
r.intermedexpr, and r.intermed2expr.

• r.ignoreexpr

The data row ignoring expression must not reference r.intermedexpr and
r.intermed2expr, but it can reference r.baseexpr.

16

Expressions in OpenCReports

• r.intermedexpr

The first intermediary expression can reference r.baseexpr and r.ignoreexpr, but it must
not reference r.intermed2expr.

• r.intermed2expr

The second intermediary expression can reference any of r.baseexpr, r.ignoreexpr, and
r.intermedexpr.

• The result expression, which has no internal variable name. It can reference all of r.baseexpr,
r.ignoreexpr, r.intermedexpr and r.intermed2expr.

For example, a running average over a data series needs two intermediary expressions: one for the
sum of the values, the other for the number of values in the series. The result is the sum of values
divided by the number of values.

Their usage is only valid when declaring a custom user defined variable.

3.4.4.3. Quoted and dot-prefixed identifiers

Both domain and identifier names may be quoted or unquoted. Quoting names allow using
semi-reserved and reserved words as identifiers and also allow special characters in identifier names.
Examples:

query.field_name1
query."field_name2"
query."field with space in the name"
"query2".field_name3
"query2"."and"

3.4.4.4. Dot-prefixed identifiers

A dot-prefixed identifier is one where the domain name is not specified, but the identifier name is
prefixed with a dot. Examples:

.field_name

."field_name"

The boolean constants are semi-reserved words. They can be used as identifiers with dot-prefixed
identifier names without a domain name and without quoting:

.yes

.no

.true

.false
yes.no

The above unquoted identifiers are equivalent with these quoted ones below:

."yes"

."no"

."true"

."false"
"yes"."no"

Operator names are reserved words, e.g. and and or. They cannot be used with dot-prefixed operator
names without quoting, as it would cause an expression syntax error. But they can be used as quoted
identifiers, in case you would want to use such a query name and column name:

17

Expressions in OpenCReports

."and"

."or"
"and"."or"

3.4.4.5. Quoted special purpose identifier domains

When identifier domains are quoted, they lose their special meaning and the identifiers become query
field identifiers. Of course, in this case, such a query name must exist and the query must have a field
name specified in the identifier. Examples:

"m".current_date
"r".totpages
"v".my_variable

3.5. Operators and functions
OpenCReports expressions can use several operators and functions. The operator precedence is mostly
as expected from the C programming language. One notable exception is implicit multiplication. The
precedence classes are as below, in increasing order of precedence.

Note that all of the operators are implemented internally as a function call to the equivalent function.
Since every function may be overridden by user functions, the operators may work differently than
the documentation.

3.5.1. Ternary operator
The ternary operator works as in the C, PHP and other languages:

expression1 ? expression2 : expression3

It's evaluated as follows: if the value of numeric expression1 is true (i.e. non-zero), then
the result is the expression2, otherwise it's expression3. Type of expression2 and
expression3 may differ, i.e. the result type will be the type of the underlying expression but it
can result in runtime errors.

Internally, it's implemented using the iif() function.

3.5.2. Boolean logic operators with two operands
Logic OR can be written as || or or. Example: a || b

Logic AND can be written as && or and. Logic AND has precedence over OR. Example: a && b

Internally, they are implemented using the Boolean AND and Boolean OR functions.

3.5.3. Bitwise operators with two operands
The bitwise operators in this precedence class and in their increasing order of precedence are: bitwise
OR (|) and bitwise AND (&).

3.5.4. Equality and inequality comparison operators
The equality comparison operator can be written as = or ==.

The inequality comparison operator can be written as <> or !=.

18

Expressions in OpenCReports

3.5.4.1. Equality and inequality comparison operators on vectors

Vector equality and inequality comparisons have the same precedence as scalar comparisons. These
are not vectors in the mathematical sense, but a comma separated list of scalars inside brackets
([...]), with op being any of the equality or inequality comparison operators:

[expa1, expa2, ...] op [expb1, expb2, ...]

Such comparisons are expanded into a logic operator form:

(expa1 op expb1) and (expa2 op expb2) and ...

Please, note that because of the mechanical conversion from the vector form to the expanded logic
operator form, the following two lines have different meaning:

not ([expa1, expa2, ...] = [expb1, expb2, ...])
[expa1, expa2, ...] != [expb1, expb2, ...]

3.5.5. Other comparison operators
Less-than (<), less-or-equal (<=), greater-than (>) and greater-or-equal (>=).

3.5.5.1. Other comparison operators on vectors

Vector comparisons using <, >, etc. operators have the same precedence as their scalar counterpart.
These are also expanded into the logic form, see Section 3.5.4.1 above.

3.5.6. Bitwise shifts
Bitwise shift left (a >> b) and bitwise shift right (a << b).

3.5.7. Addition and subtraction
a + b and a - b.

3.5.8. Multiplication, division and modulo (remainder)
a * b, a / b and a % b.

3.5.9. Power-of operator
a ^ b works as a-to-the-power-of-b.

3.5.10. Factorial operator
a!, the '!' sign used as postfix operator.

3.5.11. Unary plus and minus, logical and bitwise NOT,
prefix increment and decrement

Unary plus (+a), unary minus (-a), logical NOT (!a, '!' used as prefix operator), bitwise NOT (~a),
prefix increment (++a) and prefix decrement (--a).

3.5.12. Postfix increment and decrement
Postfix increment (a++) and decrement (a--).

19

Expressions in OpenCReports

3.5.13. Function calls and implicit multiplication
Function calls execute a function on operands: function(operand[, ...]). A function name
is a single word known by OpenCReports at the time of parsing, either as a built-in function, or a user-
supplied one. The function name cannot have a leading dot or be a domain-qualified identifier.

Implicit multiplication is when two distinct operands are in juxtaposition, in other words they are
written side by side without any whitespace. In this case, there is an implied multiplication between
them that acts with higher precedence than regular multiplication or division. Implicit multiplication
is applicable in these situations:

• A numeric constant juxtaposed with an identifier, the numeric constant is the on the left side.

2x

• A numeric constant juxtaposed with an expression inside parentheses. The constant can be on either
side of the expression.

2(a+b)
(a+b)2

• An identifier juxtaposed with an expression inside parentheses, the identifier is on the left side of
the expression.

x(a+b)

This is only treated as implicit multiplication if the following conditions are met:

• the x identifier is not a function name at the time of parsing

• there is a single expression inside the parentheses

If any of the conditions below are true, the expression is treated as a function call:

• x is a known function name

• there is no expression inside the parentheses

• a series of comma delimited expressions is inside the parentheses
The function call validity is checked against the number of operands, with a potential parser error.
If there's an ambiguity between function names and identifiers provided by data sources, it can be
avoided by using dot-prefixed or dot-prefixed and quoted identifiers, or fully qualified identifiers
in the form of query.identifier.

• An expression inside parentheses juxtaposed with an identifier on the right side.

(a+b)a

• Two expressions inside parentheses juxtaposed with each other.

(a+b)(c+d)

Implicit multiplication is NOT applicable in these situations, besides the exceptions already explained
above:

• An identifier juxtaposed with a numeric constant, the numeric constant is the on the right side.

x2

Since an identifier name may include digits as the second and subsequent characters, the numeric
constant, or at least its integer part is simply recognized as part of the identifier name itself according
to the token matching. This can also result in syntax errors when not handled with care.

20

Expressions in OpenCReports

• An identifier juxtaposed with another identifier.

ab

The reason is the same as in the preceding case: there is only a single identifier according to token
matching.

3.5.14. Parentheses
Parenthesized expressions are always computed first.

3.5.15. A note on token matching, precendence and
syntax errors

Expression parsing works on two levels: token matching and applying grammar. Token matching
breaks up the expression string into tokens in a greedy way: without whitepace delimiters, the longest
possible token is chosen.

This may lead to slight confusion when coupled with implicit multiplication. For example, the
expression 2e-1e is broken up into two tokens: 2e-1 juxtaposed with e. The first token is interpreted
as a numeric constant using e-notation (so that it will mean 2 * 10^(-1)) and the second is the
identifier e, leading to the meaning 0.2 * e. This is unambiguous for the computer, but can be
somewhat confusing to the the user reading or writing expressions. To avoid any confusion, don't use
implicit multiplication and use whitespace and parentheses gratituously.

Expression parsing handles precedence and whitespaces. For example, these below do not mean
exactly the same:

a++ + ++b
a+++++b

The former is obvious, but the latter may be a little surprising: (a++)++ + b. This is how the lexer
or token matching works, i.e. it matches the longest applicable token first.

If a and b are numbers, then the result of both expressions is a + b + 2, but the way it's arrived
at is different.

However, the ++ (increment) and -- (decrement) operators may be interpreted differently for other
types. For example, if both a and b are of the datetime type, then the result also depends on whether
one of them is an interval datetime, and the other (regular) datetime value has valid time or not. To
make the expression unambiguous, whitespace and/or parenthesis should be used.

Another ambiguous example:

a++b

The above may be interpreted as a + +b but since no whitespace is used, the tokenizer is free to
interpret it as a++ b, because ++ is longer than +, so the former is matched first as an operator token.
This is a syntax error and expression parsing throws an error for it.

21

Chapter 4. Functions
4.1. Introduction

This section lists the functions supported by OpenCReports in topics, and alphabetically in their topic.

Most functions below operate in this way, unless noted otherwise:

• numeric and bitwise functions with more than two operands take their first operand and perform
the same operation using the second, third, etc. operands repeatedly.

• if any of the operands is an error (resulting from runtime processing of a subexpression), then the
result will use the exact error of the first operand that is an error.

• if any of the operands is NULL (e.g. the data source is SQL and the field value is SQL NULL) then
the result will also be NULL.

• Boolean logic functions treat their operands with 0 being false and anything else (even fractions
less than 0.5) as true.

• Bitwise functions treat their operands as 64-bit numeric values, with rounding if they are fractions.

• String arithmetics operate on UTF-8 encoded strings and count in number of UTF-8 characters
instead of byte length.

4.2. Arithmetic functions

4.2.1. abs()
Absolute value. It takes one numeric operand. Operator |...| is a shortcut for this function.

4.2.2. div()
Division. It takes two or more numeric operands. The way it works is: take the first operand and divide
it by the second and subsequent operands in sequence. Operator / is a shortcut for this function.

4.2.3. factorial()
Factorial function. It takes one numeric operand. The postfix operator ! is the alias for this function.

4.2.4. fmod()
The result to the value of x - ny (x and y being its two numeric operands), rounded according to
the report's rounding mode, where n is the integer quotient of x divided by y, n is rounded toward
zero. It takes two numeric operands.

4.2.5. mod()
An alias of remainder(). It takes two numeric operands. Operator % is a shortcut for this function.

4.2.6. mul()
Multiplication. It takes two or more numeric operands. Operator * is a shortcut for this function.

22

Functions

4.2.7. remainder()
The result to the value of x - ny (x and y being its two numeric operands), rounded according to
the report's rounding mode, where n is the integer quotient of x divided by y, n is rounded toward to
the nearest integer. It takes two numeric operands.

4.2.8. uminus()
Unary minus. Changes the sign of its numeric operand from positive to negative, or vice versa. It takes
one numeric operand. Operator unary - is a shortcut of this function.

4.2.9. uplus()
Unary plus. Leaves the sign of its numeric operand as is. It takes one numeric operand. Operator unary
+ is a shortcut of this function.

4.3. Bitwise functions

4.3.1. and()
Bitwise AND. It takes two or more numeric operands. Operator & is a shortcut for this function.

4.3.2. not()
Bitwise NOT. It takes one numeric operand. It returns the bit-by-bit negated value of its operand.
Prefix operator ~ is a shortcut for this function.

4.3.3. or()
Bitwise OR. It takes two or more numeric operands. Operator | is a shortcut for this function.

4.3.4. shl()
Bitwise shift left. It takes two numeric operands. Shifts the first operand left with the number of bits
specified by the second operand. The operand << is a shortcut for this function.

4.3.5. shr()
Bitwise shift right. It takes two numeric operands. Shifts the first operand right with the number of
bits specified by the second operand. The operand >> is a shortcut for this function.

4.3.6. xor()
Bitwise exclusive OR. It takes two or more numeric operands.

4.4. Boolean logic functions

4.4.1. land()
Boolean logic AND. It takes two or more numeric operands that are treated as boolean logic values.
The function is executed until the result is fully determined, i.e. it stops at the first false value. Operator
&& is a shortcut for this function.

23

Functions

4.4.2. lnot()
Boolean logic NOT. It takes one numeric operand. It returns the negated boolean value of its operand.
Prefix operator ! is a shortcut for this function.

4.4.3. lor()
Boolean logic OR. It takes two or more numeric operands that are treated as boolean logic values. The
function is executed until the result is fully determined, i.e. it stops at the first true value. Operator
|| is a shortcut for this function.

4.5. Comparison functions

4.5.1. eq()
Equal. It takes two operands of the same type: numeric, string or datetime. The result is numeric value
1 or 0, if the two operands are equal or non-equal, respectively. The operators = and == are shortcuts
for this function.

4.5.2. ge()
Greater-or-equal. It takes two operands of the same type, which can be either numeric, string or
datetime. The operator >= is a shortcut for this function.

4.5.3. gt()
Greater-than. It takes two operands of the same type, which can be either numeric, string or datetime.
The operator > is a shortcut for this function.

4.5.4. le()
Less-or-equal. It takes two operands of the same type, which can be either numeric, string or datetime.
The operator <= is a shortcut for this function.

4.5.5. lt()
Less-than. It takes two operands of the same type, which can be either numeric, string or datetime.
The operator < is a shortcut for this function.

4.5.6. ne()
Not equal. It takes two operands of the same type, which can be either numeric, string or datetime.
The operator != and <> are shortcuts for this function.

4.6. Rounding and related functions

4.6.1. ceil()
Rounds its operand to the next higher or equal integer. It takes one numeric operand.

4.6.2. floor()
Rounds its operand to the next lower or equal integer. It takes one numeric operand.

24

Functions

4.6.3. rint()
Rounds its operand using the report's rounding mode. It takes one numeric operand.

4.6.4. round()
Rounds its operand to the nearest representable integer, rounding halfway cases away from zero. It
takes one numeric operand.

4.6.5. trunc()
Rounds its operand to the next representable integer toward zero. It takes one numeric operand.

4.7. Exponential, logarithmic and related
functions

4.7.1. exp()
Natural exponential. It takes one numeric operand.

4.7.2. exp10()
Base-10 exponential. It takes one numeric operand.

4.7.3. exp2()
Base-2 exponential. It takes one numeric operand.

4.7.4. ln()
Alias for log().

4.7.5. log()
Natural logarithm. It takes one numeric operand.

4.7.6. log10()
Base-10 logarithm. It takes one numeric operand.

4.7.7. log2()
Base-2 logarithm. It takes one numeric operand.

4.7.8. pow()
This function raises the first operand to the power of its second operand. It takes two numeric operands.
Operator ^ is a shortcut for this function.

4.7.9. sqr()
Square. It takes one numeric operand.

25

Functions

4.7.10. sqrt()
Square root. It takes one numeric operand.

4.8. Trigonometric functions

4.8.1. acos()
Arc-cosine function. It takes one numeric operand.

4.8.2. asin()
Arc-sine function. It takes one numeric operand.

4.8.3. atan()
Arc-tangent function. It takes one numeric operand.

4.8.4. cos()
Cosine function. It takes one numeric operand.

4.8.5. cot()
Cotangent function. It takes one numeric operand.

4.8.6. csc()
Cosecant function. It takes one numeric operand.

4.8.7. sec()
Secant. It takes one numeric operand.

4.8.8. sin()
Sine. It takes one numeric operand.

4.8.9. tan()
Tangent. It takes one numeric operand.

4.9. String functions

4.9.1. concat()
Concatenate strings. It takes two or more string operands.

4.9.2. left()
Return the leftmost N characters of a string. It takes two operands, the first operand is a string, the
second is the string length, a numeric integer.

26

Functions

4.9.3. lower()
Convert to lowercase. It takes one string operand.

4.9.4. mid()
Return characters from the middle of the string. It takes three operands, the first operand is a string,
the second and third are numeric integer values, start offset and length, respectively. The offset is 1-
based just like in BASIC, with the offset value 0 being identical to 1. Negative offsets count from the
right end of the string, i.e. mid(s,-n,n) is equivalent to right(s,n).

4.9.5. proper()
Return the string converted lowecase, except the first letter of the first word, which will be uppercase.
This function takes one string operand.

4.9.6. right()
Return the rightmost N characters of a string. It takes two operands, the first operand is a string, the
second is the string length, a numeric integer.

4.9.7. strlen()
Return the number of characters in the string. It takes one string operand.

4.9.8. upper()
Convert to uppercase. It takes one string operand.

4.10. Datetime functions

4.10.1. chgdateof()
Change the date part of the first operand to the date part of the second operand. It takes two datetime
operands.

4.10.2. chgtimeof()
Change the time part of the first operand to the date part of the second operand. It takes two datetime
operands.

4.10.3. date()
Return the current date. It takes zero operands.

4.10.4. dateof()
Return the date part. It takes one datetime operand.

4.10.5. day()
Return the day of month value as a number. It takes one datetime operand.

27

Functions

4.10.6. dim()
Returns the number of days in the month according to the year and month values of the operand. It
takes one datetime operand.

4.10.7. dtos()
Convert a datetime to string. The date part of the datetime is formatted according to the date format
of the currently set locale. It takes one datetime operand.

4.10.8. dtosf()
Convert a datetime to formatted string. It takes two operands, one datetime and one string. It takes
the second (string) operand as a format string and formats the datetime value according to the format
string. If the second operand is NULL or empty string, this function behaves like the dtos() function.
Otherwise it behaves like the format() function with the operands reversed.

4.10.9. gettimeinsecs()
Convert the time part of the datetime to seconds elapsed from 00:00:00. It takes one datetime operand.

4.10.10. interval()
Convert the parameter(s) to an interval subtype of the datetime type. It takes either one string operand,
or six numeric operands.

In the first case, the string is parsed for interval values, like 1 year or 2 months, etc., and sets
the specific datetime part values.

In the second case, the six numeric operands are the values for the datetime parts, in the order of years,
months, days, hours, minutes and seconds.

4.10.11. month()
Return the month value of a datetime. It takes one datetime operand.

4.10.12. now()
Return the current timestamp in a datetime value. It takes zero operands.

The "current timestamp" is determined at the beginning of generating the report. This function returns
the same stable value for the lifetime of the report.

4.10.13. settimeinsecs()
Return a datetime with the time part of a datetime changed to the specified seconds after 00:00:00. It
takes two operands, the first operand is a datetime, the second is a numeric integer.

4.10.14. stdwiy()
Return the ISO-8601 week number of a datetime as a decimal number, range 01 to 53, where week 1
is the first week that has at least 4 days in the new year. It takes one datetime operand.

4.10.15. stod()
Alias for stodt().

28

Functions

4.10.16. stodt()
Convert a string to a datetime value. It takes one string operand.

This function is smart enough to recognize locale specific and standard ISO-8601 formats. It handles
whole datetime, date-only and time-only values in the string.

4.10.17. stodtsql()
Alias for stodt().

4.10.18. timeof()
Return time part of the datetime operand. It takes one datetime operand.

4.10.19. tstod()
Alias for stodt().

4.10.20. wiy()
Return the week number of the operand as a decimal number, range 00 to 53, starting with the first
Sunday as the first day of week 01. It takes one datetime operand.

4.10.21. wiy1()
Return the week number of the operand as a decimal number, range 00 to 53, starting with the first
Monday as the first day of week 01. It takes one datetime operand.

4.10.22. wiyo()
This function returns the week number of the first operand as a decimal number, range 00 to 53, starting
with the specified day number as the first day. (0 = Sunday, 1 = Monday, 2 = Tuesday, ...) It takes two
operands, the first is a datetime, the second is a numeric integer.

4.10.23. year()
Return the year value of the operand as a numeric value. It takes one datetime operand.

4.11. Type agnostic functions

4.11.1. add()
Add the operands. It takes two or more operands of different types and returns the sensible result for
cases that make sense. It throws an error for invalid cases. Operator + is a shortcut for this function.

For numeric arguments, it's the arithmetic addition.

For string arguments, it is equivalent to concatenation, i.e. the concat() function.

Certain combinations of datetime and numeric arguments make sense.

• normal datetime and numeric added together results in the datetime value increased by the
specified number of seconds or days, depending on whether the datetime value has valid time
part or not, respectively

29

Functions

• the interval subtype of datetime and numeric added together results in the datetime value
increased by the specified number of seconds

• normal datetime and the interval subtype of the datetime added together results in the normal
datetime value increased by the specified time interval

• two intervals added together results in the first interval increased by the second interval

4.11.2. dec()
Decrement by one. It takes one numeric or datetime operand. The operator -- is the shortcut for it,
either as prefix or postfix operator.

4.11.3. inc()
Increment by one. It takes one numeric or datetime operand. The operator ++ is the shortcut for it,
either as prefix or postfix operator.

4.11.4. sub()
Subtract the second, etc. operands from the first. It takes two or more operands of different types and
returns the sensible result for cases that make sense. It throws an error for invalid cases. Operator -
is a shortcut for this function.

For numeric arguments, it's simply the arithmetic subtraction.

For string arguments, it throws an error.

Certain combinations of datetime and numeric arguments make sense.

• a numeric value subtracted from a normal datetime results in the datetime value decreased
by the specified number of seconds or days, depending on whether the datetime value has valid
time part or not, respectively

• a numeric value subtracted from the interval subtype of datetime results in the datetime
value decreased by the specified number of seconds

• an interval value subtracted from a normal datetime value results in the normal datetime
value decreased by the specified time interval

• two intervals subtracted results in the first interval decreased by the second interval

4.12. Formatting and conversion functions

4.12.1. format()
It takes two operands, the first operand is of any type, the second operand is a string. This function
formats the first value according to the second operand as a format string. If the first operand doesn't
match the expected type in the format string, an error is returned.

It an RLIB compatibility function and is a special case of the printf() function. See Formatting
data.

4.12.2. printf()
This function takes one or more operands. The first operand is a string and used as the format string.
Subsequent operands have to be of the expected type according to the format string, otherwise an error
is returned. If everything is correct, it returns the formatted data as a string. See Formatting data.

30

Functions

4.12.3. str()
It takes three numeric operands. The first operand is converted to a string with the length and number
of decimal digits specified by the second and the third operands, respectively.

4.12.4. val()
Numeric value. It takes one numeric or string operand.

If a string value is passed, and it can be converted to a numeric value successfully, then it returns the
converted numeric value.

The value of a numeric operand is passed through as is.

4.13. Miscellaneous functions

4.13.1. brrownum()
Current row number of a break since its last break boundary. The row number restarts from 1 at every
break boundary. It takes one string operand, the name of the break.

4.13.2. error()
Return an artificially generated error. It takes one string operand, the error message. Used by unit tests
but it may be useful in some other cases.

4.13.3. eval()
Parse an expression string. If it's correct, it is inserted into the parent expression in place of the function
call. If there is a syntax error, the error is re-thrown for the main expression. It takes one string operand.

This is a pseudo-function. The grammar detects its use and converts the embedded expression string
into a regular subexpression, like if it was inside parenthesis in the parent expression contents. This
allows the subexpression to be optimized in the parent expression context.

Fox example, the expression 3 * eval('1 + 2') is optimized into the numeric constant 9.

Note, that the grammar transformation only takes place if there is no user defined function with the
same name. In this case, the user defined function is used.

4.13.4. fxpval()
Move the decimal separator to the left by the specified number of digits. It takes two operands. The
first operand may either be a string containing a numeric value, or a numeric. If it's a string, then it
will be converted to numeric first. The second operand is numeric.

It is an RLIB compatibility function. The function divides the numeric value of the first operand with
10 to the power of the value of the second operand. One use case is that if the value of the first operand
contains prices in cents, then fxpval(data, 2) puts the decimal separator to the correct place.

4.13.5. iif()
Ternary function. It takes three operands of which the first one is numeric, the second and third
operands can be of any type. If the first operand is non-zero (i.e.: "true") then it returns the second
operand, otherwise the third operand. The ternary operator exp1 ? exp2 : exp3 is a shortcut
for this function.

31

Functions

4.13.6. isdatetime()
Returns numeric 1 if the operand is datetime, 0 otherwise. It takes one operand of any type.

4.13.7. iserror()
Returns numeric 1 if the operand is an error, 0 otherwise. It takes one operand of any type.

4.13.8. isnan()
Returns numeric 1 if the operand is numeric and it represents a NAN value (not-a-number), 0
otherwise. It takes one operand of any type.

4.13.9. isnull()
Returns numeric 1 if the operand is NULL, 0 otherwise. It takes one operand of any type.

4.13.10. isnumeric()
Returns numeric 1 if the operand is a numeric value, 0 otherwise. It takes one operand of any type.

4.13.11. isstring()
Returns numeric 1 if the operand is a string value, 0 otherwise. It takes one operand of any type.

4.13.12. null()
Generate NULL value using the type of its operand. It takes one operand of any type.

4.13.13. nulldt()
Generate NULL of the datetime type. It takes zero operands.

4.13.14. nulln()
Generate NULL of the numeric type. It takes zero operands.

4.13.15. nulls()
Generate NULL of the string type. It takes zero operands.

4.13.16. prevval()
Return the previous value. It takes one operand of any type.

The interesting use case for this function is non-constant expressions. It returns the operand's previous
value, i.e. the value generated for the previous query row. If there is no previous value row, the result
is an error. This function allows showing values carried over from the previous page to be shown in
a header section of the current page.

4.13.17. random()
Generate a pseudo-random numeric value between 0 and 1. It takes zero operands.

32

Functions

4.13.18. rownum()
Return the row number of a query in the report. It takes either zero operands or one string operand. If
zero operands are passed, it returns the current row number of the primary query. If a string operand
is passed, then it returns the current row number of the query with that name. See Queries.

4.13.19. translate()
Translate the operand. It takes one string operand.

This function returns the translated version of the string operand according to translation and locale
settings using dgettext() from Gettext.

4.13.20. translate2()
Translate the operands using singular and plural variants and the number of the object in the statement.
It takes three operands. The first two operands are strings, for the singular and plural strings. The third
operand is the number that determines which translation form is used.

This function translates its operands according to the translation and locale settings using
dngettext() from Gettext.

33

Chapter 5. Report variables
5.1. Introduction to report variables

In OpenCReports, there are a few variable types:

• expression variables, practically named aliases for Expressions

• pre-defined numeric operations for simple statistics, like summing, counting, or averaging a data
series, or finding the highest or lowest values in a data series

• custom variables where the data type and the operation on the data are user-defined

Variables may be reset at break boundaries. See Report breaks and the Reset on break attribute.

5.2. Expression variables
The value of an expression variable is calculated from the expression using current row of data from
the query.

This can be thought of as a kind of shortcut. A variable may use a long expression. Other expressions
may use the same long expression as a subexpression, i.e. part of themselves. Typing the same long
expression over and over is error-prone. The variable allows typing the expression once, then the
variable can be used in other expressions. This not only saves on typing. The expression value of
the variable is calculated once, and referencing the variable simply uses the already calculated value,
thereby saving report execution time.

5.2.1. Variables with iterative expressions
An expression may be iterative, where the new value is derived from the previous value of itself. See
Expression self reference.

5.2.2. Expression variable examples
Examples cannot be understood without the context in which they are used. Complete variable
examples are in the Variable node section of the Report XML description chapter.

5.3. Variable types for simple statistics
There are pre-defined variable types for performing simple statistic calculations. All of them (except
data series counting) operate on numeric values and use iterative expressions internally.

The pre-defined variables types are as below:

• Summing a data series. The variable type is sum.

• Counting a data series. The variable type is count or countall. The difference between the
two is that plain count does not count NULL data, while countall does. It's equivalent to
the difference between COUNT(query1.field1) and COUNT(*) in SQL. The former doesn't
count NULL (empty) values, the latter does.

• Averaging in a data series. Averaging uses two running expressions behind the scenes. One is the
sum of data, the other is the count of data. The sum is divided by the count.

Here, two different calculation is possible again, depending on which counting method is used, see
above. NULL data contributes 0 to the sum, but the count (the denominator in the division) may
differ. The result depends on this detail.

34

Report variables

For this reason, average and averageall variable types exist.

• Highest and lowest values of a data series. Finding the highest and lowest values in a data series is
done by the highest and the lowest variable types.

NULL values don't contribute to the result of either variable type, so in an all-NULL series, each
variable will give a NULL result, i.e. empty when displayed.

5.3.1. Statistics variable examples
Examples cannot be understood without the context in which they are used. Complete variable
examples are in the Variable node section of the Report XML description chapter.

5.4. Custom variables
As seen in Expression variables and also in the Complete variable examples, variables are not
mysterious. They can be iterative or non-iterative and their operation can be spelled out. On the
other hand, the pre-defined variables for doing simple statistics may be limiting. Maybe we need an
iteratively calculated value that uses a different type than numeric. This is where custom variables
may be useful.

For a custom variable, all details can be freely defined:

• the base type: numeric, string or datetime; number is also accepted as an alias for
numeric

• the base expression

• two intermediary expressions that both may use the base expression's result, and the second
intermediary may also use the first one's result

• the result expression that may use all three expressions' results

See the Custom variable example on how the average type variable can be spelled out as a custom
variable.

5.5. Precalculated variables
By default, variables produce results that are valid for the data rows they are derived from. Iterative
variables variable produce results that are valid for the current row and preceding rows.

Usually, we are not interested in the running average, only in the average of the whole data series.

This is where the precalculated variables come in.

A variable can be set to be precalculated via the Precalculate attribute.

As it was already mentioned for precalculated expressions, the report goes through the data set twice.
At the end of the first run, the value of precalculated variables computed for the last row are kept.
In the second run, the same value is supplied for every data row. The value of such a precalculated
variable can be displayed in a report header, which is shown before any report details to inform the
reader in advance without having to look at the last page.

See Precalculate attribute for an example.

Variables can reference other variables. When certain combinations are encountered, it's necessary
to calculate the variables' values in multiple rounds. For example, when a precalculated variable is
referenced by another precalculated variable that also has its ignore expression set (especially if the

35

Report variables

ignore expression references that other variable), or its value is reset on a break boundary, the referred
variable's value needs to be computed first, in order for the referring variable value to be intuitively
correct.

36

Chapter 6. Report breaks
6.1. Grouping data

OpenCReports, being a report generator, works on tabular data: the data consists of ordered (named)
columns and ordered or unordered rows.

It is often necessary to group data by certain properties. Imagine a list of employees of a company,
grouped by their departments, pay grade, or location of employment. A report may show the list of
the employees with visual separation according to any of these properties.

Multiple groupings may be prioritized (nested):

1. by department

2. by pay grade

With the above, in each department, subgrouping would separate employees according to the pay
grade in that department.

For this to work, the rows of data must be fed to the report generator in a certain order. For example,
in SQL the ordering can be done by:

SELECT ...
ORDER BY department,paygrade,employee;

This grouping of data is called a break in a report generator.

6.2. Report breaks in OpenCReports
Expressions can reference data via the column names of a row. Arbitrary expressions may be used
to watch for changes in the value of the expression data breaks. Breaks occurs on the boundary of
changes in the expression value.

Prioritization (nesting) of breaks is done according their order of declaration. See Breaks and Break
node.

Visual separation is optionally helped with break headers and footers. See BreakHeader and
BreakFooter.

6.3. Resetting a variable on break boundaries
It may also be useful to use a regular or precalculated variable that only considers data rows in break
ranges. For example printing a running average for detail rows in breaks, or printing the total average
calculated for a break range in the header for that period.

For this purpose, variables may be reset on break boundaries. See examples of such variables in
Reset on break attribute and Precalculate attribute in the Variable node section of the Report XML
description chapter.

6.4. Example
Examples cannot be understood without the context in which they are used. A complete break example
can be found at the end of the Breaks section of the Report XML description chapter.

37

Chapter 7. Formatting
7.1. Formatting functions

Formatting data can be done via the format() function, the printf function and the Text element format
attribute. After formatting, regardless of the data type that was formatted, the type of the result value
is string. This string can be displayed in the report output or processed further as needed.

7.2. Format strings
OpenCReports supports the same set of format strings as RLIB, with extensions. RLIB and
OpenCReports support:

• legacy format strings for strings, numbers and datetime values

• "new style" format strings with ! prefix

The legacy and the "new style" format strings can only be used in the format() function and the Text
element format attribute, due to them being RLIB compatible. They can also be used in the printf
function in limited cases, i.e. when formatting a single data value.

OpenCReports also supports a 2nd generation new style format strings with a prefix and a pair of
brackets ({}) that embed the format strings. The 2nd generation format strings can also be used with
the printf function in a completely unambiguous manner.

7.3. Legacy format strings
Legacy format strings are like in C, but not always identical.

7.3.1. Format string for strings
To print a string, the %s format string can be used. Examples for using it in the Text element format
attribute can be found in the Format attribute examples.

Example expressions for the format() function:

format(query1.field1, '%s')
format(query1.field1, 'Look, there is a %s there!')

Example expressions for printf function:

printf('%s, 'query1.field1')
printf('Look, there is a %s there!', query1.field1)

Supplementary format string flags are supported. See the string flags in printf(3)1

7.3.2. Format string for numeric values
To print a number, the %d format string can be used. As opposed to the C printf format specifier
where %d is used for integers, this is used for printing fractions, too. Examples for using it in the Text
element format attribute can be found in the Format attribute examples.

The same format string can be used for the the format() function and the printf function, just like in
the previous examples for strings.

1 https://man7.org/linux/man-pages/man3/printf.3.html

38

https://man7.org/linux/man-pages/man3/printf.3.html
https://man7.org/linux/man-pages/man3/printf.3.html

Formatting

Supplementary format string flags are supported. See the decimal and float/double format flags in
printf(3)2

7.3.3. Format string for datetime values
RLIB approximated strftime() when printing a datetime value. OpenCReports uses
strftime(). See the strftime()3 function description for the complete description of format string
flags.

When a datetime field didn't have an explicit format string, RLIB used the US date format to print
the datetime value. On the other hand, OpenCReports uses the locale specific date format if the report
has a locale set.

7.4. New style format strings
RLIB supported "new style" format strings that allowed formatting numeric data as monetary values
and allowed to disambiguate between format strings used for different data types. This was needed
because some format flags are used in both printf(), strfmon() and strftime().

7.4.1. New style format string for strings
This is an extension over RLIB, which didn't have such a notion. In OpenCReports, the new style flag
is prefixed with !&.

7.4.2. New style format string for numeric data
The new style flag is the legacy flag prefixed with !#

7.4.3. New style format string for monetary data
There was way to format numeric data using the legacy formatting flags. The new style flag is prefixed
with !$ and uses the flags of strfmon(). See the strfmon()4 function for details.

To print the correct currency name, the locale must be set for the report. Only one locale can be set,
so a single currency name will be used for every value using monetary formatting.

7.4.4. New style format string for datetime values
The new style flag is the legacy flags prefixed with !@. Formatting a datetime value uses strftime()5.

7.4.5. New style format string examples
Examples for using these in the Text element format attribute can be found in the Format attribute
examples.

7.5. Second generation new style format
strings

This format string style builds upon the original new style format strings, with the addition of brackets
that embed the underlying format strings.

2 https://man7.org/linux/man-pages/man3/printf.3.html
3 https://man7.org/linux/man-pages/man3/strftime.3.html
4 https://man7.org/linux/man-pages/man3/strfmon.3.html
5 https://man7.org/linux/man-pages/man3/strftime.3.html

39

https://man7.org/linux/man-pages/man3/printf.3.html
https://man7.org/linux/man-pages/man3/strftime.3.html
https://man7.org/linux/man-pages/man3/strfmon.3.html
https://man7.org/linux/man-pages/man3/strftime.3.html
https://man7.org/linux/man-pages/man3/printf.3.html
https://man7.org/linux/man-pages/man3/strftime.3.html
https://man7.org/linux/man-pages/man3/strfmon.3.html
https://man7.org/linux/man-pages/man3/strftime.3.html

Formatting

7.5.1. 2nd gen new style format string for strings
The format string format is the legacy format string embedded in !&{...}.

7.5.2. 2nd gen new style format string for numeric data
The format string format is the legacy format string embedded in !#{...}

7.5.3. 2nd gen new style format string for monetary
data

The format string format is the same as the first generation. Instead of just having a prefix, the
strfmon() format string is embedded in !${...}

Formatting monetary values uses strfmon(). See strfmon(3)6

To print the correct currency name, the locale must be set for the report. Only one locale can be set,
so a single currency name will be used for every value using monetary formatting.

7.5.4. 2nd gen new style format string for datetime
values

The format string format is embedded in !@{...}. Formatting a datetime value uses strftime().

7.5.5. 2nd gen new style format string examples
Examples for using these in the Text element format attribute can be found in the Format attribute
examples.

7.6. The swiss army knife of formatting
The printf function is the most versatile formatting function in OpenCReports. It does not exist in
RLIB. Using the second generation format strings makes it completely unambiguous.

The printf() function in OpenCReports allows formatting every data type into a common result
string. Example:

printf('You had %d %s on !@{%Y-%m-%d} '
 'and %d %s on !@{%Y-%m-%d} in your pocket.',
 6, 'apples', stodt('2022-05-01'),
 2, 'oranges', stodt('2022-05-02'))

The result is:

You had 6 apples on 2022-05-01 and 2 oranges on 2022-05-02 in your
 pocket.

6 https://man7.org/linux/man-pages/man3/strfmon.3.html

40

https://man7.org/linux/man-pages/man3/strfmon.3.html
https://man7.org/linux/man-pages/man3/strfmon.3.html

Chapter 8. Report XML description

8.1. XML description structure
OpenCReports1 uses an RLIB2-compatible report description with extensions.

The report XML description, like all XML files start with declaring that it's an XML file and the
optional declaration of the Document Type Definition that the XML file can be checked against. For
an OpenCReports report description, the first two lines are:

<?xml version="1.0"?>
<!DOCTYPE OpenCReport SYSTEM "opencreport.dtd">

The DTD file opencreport.dtd can be found in the sources of OpenCReports here3.

After the XML header lines, a fully specified report description looks like this:

<OpenCReport>
 <Datasources>
 ...
 </Datasources>
 <Queries>
 ...
 </Queries>
 <Part>
 <pr>
 <pd>
 <Report>
 ...
 </Report>
 </pd>
 </pr>
 </Part>
</OpenCReport>

or like this:

<OpenCReport>
 <Datasources>
 ...
 </Datasources>
 <Queries>
 ...
 </Queries>
 <Report>
 ...
 </Report>
</OpenCReport>

The XML sections Datasources and Queries are optional in the XML description. They can be
substituted by program code using the datasource and query related calls in the Low level C API,
similarly to RLIB.

1 https://github.com/zboszor/OpenCReports
2 https://sourceforge.net/projects/rlib/
3 https://github.com/zboszor/OpenCReports/blob/main/opencreport.dtd

41

https://github.com/zboszor/OpenCReports
https://sourceforge.net/projects/rlib/
https://github.com/zboszor/OpenCReports/blob/main/opencreport.dtd
https://github.com/zboszor/OpenCReports
https://sourceforge.net/projects/rlib/
https://github.com/zboszor/OpenCReports/blob/main/opencreport.dtd

Report XML description

For RLIB compatibility, a report description may start with either <Part> or <Report> as the
toplevel node. In this case, there's no other way to add datasources and queries, but through program
code, like the Low level C API.

Since XML files are hierarchical with a single toplevel node with child nodes, multiple <Report>
nodes in the same report output were only possible in RLIB with using <Part> as the toplevel
node, with all the nodes having to be spelled out between <Part> and <Report>. With
<OpenCReport> being the toplevel node, multiple <Report> child nodes can be used without the
parent <Part> node.

8.1.1. Notes about XML syntax and attributes
Most (if not all) XML attributes in the report description file are handled with the expression parser (see
Expressions), with fallback to literal strings if the the location of expression wouldn't allow identifier
references at that location.

For example, the datasource name may be declared using either of the three examples below:

<Datasource name="mysource" ... />
<Datasource name="'mysource'" ... />
<Datasource name=""mysource"" ... />

The first form is a regular XML string value. Since expression parsing would find that mysource is
an identifier which may be a query column name and this is not a valid place for a query reference,
the non-parsed string value is used.

The second form is a single quoted OpenCReports string constant. The value of the string constant
(i.e. mysource) is used.

The third form is a double quoted OpenCReports string constant, but in XML the double quote
character must be substituted with " because they are reserved for quoting the attribute values.
The value of the string constant (i.e. mysource) is used. (This substitution is called "string escaping"
and various other formats besides XML require some kind of substutition for reserved characters.)

To make the XML easier to read, the second form is recommended because it still allows embedding
the single quote character inside a string (see Report XML description) in case e.g. a strong password
contains this. For security-by-obscurity, the third form may be used because it is harder to read. For
all special characters that should be escaped in XML, see Simplified XML Escaping4.

8.2. OpenCReport element
The toplevel <OpenCReport> element controls some global settings and serves as the topmost XML
element for child elements.

8.2.1. Size unit attribute
The size_unit attribute specifies report behaviour for size related settings:

<OpenCReport size_unit="'rlib'">
<OpenCReport size_unit="'points'">

Default is rlib which is the legacy RLIB behavior, where sizing of layout details are a mix of units,
making it harder to design the report layout:

• width for field and literal (see Output node) are in number of characters. This is influenced
by the font size set in either Part font size, Report font size or Line font size.

• height for Part column is measured in number of characters influenced by Part font size

4 https://stackoverflow.com/a/46637835/290085

42

https://stackoverflow.com/a/46637835/290085
https://stackoverflow.com/a/46637835/290085

Report XML description

• height for Report is measured in percentage of Part column and considered to be a minimum value,
so padding is added if the report contents end earlier than the limit

• width of horizontal lines and the optional border width around reports are specified in points

• gaps between columns of multi-column reports is measured in inches

Note that RLIB only expected monospace fonts that have the same width for every character. It also
expected that the character height is identical to the character width. The latter expectation is false for
many monospace fonts, i.e. their height is usually greater than their width. Also, there are problems
with field widths calculated in number of characters. Widths using a 12 point font (for example, used
for regular text) is not the same as widths using a 20 point font used for text in a header line. Due to
this, width of header and data lines will not align properly and it will show when using background
color for both of them.

With proportional fonts (where the width of characters depend on their image, i.e. an "i" is thinner
than an "m") width of text fields cannot reliably be set in a "number of characters" unit because it's
not an exact value. There is a workaround for this in OpenCReports but it isn't available in RLIB so
it's not backward compatible. See Text element width.

When size_unit is set to points, all size related settings in the report are in points, a.k.a. 1/72th
inch. It's consistent and avoids the above described issues.

8.2.2. No query show NoData
The report uses data from Queries through the report's Query attribute. When a query provides no
data rows, an alternative section called NoData node with static information may be shown instead
if it exists in the report. The report uses the first query declared in Queries if it's not explicitly set
via Query attribute.

RLIB had a trick to disable showing the NoData node. This was enabled by specifying a query name
that does not exist. This option controls the layout behaviour for that case.

<OpenCReport noquery_show_nodata="yes">
<OpenCReport noquery_show_nodata="no">

Default is true (or yes) when <OpenCReport> is the toplevel node, false (or no) when either
<Part> or <Report> is the toplevel node for RLIB compatibility.

8.2.3. Report height after last
A report may specify its height through Report height. Multiple <Report> nodes may exist in the
same <pd> section. For more information, see Part column and Report.

This option controls whether report height is applied after the last <Report> in the same <pd> node.

<OpenCReport report_height_after_last="yes">
<OpenCReport report_height_after_last="no">

Default is false.

8.2.4. Follower match single
Queries may be daisy-chained together as Follower queries in two ways, regular and N:1 followers.
See the links for details.

When set to false, N:1 followers behave fully like LEFT OUTER JOIN in SQL, with duplicating
data from the primary query if multiple matching rows exist in followers. When set to true, only the
first matching row is used. The latter approximates the RLIB implementation.

43

Report XML description

<OpenCReport follower_match_single="yes">
<OpenCReport follower_match_single="no">

Default is yes in RLIB compatibility mode, i.e. when either <Part> or <Report> are used as the
toplevel XML node for the report description. Otherwise the default is no.

8.2.5. Precision bits
This controls the precision for numeric computations. For more information, see Expressions

<OpenCReport precision_bits="512">

Default is 256.

8.2.6. Rounding mode
This controls the rounding mode for numeric computations. Possible values are: nearest,
to_minus_inf, to_inf, to_zero, away_from_zero, or faithful.

<OpenCReport rounding_mode="nearest">
<OpenCReport rounding_mode="to_minus_inf">
<OpenCReport rounding_mode="to_inf">
<OpenCReport rounding_mode="to_zero">
<OpenCReport rounding_mode="away_from_zero">
<OpenCReport rounding_mode="faithful">

Default is nearest. Note that according to the MPFR documentation, faithful is experimental.

8.2.7. Locale
This controls the language settings, like the decimal separator, weekday names, month names and
similar. This setting is also used as the language of translation.

<OpenCReport locale="de_DE">

Default is C locale which approximates US English.

8.2.8. Translation settings
These two settings control the translation.

<OpenCReport
 translation_domain="mydomain"
 translation_directory="/path/to/translation/files">

Translation is based on GNU Gettext5. A subdirectory tree is expected under the specified
translation directory in the form of locale/LC_MESSAGES (e.g.: de_DE/LC_MESSAGES) with
mydomain.mo files in them. These .mo files contain translated messages for a given language.

8.3. Paths
Some report description elements reference file. Such elements are <load> and <Image>, see
Loaded report and Image node. By default, these files must be in the same directory as the report XML
description file, or in the current working directory for the application using OpenCReports. To lift
this limitation and to allow organizing files, a search path or multiple search paths may be added. For
files referenced with relative paths, the search paths will be used in their order of declaration. Search

5 https://www.gnu.org/software/gettext/

44

https://www.gnu.org/software/gettext/
https://www.gnu.org/software/gettext/

Report XML description

paths and the relative file path are concatenated together to form an absolute path. The first successful
absolute file path match will be used in the element referencing the file.

Search paths are in the following format:

<Paths>
 <Path value="/absolute/path" />
 ...
</Paths>

8.4. Datasources
Datasources in OpenCReports are either database connections, or accessors (mini-drivers) for data
files in certain formats.

Datasource descriptions are in the following format:

<Datasources>
 <Datasource name="mysource" type="..." ... />
</Datasources>

A report may have multiple datasources, i.e. the description may list multiple <Datasource> lines.

Datasources must have unique names in a report and their type may be: mariadb (or mysql),
postgresql, odbc, csv, json, xml or array.

8.4.1. MariaDB (MySQL) database connection
A MariaDB database connection may be declared in three ways. Either by using the database host and
port, the database name, user name and password directly:

<Datasource
 name="mysource" type="mariadb"
 host="..." port="..."
 dbname="..." user="..." password="..." />

or alternatively, instead of the host and port, specifying the UNIX Domain Socket file for a local
connection if it's not in the standard location:

<Datasource
 name="mysource" type="mariadb"
 unix_socket="..."
 dbname="..." user="..." password="..." />

or moving these details out to an external configuration file in an INI file format:

<Datasource
 name="mysource" type="mariadb"
 optionfile="myconn.cnf" group="myconn" />

In the last case, the configuration file myconn.cnf would contain something like this:

[myconn]
!include /etc/my.cnf
database=mydb
user=myuser
#password=
#host=
#port=
#unix_socket=

45

Report XML description

Please note that the INI group name [myconn] matches group="myconn" in the above datasource
declaration.

The database name and user name are mandatory. The user password is optional, depending on the
database security authentication setup.

The database host and port, or the socket file location are all optional. Without these, a local connection
is attempted using the default settings. If the host name is specified but the port isn't, the remote host
is used on the default port (as known by the local MariaDB database client library).

8.4.2. PostgreSQL database connection
A PostgreSQL database connection may be declared in three ways. Either by using the database host
and port, the database name, user name and password directly:

<Datasource
 name="mysource" type="postgresql"
 host="..." port="..."
 dbname="..." user="..." password="..." />

or alternatively, instead of the host and port, specifying the UNIX Domain Socket file for a local
connection if it's not in the standard location:

<Datasource
 name="mysource" type="postgresql"
 unix_socket="..."
 dbname="..." user="..." password="..." />

or using a so called connection string:

<Datasource
 name="mysource" type="postgresql"
 connstr="..." />

For the connection string format, see the PostgreSQL documentation6.

The database name and user name are mandatory. The user password is optional, depending on the
database security authentication setup.

The database host and port, or the socket file location are all optional. Without these, a local connection
is attempted using the default settings. If the host name is specified but the port isn't, the remote host
is used on the default port (as known by the local PostgreSQL database client library).

There are also two optional parameters that control the behaviour of the PostgreSQL driver in
OpenCReports, rather than being actual connection parameters to a PostgreSQL server. These
parameters may be used with any of the above connection methods.

• The parameter usecursor may have a boolean value: true, false, yes, no, or a numeric
value interpreted as a boolean value: non-zero values mean true, zero means false.

When usecursor is enabled, the SQL query will be wrapped in a cursor, and the result is retrieved
in parts. Otherwise, the SQL query is executed as is and the result is retrieved in whole.

The default value is usually true but this can be controlled when OpenCReports is built.

• When usecursor is enabled, the parameter fetchsize controls the number of rows retrieved
at once. Default value is 1024.

Examples (add the necessary connection parameters from the above):

6 https://www.postgresql.org/docs

46

https://www.postgresql.org/docs
https://www.postgresql.org/docs

Report XML description

<Datasource
 name="mysource" type="postgresql" ...
 usecursor="false"
/>

or

<Datasource
 name="mysource" type="postgresql" ...
 usecursor="true" fetchsize="4096" />

SQL queries added to the same PostgreSQL datasource (connection) will behave the same way. Either
all of them are executed as is, or all of them will use a cursor.

8.4.3. ODBC database connection
The above described MariaDB and PostgreSQL database connection types are using their respective
client libraries. There is a more generic way, i.e. ODBC. ODBC was invented by Microsoft in the
1990s for Windows. See Microsoft Open Database Connectivity (ODBC)7 In their solution, there's an
abstract client library and individual database drivers adhere to the APIs offered by ODBC toplevel
library. Since then, UNIX and UNIX-like systems also gained their ODBC client libraries in two
different implementations, both of which are supported by OpenCReports: unixODBC8 and iODBC9.

An ODBC database setup is done a differently. There are two system-wide configuration files. The
first one is odbcinst.ini that lists the database drivers installed into the system. The second one is
odbc.ini which references the first one and lists pre-defined database connections. These database
connections are named. In ODBC speak, these are called Data Source Names or DSNs. The DSNs
specify the low level connection parameters, like the database host and port, and optionally the user
name and password, too.

Thus, an ODBC database connection may be declared in two ways. The first way is by using the DSN
name, and optionally the user name and password:

<Datasource
 name="mysource" type="odbc"
 dbname="..." user="..." password="..." />

In this case, the dbname attribute is not the low level database name, but the ODBC abstract DSN
name.

There's also a way to use the so called connection string which contain the same connection
information:

<Datasource
 name="mysource" type="odbc"
 connstr="..." />

For the connection string format, see the public examples10.

8.4.4. CSV file datasource
For a generic description of the CSV file format, see CSV file type.

A CSV file datasource is declared very simply:

<Datasource name="mysource" type="'csv'" />

7 https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
8 https://www.unixodbc.org
9 https://www.iodbc.org
10 https://www.connectionstrings.com/

47

https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://www.unixodbc.org
https://www.iodbc.org
https://www.connectionstrings.com/
https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://www.unixodbc.org
https://www.iodbc.org
https://www.connectionstrings.com/

Report XML description

In this case, the actual CSV file is not declared, only that a "query" using a CSV file will be listed
later under <Queries>.

8.4.5. JSON file datasource
For a generic description of the expected JSON file format, see JSON file type.

Similarly to CSV, the JSON file datasource is also declared very simply:

<Datasource name="mysource" type="'json'" />

In this case, the actual JSON file is not declared, only that a "query" using a JSON file will be listed
later under <Queries>.

8.4.6. XML file datasource
Similarly to CSV and JSON, the XML file datasource is also declared very simply:

<Datasource name="mysource" type="'xml'" />

In this case, the actual XML file is not declared, only that a "query" using an XML file will be listed
later under <Queries>.

8.4.7. Spreadsheet file datasource
Declaring the spreadsheet based file datasource is also very simple:

<Datasource
 name="mysource"
 type="'spreadsheet'"
 filename="'myfile.xlsx'" />

or

<Datasource
 name="mysource"
 type="'pandas'"
 filename="'myfile.xlsx'" />

Since the spreadsheet file may contain multiple sheets, the datasource declaration must specify the file
name, and the query will need to specify the sheet label. An example can be seen under <Queries>.

If the sheets that the report uses are in different files, multiple spreadsheet datasources must be
declared, one for each file. If the sheets are in the same file, then the same datasource can be used for
multiple queries, one query for every sheet.

8.4.8. Array datasource
Arrays are global in-memory structures in the application that should be accessible to the
OpenCReports library. For example, when using the C programming language, global non-static
symbols are visible to libraries if the application is compiled with -rdynamic.

Similarly to file based datasources, the array datasource is declared very simply:

<Datasource name="mysource" type="'array'" />

In this case, the actual array is not declared, only that a "query" using an array will be listed later
under <Queries>.

A C array is declared in this format:

48

Report XML description

const char *array[ROWS + 1][COLUMNS] = {
 { "column1", ... },
 { "value1", ... },
 ...
};

The array is declared as a two-dimensional array of C strings. The first row of the array is the column
names, [ROWS + 1] in the array declaration accounts for the title row.

All rows have the same number of columns. Column values may be NULL, in which case they will
be treated the same as SQL NULLs in SQL query results.

Optionally, a column types array is declared separately:

#include <opencreport.h>

const enum ocrpt_result_type coltypes[COLUMNS] = {
 ...
};

If this array is present, it must have the same number of COLUMNS as the matching
data array. The enum ocrpt_result_type usable in data array type declaration are
OCRPT_RESULT_STRING, OCRPT_RESULT_NUMBER and OCRPT_RESULT_DATETIME.

8.4.9. Common datasource properties

8.4.9.1. Encoding

OpenCReports expects strings in UTF-8 encoding. However, some datasources may use a different
encoding. To use and display strings from the datasource, an internal conversion to UTF-8 is needed.
To perform this correctly, the datasource encoding must be set.

<Datasource
 name="mysource"
 ...
 encoding="ISO-8859-2" />

8.5. Queries
Queries in OpenCReports are SQL queries for database connections, or data files files in certain
formats. The queries are declared like this:

<Queries>
 <Query name="..." ... />
 ...
</Queries>

8.5.1. SQL queries for SQL datasources
SQL queries for MariaDB, PostgreSQL and ODBC datasources may be declared two ways, either as
the XML value for <Query>:

<Query
 name="myquery"
 datasource="mysource">
SELECT * FROM some_table
</Query>

or as the value attribute:

49

Report XML description

<Query
 name="myquery"
 datasource="mysource"
 value="SELECT * FROM some_table" />

Note, that the XML attribute datasource="..." must match a previously declared datasource.

The SQL query can be any SELECT statement.

8.5.2. Queries for file based datasources
Queries for CSV, XML, JSON and spreadsheet datasources may be declared two ways. Either as the
XML value for <Query>:

<Query name="myquery" datasource="mysource" >xmldata.xml</Query>

or as the value attribute:

<Query
 name="myquery"
 datasource="mysource"
 value="'xmldata.xml'" />

Example query for a spreadsheet:

<Query
 name="mysheet"
 datasource="mysource"
 value="'Sheet1'" />

Notes:

• The XML attribute datasource="..." must match a previously declared datasource.

• It is recommended that the value="..." form is used, since it's not ensured that whitespace
before or after the file name is trimmed in the first variant if the XML is "beautified". The file name
that the OpenCReports library receives must be correct in order to use it.

• For CSV, XML and JSON files, the value in the query declaration is the file name. This file must
be in the correct format for the datasource type.

• For spreadsheets, the value in the query declaration is the sheet label.

• The optional type declaration for columns in the XML and JSON file formats, or for
CSV, the complete lack of it can be supplemented with a memory array using the optional
coltypes="..." and cols="..." attributes. For details, see the Array queries.

8.5.3. Queries for array based datasources
Queries for array datasources may be declared two ways. Either as the XML value for <Query>:

<Query
 name="myquery"
 datasource="mysource"
 coltypes="'coltypes'"
 rows="30"
 cols="6"
>array</Query>

or as the value attribute:

50

Report XML description

<Query
 name="myquery"
 datasource="mysource"
 value="'array'"
 coltypes="'coltypes'"
 rows="30"
 cols="6" />

Notes:

• The XML attribute datasource="..." must match a previously declared datasource.

• It is recommended that the value="..." form is used, since it's not ensured that whitespace
before or after the symbol name is trimmed in the first variant if the XML is "beautified". The
symbol name that the OpenCReports library receives must be correct in order to use it. The array
name must match the correct global symbol name. The library discovers this symbol using the Array
discovery function, by default via dlsym().

• Similarly to the array symbol name, the coltypes="..." array name must match the correct
global symbol name. The library discovers this symbol using the Array discovery function, by
default via dlsym().

• The value for cols must match the second dimension of the data array. It may be omitted if
the Array discovery function is smarter than the default implementation and returns the arrays'
dimensions.

• The value for rows must match the number of data rows in the array, excluding the title row. I.e.
it must be one less than the first dimension of the array. It may be omitted if the Array discovery
function is smarter than the default implementation and returns the arrays' dimensions.

Failing to fulfill the above may cause crashes or wrong data to be used in the report.

8.5.4. Follower queries

8.5.4.1. Regular follower queries

A regular follower query is declared by adding the follower_for="..." attribute. The value for
follower_for="..." is the name of a previously declared query. Example:

<Query
 name="myquery1"
 datasource="mysource1"
 value="'SELECT * FROM table1'" />

 <Query
 name="myquery2"
 datasource="mysource2"
 value="'SELECT * FROM table1'"
 follower_for="myquery1" />

In this example, two queries of two different datasources are used. This is one of the advantages of
using follower queries, i.e. data from different databases may be used. Nowadays, with foreign queries
implemented in e.g. PostgreSQL, its use case is more limited.

8.5.4.2. N:1 follower queries

See Section 2.2.4.1.2 for explanation.

The follower matching expression is specified with the follower_expr="..." attribute.
Example:

51

Report XML description

<Query
 name="myquery1"
 datasource="mysource1"
 value="'SELECT * FROM table1'" />

<Query
 name="myquery2"
 datasource="mysource2"
 value="'SELECT * FROM table1'"
 follower_for="myquery1"
 follower_expr="myquery1.id = myquery2.id" />

8.6. Report parts
An OpenCReports XML description may consists of multiple separate reports. This is achieved by so
called "report parts". Such a <Part> may be under the toplevel <OpenCReport> node, in which
case multiple report parts may exist in the same XML. It may also be the toplevel node of the XML.
In the latter case, only a single <Part> may be present in the XML description.

<Part>
 <pr>
 <pd>
 <Report>
 ...
 </Report>
 ...
 </pd>
 ...
 </pr>
 ...
</Part>

A report <Part> may consist multiple reports, arranged in

• rows (<pr>),

• columns in rows (<pd>), and

• reports (<Report>) arranged vertically in a column.

The rows and columns in rows do not form a grid as rows are independent of each other. E.g. one
row may contain two columns, the next one may contain three, the next one may contain one. It is
completely freeform.

This allows very complex report layouts. One possible application of such a complex layout is printed
forms.

8.6.1. Part attributes
Note that any attribute setting below may only use constant expressions or an query column reference
from Independent queries. An environment variable (since it can't - or shouldn't - change during
the report execution) is considered constant. See Expressions. This allows external control for the
attributes in question.

8.6.1.1. Font name

The font name attribute specifies the font for the report part's global scope. It can be overridden by
child nodes for their scope. It may be specified in two forms, the first one is the preferred name, the
second is for RLIB compatibility:

52

Report XML description

<Part font_name="'Arial'">
<Part fontName="'Arial'">

If both forms are specified, font_name is used.

Default font name is Courier.

8.6.1.2. Font size

The font size attribute specifies the font size for the report part's global scope. It can be overridden
by child nodes for their scope. It may be specified in two forms, the first one is the preferred name,
the second is for RLIB compatibility:

<Part font_size="10">
<Part fontSize="10">

If both forms are specified, font_size is used.

Default font size is 12.

8.6.1.3. Size unit

Shortcut for the Size unit attribute in <OpenCReport> when <Part> is the toplevel node.

<Part size_unit="'rlib'">
<Part size_unit="'points'">

When <OpenCReport> is the toplevel node in the XML, this attribute for <Part> is ignored.

8.6.1.4. No query show NoData attribute

Shortcut for No query show NoData attribute in <OpenCReport> when <Part> is the toplevel
node.

<Part noquery_show_nodata="yes">
<Part noquery_show_nodata="no">

See default in No query show NoData attribute See also NoData node.

8.6.1.5. Report height after last attribute

Shortcut for Report height after last attribute in <OpenCReport> when <Part> is the toplevel node.

<Part report_height_after_last="yes">
<Part report_height_after_last="no">

See default in Report height after last attribute See also NoData node.

8.6.1.6. Orientation

Page orientation for the whole <Part>.

<Part orientation="'portrait'">
<Part orientation="'landscape'">

Default is portrait orientation.

8.6.1.7. Margin settings

Margin settings for the page for the whole <Part>. Individual settings exist for the top, bottom,
left and right margins of the page. Every setting exist in two forms: the RLIB compatible
"lowerCamelCase" variant and the all lowercase with underscore. The latter variants are preferred.

53

Report XML description

<Part top_margin="0.2">
<Part topMargin="0.2">
<Part bottom_margin="0.2">
<Part bottomMargin="0.2">
<Part left_margin="0.2">
<Part leftMargin="0.2">
<Part right_margin="0.2">
<Part rightMargin="0.2">

When size_unit="'rlib'" is in effect (the default case) the margin unit is inches. The margin
unit is points (1/72th inches) when size_unit="'points'" is in effect.

Default values for the top, bottom, left and right margins are all 0.2, regardless of the unit.

Note that rightMargin didn't exist in RLIB.

8.6.1.8. Paper type

Paper type (implicitly: page size) for the whole <Part>. It exists in two forms: the RLIB compatible
"lowerCamelCase" variant and the all lowercase with underscore. The latter variant is preferred.

<Part paper_type="'A4'">
<Part paperType="'A4'">

Default value is the current system paper type that libpaper11 uses. E.g. if the system is set to US
English, the default paper type is implicitly letter. In most of Europe, the default paper type is A4

The paper type can be specified in either lower case or upper case, both are accepted.

8.6.1.9. Iterations

The same <Part> may be executed multiple times.

<Part iterations="3">

Default value is 1.

Note that a <Part> and every iteration of it start on a new page. This is one way to print multiple
copies of a report and encode it into the output, e.g. in the PDF file.

8.6.1.10. Suppress

Report parts may be suppressed.

<Part suppress="yes">

Default value is false, i.e. no suppression.

8.6.1.11. Suppress page header on the first page

The <PageHeader> section (see Page header below) for <Part> may be suppressed on the first
page.

<Part suppressPageHeaderFirstPage="yes">

Default value is no.

Note that this suppression applies only to the first page of the complete result (e.g. PDF) and not to
the first page of an iteration, which may fall on a later page of the result.

11 http://packages.qa.debian.org/libp/libpaper.html

54

http://packages.qa.debian.org/libp/libpaper.html
http://packages.qa.debian.org/libp/libpaper.html

Report XML description

8.6.2. Part subsections
As described at the beginning of this section (see Report parts), a <Part> may contain one or more
report rows (<pr>) which in turn may contain one or more columns (<pr>). See Part row and Part
column. Apart from these, global page headers and footers may also be used for report parts.

8.6.2.1. Page header

This is the description of the page header. It contains an Output node. The expressions in it cannot
reference query columns. See also Report page header.

<Part>
 <PageHeader>
 <Output>
 ...
 </Output>
 </PageHeader>
</Part>

8.6.2.2. Page footer

This is the description of the page footer. It contains an Output node. The expressions in it cannot
reference query columns. See also Report page footer.

<Part>
 <PageFooter>
 <Output>
 ...
 </Output>
 </PageFooter>
</Part>

8.6.2.3. Part row

See Part row.

<Part>
 <pr>
 <pd>
 ...
 </pd>
 </pr>
</Part>

8.7. Part row
A part row (<pr>) may contain one or more Part columns (<pd>) which are layed out side by side
horizontally. The longest running column will control the height of the row. The next row will be
continuous from that vertical page position.

8.7.1. Part row attributes
Note that any attribute setting below may only use constant expressions or an query column reference
from Independent queries. An environment variable (since it can't - or shouldn't - change during
the report execution) is considered constant. See Expressions. This allows external control for the
attributes in question.

55

Report XML description

8.7.1.1. Layout

The layout attribute exists only for RLIB compatibility, it's ignored. It accepts two values: flow
and fixed.

<pr layout="'flow'">
<pr layout="'fixed'">

8.7.1.2. New page

The newpage attribute controls whether the part row starts from the point where the previous row in
the same part ended, or it should start on a new page.

<pr newpage="yes">

Default value is no

8.7.1.3. Suppress

Report rows may be suppressed.

<pr suppress="yes">

Default value is false, i.e. no suppression.

8.8. Part column
A part column (<pd>) may contain one or more Reports (<Report>) which are layed out vertically
in this column continuously.

Such a report may be inlined:

<Part>
 <pr>
 <pd>
 <Report>
 ...
 </Report>
 </pd>
 </pr>
</Part>

A report may also be loaded from a separate file. For details, see Loaded report.

<Part>
 <pr>
 <pd>
 <load ... />
 </pd>
 </pr>
</Part>

8.8.1. Part column attributes
Note that any attribute setting below may only use constant expressions or an query column reference
from Independent queries. An environment variable (since it can't - or shouldn't - change during
the report execution) is considered constant. See Expressions. This allows external control for the
attributes in question.

56

Report XML description

8.8.1.1. Width

Width of the part column. Optional.

<pd width="60">

When Size unit attribute is set to rlib (the default), the column width is measured in characters,
which is controlled by Part font size. Note, that the font width and height may differ, depending on
the font face controlled by Part font name. Width is computed from the font width.

When Size unit attribute is set to points, width is measured in points.

Columns without explicitly specified width are dynamically sized according to Paper type, Margin
settings and other columns in the same Part row that do have explicitly set width.

Columns that exceed the total page width (according to Paper type and Margin settings) will be shown
partially, or won't be shown at all.

8.8.1.2. Height

Height of the part column.

<pd height="120">

When Size unit attribute is set to rlib (the default), the column height is measured in characters,
which is controlled by Part font size. Note, that the font width and height may differ, depending on
the font face controlled by Part font name. Column height is computed from the font height.

When Size unit attribute is set to points, height is measured in points.

Report details in this part column are layed out up to the specified height. See Report height for further
explanation.

Note, that OpenCReports allows fixed height columns to break over page boundaries. This is a
deviation from RLIB.

8.8.1.3. Border width

Border width around the part column. It is measured in points.

<pd border_width="2">

When set, a rectangle around the part column will be drawn. The width of outline of the rectangle
is measured in points.

This is a deviation from RLIB where the width of the outline was a fixed 0.1 points and an inner
margin (all of top, bottom, left and right) inside the column border was used.

If the column breaks over a page boundary, the border will be drawn the column parts on every page.

8.8.1.4. Border color

When border_width is set, this color is used to draw the border rectangle.

<pd border_color="'blue'">

See Color specification.

8.8.1.5. Detail columns

Inner <Report>s are layed out in one or more columns.

57

Report XML description

<pd detail_columns="3">

Default value is 1.

8.8.1.6. Column padding

When detail_columns is set to higher than 1, inner padding between the detail columns may be
specified.

<pd column_pad="0.2">

Default value is 0, i.e. no padding.

The unit of padding is inches if Size unit attribute is set to rlib (default), points otherwise.

8.8.1.7. Suppress

Report columns may be suppressed.

<pd suppress="yes">

Default value is false, i.e. no suppression.

8.9. Report
This section may occur in a wider context or standalone in an OpenCReports XML report description
file.

Example XML skeleton structure with <OpenCReport> as the toplevel node:

<OpenCReport>
 <Part>
 <pr>
 <pd>
 <Report>
 ...
 </Report>
 </pd>
 </pr>
 </Part>
</OpenCReport>

Example XML skeleton structure with <Part> as the toplevel node:

<Part>
 <pr>
 <pd>
 <Report>
 ...
 </Report>
 </pd>
 </pr>
</Part>

Example XML skeleton structure with a standalone <Report> node:

<Report>
 ...
</Report>

58

Report XML description

When <Report> is the toplevel node, parent nodes for <Part>, <pr> and <pd> are implicitly
created. Subsections and many attributes specific to these parent nodes can be used as shortcuts in
the <Report> node.

8.9.1. Report attributes
Note that any attribute setting below may only use constant expressions or an query column reference
from Independent queries. An environment variable (since it can't - or shouldn't - change during
the report execution) is considered constant. See Expressions. This allows external control for the
attributes in question.

8.9.1.1. Font name

The font name attribute specifies the font for the report's scope. It can be overridden by child nodes
for their scope. It may be specified in two forms, the first one is the preferred name, the second is
for RLIB compatibility:

<Report font_name="'Arial'">
<Report fontName="'Arial'">

If both forms are specified, font_name is used.

Default font name is what's set for Part font name, or Courier if both are unset.

8.9.1.2. Font size

The font size attribute specifies the font size for the report's scope. It can be overridden by child nodes
for their scope. It may be specified in two forms, the first one is the preferred name, the second is
for RLIB compatibility:

<Report font_size="10">
<Report fontSize="10">

If both forms are specified, font_size is used.

Default font name is what's set for Part font size, or 12 if both are unset.

8.9.1.3. Size unit

Shortcut for the Size unit attribute in <OpenCReport> when <Report> is the toplevel node.

<Report size_unit="'rlib'">
<Report size_unit="'points'">

When <OpenCReport> or <Part> is the toplevel node in the report XML description, this attribute
for <Report> is ignored.

8.9.1.4. No query show NoData attribute

Shortcut for No query show NoData attribute in <OpenCReport> when <Report> is the toplevel
node.

<Report noquery_show_nodata="yes">
<Report noquery_show_nodata="no>

See default in No query show NoData attribute See also NoData node.

8.9.1.5. Report height after last attribute

Shortcut for Report height after last attribute in <OpenCReport> when <Part> is the toplevel node.

59

Report XML description

<Report report_height_after_last="yes">
<Report report_height_after_last="no">

See default in Report height after last attribute See also NoData node.

8.9.1.6. Orientation

Shortcut for Part page orientation for the implicitly created parent <Part> node when <Report>
is standalone.

<Report orientation="'portrait'">
<Report orientation="'landscape'">

Default is portrait orientation.

This setting for <Report> is ignored when there is a parent <Part> node in the XML description.

8.9.1.7. Margin settings

Shortcuts for Margin settings for the implicitly created parent <Part> node. Individual settings exist
for the top, bottom, left and right margins of the page. Every setting exist in two forms: the RLIB
compatible "lowerCamelCase" variant and the all lowercase with underscore. The lowecase-with-
underscore variants are the preferred ones.

<Report top_margin="0.2">
<Report topMargin="0.2">
<Report bottom_margin="0.2">
<Report bottomMargin="0.2">
<Report left_margin="0.2">
<Report leftMargin="0.2">
<Report right_margin="0.2">
<Report rightMargin="0.2">

When size_unit="'rlib'" is in effect (the default case) the margin unit is inches. The margin
unit is points (1/72th inches) when size_unit="'points'" is in effect.

Default values for the top, bottom, left and right margins are all 0.2, regardless of the unit.

Note that rightMargin didn't exist in RLIB.

These settings for <Report> are ignored when there is a parent <Part> node in the XML
description.

8.9.1.8. Paper type

Shortcut for Paper type for the implicitly created parent <Part> node. It exists in two forms: the
RLIB compatible "lowerCamelCase" variant and the all lowercase with underscore. The lowecase-
with-underscore variant is preferred.

<Part paper_type="'A4'">
<Part paperType="'A4'">

Default value is the current system paper type that libpaper12 uses. E.g. if the system is set to US
English, the default paper type is implicitly letter. In most of Europe, the default paper type is A4

The paper type can be specified in either lower case or upper case, both are accepted.

This setting for <Report> is ignored when there is a parent <Part> node in the XML description.

12 http://packages.qa.debian.org/libp/libpaper.html

60

http://packages.qa.debian.org/libp/libpaper.html
http://packages.qa.debian.org/libp/libpaper.html

Report XML description

8.9.1.9. Height

Height of the report.

<Report height="120">

This setting is interpreted differently depending on whether the report XML description uses
<OpenCReport> as the toplevel node, or it uses either <Part> or <Report>.

8.9.1.9.1. Report height in OpenCReports mode

When Size unit attribute is set to rlib (the default), the report height is measured in characters, which
is controlled by Report font size. Note, that the font width and height may differ, depending on the
font face controlled by Report font name. Report height is computed from the font height.

When Size unit attribute is set to points, height is measured in points.

Report details are layed out up to the specified height. If the report would run longer than the specified
height, it gets truncated. When the report fits in the specified height, the next report starts with the
remaining height added as padding before it.

If the <Report> is the last one in the <pd> node, then the report may or may not be padded with
the remaining height, depending on the Report height after last attribute.

If height is unset for the parent <pd> node, it is expanded with this vertical padding.

In case height is set for both the parent <pd> node and the <Report> nodes in it, the height value for
<pd> is applied first. It would limit the displayed rows in whichever <Report> node is terminated
by it. Subsequent <Report> nodes would no be displayed in that <pd> node.

Note, that OpenCReports allows fixed-height reports to break over page boundaries. This is a deviation
from RLIB.

8.9.1.9.2. Report height in RLIB compatibility mode

When parsing XML descriptions from RLIB, i.e. when either <Part> or <Report> is used as the
toplevel node, compatibility mode is turned on for interpreting this setting.

In this mode, the report height is interpreted as a percentage of the height set in Part column height
attribute. In this case, the report height setting is a hint, to use it as minimum height. If the <Report>
is rendered on the same page from start to end, and is shorter than the height of the parent <pd> node,
then a gap is added to the <Report>. If there are multiple <Report> nodes in the same <pd> node,
this will separate them visually.

Note, that this behaviour is not available when using the programming API to create a report. It's only
for RLIB compatibility which relied only on the report XML description file.

8.9.1.10. Iterations

The same <Report> may be executed multiple times.

<Report iterations="3">

Default value is 1.

8.9.1.11. Suppress

Reports may be suppressed.

<Report suppress="yes">

Default value is false, i.e. no suppression.

61

Report XML description

8.9.1.12. Suppress page header on the first page

Shortcut for Suppress page header on the first page in the implicitly created parent <Part> node
when <Report> is the toplevel node.

<Report suppressPageHeaderFirstPage="yes">

Default value is no.

This setting for <Report> is ignored when there is a parent <Part> node in the XML description.

8.9.1.13. Query

Set the primary query name for <Report> from the list of Queries.

<Report query="query1">

Default value is unset, i.e. use the first query from the list of Queries.

Column references of the report's primary query and its follower queries may be used in Expressions
of Output node sections in a <Report> node: Report page header, Report page footer, Report header,
Report footer, <FieldHeaders> and <FieldDetails> in Detail node, and also in Break nodes
and Variable nodes.

When a query is empty (i.e. it doesn't have data rows) then the NoData node will be shown.

When the query name is set to a non-existing query, then the appearance of the NoData node is
controlled by No query show NoData attribute.

8.9.1.14. Field header priority

Set the field header priority for the report versus break (header and footer) priority. This setting selects
which report detail is encompassing the other.

<Report field_header_priority="'low'">
<Report field_header_priority="'high'">

Default value is high. In this mode, the field header is printed on the top of every page of the report
and break headers and footers are encompassed by it. The default is chosen for RLIB compatibility.

When this setting is low, field headers are handled with lower priority compared to break headers
and footers. In this mode, a break header is followed by the field header, then data rows (field details),
followed by the break footer. This brings the field header closer to the field details.

8.9.1.15. Border width

This is a shortcut for Part column border width for the implicitly created <pd> node when <Report>
is standalone. It is measured in points.

<Report border_width="2">

When set, a rectangle around the part column (in this case, around the single report in the part column)
will be drawn. The width of outline of the rectangle is measured in points.

This is a deviation from RLIB where the width of the outline was a fixed 0.1 points and an inner
margin (all of top, bottom, left and right) inside the column border was used. Also, this shortcut didn't
exist in RLIB, the <pd> node had to be present.

If the report (column) breaks over a page boundary, the border will be drawn the column parts on
every page.

This setting for <Report> is ignored when there is a parent <pd> node.

62

Report XML description

8.9.1.16. Border color

This is a shortcut for Part column border color for the implicitly created <pd> node when <Report>
is standalone. When border_width is set, this color is used to draw the border rectangle.

<Report border_color="'blue'">

See Color specification.

8.9.1.17. Detail columns

Shortcut for Detail columns in the implicitly created parent <pd> when <Parent> is the toplevel
node.

<Report detail_columns="3">

Default value is 1.

This setting for <Parent> is ignored when there is a parent <pd> node in the report XML
description.

8.9.1.18. Column padding

Shortcut for Column padding in the implicitly created parent <pd> node when <Parent> is the
toplevel node.

<Report column_pad="0.2">

Default value is 0, i.e. no padding.

The unit of padding is inches if Size unit attribute is set to rlib (default), points otherwise.

8.9.2. Report subsections

8.9.2.1. Page header

This may be seen as a shortcut for Page header in the implicitly created <Part> node when
<Report> is standalone. Except that report query column references are also allowed in expressions
instead of only constants and column references of Independent queries. It contains an Output node.

<Report>
 <PageHeader>
 <Output>
 ...
 </Output>
 </PageHeader>
</Part>

This subsection for <Report> is ignored when there is a page header section defined for the <Part>
node, either in the <Part> node itself or in a previous child <Report> node for the same <Part>.
A warning is issued in this case.

8.9.2.2. Page footer

This may be seen as a shortcut for Page footer in the implicitly created <Part> node when
<Report> is standalone. Except that report query column references are also allowed in expressions
instead of only constants and column references of Independent queries. It contains an Output node.

<Report>
 <PageFooter>

63

Report XML description

 <Output>
 ...
 </Output>
 </PageFooter>
</Part>

This subsection for <Report> is ignored when there is a page footer section defined for the <Part>
node, either in the <Part> node itself or in a previous child <Report> node for the same <Part>.
A warning is issued in this case.

8.9.2.3. Report header

This is the description of the report header that is print at the beginning of the report. It contains an
Output node.

<Report>
 <ReportHeader>
 <Output>
 ...
 </Output>
 </ReportHeader>
</Part>

8.9.2.4. Report footer

This is the description of the report footer that is printed at the end of the report. It contains an Output
node.

<Report>
 <ReportFooter>
 <Output>
 ...
 </Output>
 </ReportFooter>
</Part>

8.9.2.5. Variables

This section describes the Variables in the report.

<Report>
 <Variables>
 <Variable ... />
 ...
 </Variables>
</Part>

8.9.2.6. Breaks

This section describes the Breaks in the report.

<Report>
 <Breaks>
 <Break ... >
 ...
 </Break>
 ...
 </Breaks>
</Part>

64

Report XML description

8.9.2.7. Detail

This section describes the tabular details of the report. There are two subsections in this node, both
contain an Output node.

<Report>
 <Detail>
 <FieldHeaders>
 <Output>
 ...
 </Output>
 </FieldHeaders>
 <FieldDetails>
 <Output>
 ...
 </Output>
 </FieldDetails>
 </Detail>
</Part>

<FieldHeaders> is used to describe the header for data rows.

<FieldDetails> is used to show data that is derived from the current data row produced by the
report query.

8.9.2.8. Alternate output for no data

This section describes the alternate output of the report when the query has no data rows, or there is
no such query name defined that's set in Report query name. It contains an Output node.

This section may be declared in two ways. One way is to spell out the <Alternate> node:

<Report>
 <Alternate>
 <NoData>
 <Output>
 ...
 </Output>
 </NoData>
 </Alternate>
</Part>

The other way is without the <Alternate> node:

<Report>
 <NoData>
 <Output>
 ...
 </Output>
 </NoData>
</Part>

When the Report query name does not exist in in the global list of Queries and the No query show
NoData attribute is set, then the <NoData> section is not displayed.

8.10. Loaded report
It is like an inline Report it is loaded from a different file.

65

Report XML description

8.10.1. Loaded Report attributes

8.10.1.1. File name

<load name="report1.xml" />

8.10.1.2. Query

This attribute overrides the Query attribute of <Report>. This way, the report in the separate file
can be reused for a different data set.

<load query="query1" />

8.10.1.3. Iterations

This attribute overrides the Report iterations attribute of <Report>.

<load iterations="5" />

8.11. Variables
This is the parent node for individual <Variable> nodes that describe each variable.

<Variables>
 <Variable ... />
 ...
</Variables>

8.12. Variable
This node describes one <Variable> node. It has no children nodes, only attributes.

<Variable ... />

8.12.1. Variable attributes

8.12.1.1. Name

The name of the variable. It must be unique in the list of variables for the parent <Report> node.

<Variable name="var1" />

8.12.1.2. Value

The "value" of the variable, or rather, the expression from which the value is computed. Variables'
values are computed for every data row produced by the report query. The expression may therefore
reference field names of queries that are declared in the XML description or in programming code.

<Variable value="q1.field1 + 2 * q2.field2" />

8.12.1.3. Type

The type of the variable. Several variable types exist:

<Variable value="q1.field" type="expression"/>

66

Report XML description

<Variable value="q1.field" type="count"/>
<Variable value="q1.field" type="countall"/>

<Variable value="q1.field" type="sum"/>

<Variable value="q1.field" type="average"/>
<Variable value="q1.field" type="averageall"/>

<Variable value="q1.field" type="highest"/>
<Variable value="q1.field" type="lowest"/>

<Variable type="custom" ... />

Default type is expression. This is just a shortcut for the computed value of the expression that
saves both typing (in other expressions referencing this variable) and time to generate the report. This
can be considered a manual optimization.

The count and countall variable types count the number of expression results for the data set.
The former leaves out NULL values, the latter includes them. This is equivalent to COUNT(field)
and COUNT(*) in SQL.

The sum variable type sums the non-NULL values of the expression results for the data set.

The average and averageall variable types are combinations of sum and either count or
countall. They take the value computed for each data row, add them together, and divide by the
number of values. The result of average and averageall may differ if there is NULL data in
the result set.

The highest and lowest variable types return the highest and the lowest values for the data set,
respectively.

All of the above pre-defined variables types work on numeric data.

The custom variable type allow arbitrary user variables if the predefined types are not enough, for
example, when the base type needs to be something else then a number. See below.

8.12.1.3.1. Complete variable examples

Here's a complete example of an expression variable:

<Report>
 <Variables>
 <Variable
 name="var1"
 value="query1.field1 + query2.field2"
 type="expression" />
 </Variables>

 <Detail>
 <FieldHeaders>
 <literal value="'My variable'" />
 </FieldHeaders>

 <FieldDetails>
 <field value="v.var1" />
 </FieldDetails>
 </Detail>
</Report>

67

Report XML description

Note, that in this simple example, there is no difference if the variable is used in the <field> or the
query1.field1 + query2.field2 expression. The efficiency of not computing the variable
again for the same data row can be observed when the variable is used multiple times and the report
processes a huge data set.

Here's a complete example of using a variable:

<Report>
 <Variables>
 <Variable
 name="var1"
 value="r.self + query1.field1 + query2.field2"
 type="expression" />
 </Variables>

 <Detail>
 <FieldHeaders>
 <literal value="'My variable'" />
 </FieldHeaders>

 <FieldDetails>
 <field value="v.var1" />
 </FieldDetails>
 </Detail>
</Report>

The trick is to use the r.self internal variable.

Please note, that the above example will not work as is, because for the first row, there is no previous
row. But there is a trick to avoid such problems, namely using the Ternary operator (or its equivalent,
the iif() function) and the rownum() to perform only safe computations. (Note that the value=...
part below is a single line.)

<Variable>
 ...
 value="rownum() == 1 ?
 query1.field1 + query2.field2 :
 r.self + query1.field1 + query2.field2"
 ...
</Variable>

This example shows the correct operation of an iterative expression. For the first row, set a known
good value. For every subsequent rows, the previous row value may be used for deriving the new
value from.

The above spelled out example can also be written as a summing variable:

<Report>
 <Variables>
 <Variable
 name="var1"
 value="query1.field1 + query2.field2"
 type="sum" />
 </Variables>

 <Detail>
 <FieldHeaders>
 <literal value="'My variable'" />
 </FieldHeaders>

68

Report XML description

 <FieldDetails>
 <field value="v.var1" />
 </FieldDetails>
 </Detail>
</Report>

Here are two examples of the count and countall variable types:

<Report>
 <Variables>
 <Variable
 name="var1"
 value="query1.field1"
 type="count" />

 <Variable
 name="var2"
 value="query1.field1"
 type="countall" />
 </Variables>
</Report>

Here are two examples of using the average and averageall variable types:

<Report>
 <Variables>
 <Variable
 name="var1"
 value="query1.field1"
 type="average" />

 <Variable
 name="var2"
 value="query1.field1"
 type="averageall" />
 </Variables>
</Report>

Here are two examples of using highest and lowest variable types:

<Report>
 <Variables>
 <Variable
 name="var1"
 value="query1.field1"
 type="highest" />

 <Variable
 name="var2"
 value="query1.field1"
 type="lowest" />
 </Variables>
</Report>

8.12.1.4. Custom variable attributes

These attributes below define a custom variable. A base expression, up to two intermediary expressions
and one result expression may be defined, together with the expression type.

69

Report XML description

<Variable
 baseexpr="..."
 intermedexpr="..."
 intermed2expr="..."
 resultexpr="..."
 basetype="..."
 type="custom"/>

baseexpr, intermedexpr, intermed2expr and resultexpr are Expressions.

Iterative or recursive variables can use Expression self reference.

Possible values for basetype are number, string or datetime.

It's the user's responsibility to use expressions valid for the base type. Failing that, the result value
will be an appropriate error message.

Note that the baseexpr attribute is an alias for value.

8.12.1.4.1. Custom variable example

For example, the average variable works this way behind the scenes as written below.

<Report>
 <Variables>
 <Variable
 name="averagevar1"
 type="custom"
 basetype="number"
 baseexpr="query1.field1"
 intermedexpr="(rownum() == 1 ? 0 : r.self) +
 (isnull(r.baseexpr) ?
 0 : r.baseexpr)"
 intermed2expr="r.self +
 (isnull(r.baseexpr) ? 0 : 1)"
 resultexpr="r.intermedexpr / r.intermed2expr"
 />
 </Variables>
</Report>

8.12.1.5. Reset on break

A variable may be reset on break boundaries to the base expression value, e.g. 0 for count and other
pre-defined variable types. See Break node and Report breaks.

<Variable resetonbreak="break1" />

Default is unset, i.e. no reset on a break.

Here's an example to use a variable that's value is reset on a break boundary:

<Report>
 <Breaks>
 <Break name="break1" ... >
 <BreaksHeader>
 <Output>
 <field value="v.var1" />
 </Output>
 </BreaksHeader>
 <BreaksFields>

70

Report XML description

 <BreaksField value="query1.field2" />
 </BreaksFields>
 </Break>
 </Breaks>

 <Variables>
 <Variable
 name="var1"
 value="query1.field1"
 type="average"
 precalculate="yes"
 resetonbreak="'break1'" />
 </Variables>
 ...
</Report>

8.12.1.6. Precalculate (delayed)

A variable may work two ways. The first way is to generate an immediate value that is valid for the
current row. See Expressions. An expression may reference the value computed for previous data row,
see Expression self reference.

The other way is Precalculated variables. The attribute is accepted under two names:

<Variable precalculate="yes" />
<Variable delayed="yes" />

Default is no.

A precalculated variable may also use the Reset on break attribute. In this case, the precalculated value
is computed for each break range separately.

Precalculated variables may be used to show totals in e.g. Report header, in <FieldHeaders> in
Detail node, in BreakHeader and in Report page header, among other places.

Here's an example of a precalculated variable:

<Report>
 <Variables>
 <Variable
 name="var1"
 value="query1.field1"
 type="average"
 precalculate="yes" />
 </Variables>

 <ReportHeader>
 <Output>
 <field value="v.var1">
 </Output>
 </ReportHeader>
</Report>

To reveal the internals of a variable that's value is reset on break boundaries, here is the equivalent
using a custom variable. The value returned by the Break row number function automatically resets
at every break boundary, so it can be used as below.

<Variables>

71

Report XML description

 <Variable
 name="var1"
 type="custom"
 baseexpr="query1.field1"
 intermedexpr="(brrownum('break1') == 1 ? 0 : r.self) +
 (isnull(r.baseexpr) ?
 0 : r.baseexpr)"
 intermed2expr="r.self +
 (isnull(r.baseexpr) ? 0 : 1)"
 resultexpr="r.intermedexpr / r.intermed2expr"
 />
</Variables>

8.13. Breaks
This is the parent node for individual <Break> nodes that describe each break. See Report breaks

<Breaks>
 <Break ... />
 ...
</Break>

8.14. Break
This node describes one <Break>.

<Break ... >
 <BreakHeader>
 <Output>
 ...
 </Output>
 </BreakHeader>
 <BreakFooter>
 <Output>
 ...
 </Output>
 </BreakFooter>
 <BreakFields>
 <BreakField />
 ...
 </BreakFields>
</Break>

The order in which Break nodes are listed matters for two reasons.

The primary reason is that break fields are hierarchical. The break fields listed earlier are higher in the
hierarchy. If a break field earlier in the list triggers, all subsequent break fields also trigger implicitly.

The second reason is a consequence of the previous one: emitting the BreakHeaders occur in the order
of the list. For logical reasons, BreakFooters are in reverse order.

8.14.1. Break attributes

8.14.1.1. Name

The name of the break. It must be unique in the list of breaks for the parent <Report> node.

72

Report XML description

<Break name="break1" />

8.14.1.2. Header on new page

After a break boundary, the header starts on a new page. Accepted in two variants:

<Break headernewpage="yes" />
<Break newpage="yes" />

The newpage="yes" variant is parsed but ignored in RLIB.

8.14.1.3. Suppress break header and footer for blank break fields

Suppress break header and footer in case any of the break fields' values are either NULL or an empty
string, if the break field is of the string type.

<Break suppressblank="yes" />

8.14.2. Break subsections

8.14.2.1. BreakHeader

The break header is printed before the new data row if it causes a break, i.e. the values in the set of
break fields changed from one row to the next. It contains an Output node child node.

<BreakHeader>
 <Output>
 ...
 </Output>
</BreakHeader>

8.14.2.2. BreakFooter

The break header is printed after the previous data row if it causes a break, i.e. the values in the set
of break fields changed from one row to the next. Also before the first row in the data set. It contains
an Output node child node.

<BreakHeader>
 <Output>
 ...
 </Output>
</BreakHeader>

8.14.2.3. BreakFields

The break fields node contains one or more BreakField children nodes.

<BreakFields>
 <BreakField ... />
 ...
</BreakFields>

8.14.2.3.1. BreakField

The break field node only has one attribute and contains no child nodes.

<BreakField value="..."/>

73

Report XML description

The sole attribute in <BreakField> is <value> where the expression watched for changes is
declared. See Expressions.

There must be at least one <BreakField> node listed. When more than one break fields are listed,
then all of them are watched for value changes. If any of them changes, a break boundary occurs for
the break.

8.14.3. A complete break example
This XML part below shows a complete example of nested breaks based on the real life example
mentioned in Section 6.1.

<Report>

 <Breaks>

 <Break>

 <BreakHeader>
 <Output>
 <Line>
 <field value="query1.department" />
 </Line>
 </Output>
 </BreakHeader>

 <BreakFooter>
 <Output>
 <Line>
 <literal>End of </literal>
 <field value="query1.department" />
 </Line>
 </Output>
 </BreakFooter>

 <BreakFields>
 <BreakField value="query1.department" />
 </BreakFields>

 </Break>

 <Break>

 <BreakHeader>
 <Output>
 <Line>
 <literal width="30" />
 <field value="query1.paygrade" />
 </Line>
 </Output>
 </BreakHeader>

 <BreakFooter>
 <Output>
 <Line>
 <literal width="30" />
 <literal>End of </literal>
 <field value="query1.paygrade" />

74

Report XML description

 </Line>
 </Output>
 </BreakFooter>

 <BreakFields>
 <BreakField value="query1.paygrade" />
 </BreakFields>

 </Break>

 </Breaks>

 <Detail>

 <FieldHeaders>
 <Output>
 <Line>
 <literal width="60" />
 <literal>Employee name</literal>
 </Line>
 </Output>
 </FieldHeaders>

 <FieldDetails>
 <Output>
 <Line>
 <literal width="60" />
 <field value="query1.employee" />
 </Line>
 </Output>
 </FieldDetails>

 <Detail>

</Report>

Assuming that Size unit attribute is set to points, the indentation would be 30 and 60 points for
certain elements (see the empty <literal>s) and the result would look like this:

1. Before the first row on every page, the contents of <FieldHeaders> is printed.

2. Before the first row, the contents of <BreakHeader> is printed for every break declared in the
<Report> in the order of their declaration.

3. The contents of <FieldDetails> is printed for the current row. Repeat until a value change is
observed between adjacent rows for a break's expression. In this case, the employees are printed
in one block that are in the current paygrade category and working at the current department.

4. When a value change happened between adjacent rows for a break's expression, then this break
and every break declared after it triggers. For every triggering breaks, their <BreakFooter> is
printed in the reverse order of their declaration. This is done using the previous row, so if any data
used from the row or derived from it (e.g. a variable) and is to be displayed in the footer, it will
be valid for the break range that just ended.

5. Before the new row, the contents of <BreakHeader> is printed for every break that just
triggered. For example, the department's name is not printed if only the paygrade category changed
in the same department from the one row to the next.

6. Repeat from step 3 until there are no more data rows.

75

Report XML description

8.15. Output
The <Output> node is used by many previously mentioned sections. This is the generic node that
describes how details are displayed in reports.

8.15.1. Output attributes
Note that Expressions in attribute settings below depend on the parent node context. Some may only
use constant expressions or query column references from Independent queries. <Output> nodes in
<Report> context may also use report query column references.

8.15.1.1. Suppress

Output nodes may be suppressed as a whole.

<Output suppress="yes">

Default value is false, i.e. no suppression.

8.15.2. Output subsections

8.15.2.1. Line

A line containing text elements of varying widths. See Line node.

<Output>
 <Line>
 ...
 </Line>
</Output

8.15.2.2. HorizontalLine

A horizontal line. See HorizontalLine node.

<Output>
 <HorizontalLine ... />
</Output

8.15.2.3. Image

An image. See Image node.

<Output>
 <Image ... />
</Output

8.15.2.4. Barcode

A barcode. See Barcode node.

<Output>
 <Barcode ... />
</Output

8.15.2.5. Image end

Terminator for a previous image or barcode node. See ImageEnd node.

76

Report XML description

<Output>
 <ImageEnd/>
</Output

8.16. Line
A line containing text elements of varying widths.

<Output>
 <Line>
 ...
 </Line>
</Output

8.16.1. Line attributes
Note that Expressions in attribute settings below depend on the parent node context. Some may
only use constant expressions or query column references from Independent queries. Child nodes of
<Output> nodes in <Report> context may also use report query column references.

8.16.1.1. Font name

The font name attribute specifies the font for the line's scope. It can be overridden by child nodes for
their scope. It may be specified in two forms, the first one is the preferred name, the second is for
RLIB compatibility:

<Line font_name="'Arial'">
<Line fontName="'Arial'">

If both forms are specified, font_name is used.

Default font name is what's set (in decreasing priority) in Report font name or Part font name. If none
of them is set, it's Courier.

8.16.1.2. Font size

The font size attribute specifies the font size for the line's scope. It can be overridden by child nodes
for their scope. It may be specified in two forms, the first one is the preferred name, the second is
for RLIB compatibility:

<Line font_size="10">
<Line fontSize="10">

If both forms are specified, font_size is used.

Default font name is what's set (in decreasing priority) in Report font size or Part font size. If none
of them is set, it's 12.

8.16.1.3. Bold font

Whether the line elements use bold font.

<Line bold="yes">

Default is false.

8.16.1.4. Italic font

Whether the line elements use italic font. It is accepted in two forms:

77

Report XML description

<Line italic="yes">
<Line italics="yes">

Default is false.

8.16.1.5. Suppress

Text lines may be suppressed. If the parent <Output> node is in <FieldDetails>, the expression
may be derived from a query field.

<Line suppress="yes">

Default value is false, i.e. no suppression.

8.16.1.6. Text color

This color is used to render text. It's accepted with both American and British spelling.

<Line color="'blue'">
<Line colour="'blue'">

Default is black. See Color specification.

8.16.1.7. Background color

This color is used to render the background rectangle under the text. It's accepted with both American
and British spelling.

<Line bgcolor="'blue'">
<Line bgcolour="'blue'">

Default is white. See Color specification.

8.16.2. Line subsections

8.16.2.1. Text element

See the Text element node. Two variants are accepted.

<Line>
 <field value="expression..." ... />
</Line>

and

<Line>
 <literal ... >Literal text</literal>
</Line>

8.16.2.2. Image element

An <Image> is accepted as a line element. See the Image node.

<Line>
 <Image value="expression..." ... />
</Line>

8.16.2.3. Barcode element

A <Barcode> is accepted as a line element. See the Barcode node.

78

Report XML description

<Line>
 <Barcode value="expression..." ... />
</Line>

8.17. Text element
Two variants are accepted.

<Line>
 <field value="expression..." ... />
</Line>

and

<Line>
 <literal ... >Literal text</literal>
</Line>

Neither field nor literal have child nodes, only attributes or XML values.

The two variants are interchangeable, see Text element value below.

8.17.1. Text element attributes
Note that Expressions in attribute settings below depend on the parent node context. Some may
only use constant expressions or query column references from Independent queries. Child nodes of
<Output> nodes in <Report> context may also use report query column references.

8.17.1.1. Value

The value of the text element. It's accepted in two ways: in the value attribute or as the XML value
for the field and literal nodes.

<Line>
 <field value="'This text'" />
 <field>This text</field>
 <literal value="'This text'" />
 <literal>This text</literal>
</Line>

The value is parsed as an expression from the value attribute. See Expressions.

On the other hand, the value is taken as a literal string from the XML value in the second and fourth
examples above.

8.17.1.2. Delayed (precalculated) value

This setting indicates whether the value is "delayed" or "precalculated", i.e. the value for the last
row in the data set is used for every row. It is equivalent to referencing an Expression variable with
precalculate="yes" and without resetonbreak.

<field delayed="yes" />
<field precalculate="yes" />

Default is false.

This setting is only applicable for line elements in the Output node node in <Report> context.

79

Report XML description

Note that in OpenCReports, an expression may mix references to precalculated variables with non-
precalculated variables and query field references. The result will use the precalculated value only for
the precalculated variables. Other references will use values derived from the current row in the data
set. This is an extension over RLIB.

8.17.1.3. Format string

The format string is one way to format the field value to be displayed in the generated output.

The format string is expected to be a string so quoting around it is needed.

See Formatting data for details.

8.17.1.3.1. Format attribute examples

Format a value as a string, first as is, second with adding a surrounding text:

<field value="query1.field1" format="'%s'" >

<field value="query1.field1"
 format="'Look, there is a %s there!'" >

Here's the same with the "new syle" formatting flag:

<field value="query1.field1" format="'!&%s'" />

<field value="query1.field1"
 format="'Look, there is a !&%s there!'" >

Also, with the 2nd generation new style formatting flag:

<field value="query1.field1"
 format="'!&{%s}'" ... />

Here's an example to truncate a string to 6 characters using format string flags in legacy and both new
style formatting flags:

<field value="query1.field1"
 format="'%6.6s'" ... />

<field value="query1.field1"
 format="'!&%6.6s'" ... />

<field value="query1.field1"
 format="'!&{%6.6s}'" ... />

Format a numeric value with three decimal places, first as is, second with adding a surrounding text:

<field value="query1.field1"
 format="'%.3d'" >

<field value="query1.field1"
 format="'You have %.3d apples.'" >

Convert a number from a string and the value with two decimal places:

<field value="val(query1.field1)"
 format="'%.2d'" />

Here are the same examples using the "new style" formatting flags:

80

Report XML description

<field value="query1.field1"
 format="'!#%.3d'" >

<field value="query1.field1"
 format="'You have !#%.3d apples.'" >

<field value="val(query1.field1)"
 format="'!#%.2d'" />

Here are the same examples using the 2nd generation new style formatting flags:

<field value="query1.field1"
 format="'!#{%.3d}'" >

<field value="query1.field1"
 format="'You have !#{%.3d} apples.'" >

<field value="val(query1.field1)"
 format="'!#%.2d'" />

Format a numeric value with monetary details either using the first or the second generation format
strings:

<field value="query1.field1"
 format="'!$%=*#150n'" />

<field value="query1.field1"
 format="'!${%=*#150n}'" />

Format a datetime value, first with the preferred datetime format for the locale, then only the year,
month and day using the YYYY-MM-DD format:

<field value="query1.field1"
 format="'!@%c'" />

<field value="query1.field1"
 format="'!@%Y-%m-%d'" ... />

Here's the same using the second generation format strings:

<field value="query1.field1"
 format="'!@{%c}'" ... />

<field value="query1.field1"
 format="'!@{%Y-%m-%d}'" ... />

8.17.1.4. Width

The field width.

<field value="3" format="'%.2d'" width="6" />

Default is unset, i.e. the field width is implicitly set to the rendered width (in points) of the field's
formatted value as text, using the font name and font size of the field.

When the field is the last one in the <Line>, then its width will be the remaining page or column
width.

If set, the width's unit depends on the Size unit attribute.

81

Report XML description

When the Size unit attribute is set to rlib, the field width is measured in number of characters.

The character width is queried from the font set by Line font name and Line font size, Report font
name and Report font size, or Part font name and Part font size in decreasing order of precedence.

Text element font name and Text element font size do not influence the field width calculation.

This allows using uniquely set font name and size for individual text elements, including proportional
fonts, using the RLIB compatible field width settings.

When using different font names or font sizes for different text elements in the same <Line>, the text
elements are aligned vertically so all text elements are rendered on the same typographic baseline.

8.17.1.5. Alignment

It specifies the alignment for the text element. It works in accordance with the Text element width,
i.e. the field's formatted value (as text) is aligned inside the specified field width.

<field value="3" format="'%.2d'"
 width="6" align="'center'" />

The alignment values may be left, right, center or justified.

Justified alignment is like left alignment, but for Multi-line (memo) fields, all lines but the last are
justified. This is best used with the default word wrapping. In this case, the spacing between words is
enlarged. justified and left behave the same for single-line fields.

Default is left.

OpenCReports decoupled the data from displaying it. For example, with the PDF output, the text
element is not truncated to the element width. Instead, pixel perfect alignment is used together with
masking the parts of the value with a bounding box. This is an improvement over RLIB where data
was truncated (in every output formats) because it was designed for using only monospace fonts.

8.17.1.6. Text color

This color is used to render text. It's accepted with both American and British spelling.

<Line color="'blue'">
<Line colour="'blue'">

Default is what's set for Line node, otherwise black. See Color specification.

8.17.1.7. Background color

This color is used to render the background rectangle under the text. It's accepted with both American
and British spelling.

<Line bgcolor="'blue'">
<Line bgcolour="'blue'">

Default is what's set for Line node, otherwise white. See Color specification.

8.17.1.8. Font name

The font name attribute specifies the font for the text element's scope. It may be specified in two forms,
the first one is the preferred name, the second is for RLIB compatibility:

<Part font_name="'Arial'">

82

Report XML description

<Part fontName="'Arial'">

If both forms are specified, font_name is used.

Default font name is what's set (in decreasing priority) in Line font name, Report font name or Part
font name. If none of them is set, it's Courier.

8.17.1.9. Font size

The font size attribute specifies the font size for the text element's scope. It may be specified in two
forms, the first one is the preferred name, the second is for RLIB compatibility:

<Part font_size="10">
<Part fontSize="10">

If both forms are specified, font_size is used.

Default font name is what's set (in decreasing priority) in Line font size, Report font size or Part font
size. If none of them is set, it's 12.

8.17.1.10. Bold font

Whether the text element uses bold font. It overrides the Line bold attribute for this text element.

<field bold="yes" />

Default is what's set for Line bold attribute. false if both are unset.

8.17.1.11. Italic font

Whether the text element uses italic font. It overrides the Line italic attribute for this text element. It
is accepted in two forms:

<field italic="yes" />
<field italics="yes" />

Default is what's set for Line italic attribute. false if both are unset.

8.17.1.12. Web link

This attribute adds a weblink to the text element. E.g. clicking on this text element in the generated
PDF will open a browser with the website.

<field value="'This is my website'"
 link="'https://github.com/zboszor/OpenCReports'" />

Default is no weblink.

8.17.1.13. Multi-line (memo) field

This attribute allows breaking long text fields to multiple lines according to the Text element width.

<field value="'This is a long text...'"
 width="12" memo="yes" />

Default is false, i.e. the field is rendered on a single line.

Every line of the text element (regardless if it's a memo field or not) is aligned according to Text
element alignment.

83

Report XML description

8.17.1.14. Multi-line field hyphenation

This attribute allows wrapping multi-line text somewhere in the middle of the words with hyphenation.
The text rendering library may need extra supporting libraries so the hyphenation in the report locale
is correct.

<field value="'This is a long text...'"
 width="12" memo="yes" memo_hyphenate="no" />

Default is true, i.e. the field is hyphenated. When character wrapping is used, this setting is not used.

In OpenCReports, character wrapping adds hyphenation. This is an improvement over RLIB.

8.17.1.15. Multi-line field wrapping

This attribute allows wrapping multi-line text at characters as opposed to words.

<field value="'This is a long text...'"
 width="12" memo="yes" memo_wrap_chars="yes" />

Default is false, i.e. the field is wrapped at word boundaries.

In OpenCReports, character wrapping adds hyphenation. This is an improvement over RLIB.

8.17.1.16. Multi-line field row limit

This attribute allows limiting multi-line text with a maximum row number.

<field value="'This is a long text...'"
 width="12" memo="yes" memo_max_lines="20" />

Default is no limit.

8.17.1.17. Translation

This attribute allows the text element to be translated to a specified language or locale. See Locale.

<field value="'This is a field'"
 translate="yes" />

The expression result for translate must be numeric (boolean).

For translations to work, the translation settings and the language (locale) must be correctly set up.

OpenCReports will attempt to translate both the format string (if specified) and the text element's
value. For example, if the format string has a translated variant in the translations, then this formatted
result will be translated:

<field value="q.apples"
 format="'You have %d apples.'"
 translate="yes" />

Default is no.

An alternative way is to use the translation functions directly in the field expression. See translate()
and translate2(). When using them, the translate="yes" attribute is not needed.

8.17.1.18. Column number

This attribute is accepted for RLIB compatibility, but it's unused.

84

Report XML description

<field value="'This is a long text...'"
 col="3" />

8.18. HorizontalLine
A horizontally drawn line.

<Output>
 <HorizontalLine ... />
</Output

8.18.1. HorizontalLine attributes
Note that Expressions in attribute settings below depend on the parent node context. Some may
only use constant expressions or query column references from Independent queries. Child nodes of
<Output> nodes in <Report> context may also use report query column references.

8.18.1.1. Line width

The line width is measured in points, regardless of the Size unit attribute.

<HorizontalLine size="3" />

Default is 1.0

8.18.1.2. Line alignment

The possible alignment values are left, right and center. Default is left alignment. The
alignment is only applied if the line length is shorter than the designated page or column width without
the margins.

<HorizontalLine align="'center'"
 length="200" />

Default is 1.0

8.18.1.3. Indentation

Extra indentation for the line. It is measured in points, regardless of the Size unit attribute.

<HorizontalLine indent="15" />

Default is 0.0

8.18.1.4. Length

The line length.

<HorizontalLine length="150" />

The line length unit depends on the Size unit attribute. When set to rlib, it is measured in number
of characters. The is influenced by HorizontalLine font size, Report font size and Part font size in
decreasing order, which in turn is influenced by Report font name and Part font name in decreasing
order.

When Size unit attribute is set to points, the line length is measured in points.

Default is unset, i.e. the line is drawn across the page width.

85

Report XML description

8.18.1.5. Font size

An extra knob to influence line length computation. See HorizontalLine length. It is accepted in two
forms, font_size is the preferred one, the other is accepted for RLIB compatibility:

<HorizontalLine font_size="14" />
<HorizontalLine fontSize="14" />

Default is unset, i.e. only Report font size and Part font size would contribute to the horizontal line
width computation.

8.18.1.6. Suppress

Horizontal lines may be suppressed. If the parent <Output> node is in <FieldDetails>, the
expression may be derived from a query field.

<HorizontalLine suppress="yes" />

Default value is false, i.e. no suppression.

8.18.1.7. Line color

This color is used to render text. It's accepted with both American and British spelling. For RLIB
compatibility, it is also accepted as bgcolor, with both American and British spelling.

<HorizontalLine color="'blue'" />
<HorizontalLine colour="'blue'" />
<HorizontalLine bgcolor="'blue'" />
<HorizontalLine bgcolour="'blue'" />

Default is black. See Color specification.

8.19. Image
An image to draw on the page, either on its own, which controls indentation for subsequent elements:

<Output>
 <Image ... />
</Output

or as a line element:

<Output>
 <Line ... >
 <Image ... />
 <Line/>
</Output

After a valid (standalone) image specification, subsequent Line nodes and HorizontalLine nodes
are indented by the image width in the same <Output> node, or until an <ImageEnd> node is
encountered in that <Output> node.

8.19.1. Image attributes
Note that Expressions in attribute settings below depend on the parent node context. Some may
only use constant expressions or query column references from Independent queries. Child nodes of
<Output> nodes in <Report> context may also use report query column references.

86

Report XML description

8.19.1.1. File name

The file name of the image.

<Image value="'filename.jpg'" />

Default is unset. It makes the Image not shown.

8.19.1.2. Suppress

The image may be suppressed.

<Image value="'filename.jpg'"
 suppress="yes" />

Default is false, i.e. no suppression.

8.19.1.3. Type

Accepted for RLIB compatibility.

<Image value="'filename.jpg'"
 type="'jpg'" />

Default is unset, i.e. autodetect.

Various image formats are supported with autodetection via gdk-pixbuf. SVG (Scalable Vector
Graphics) is supported via librsvg.

8.19.1.4. Width

Image width, measured in points regardless of the Size unit attribute.

<Image value="'filename.jpg'"
 width="100" />

Default is unset. The image would not be shown, unless both width and height are set.

When the image is used as a line element, this setting is ignored. Instead, the image is automatically
scaled according to the line height.

8.19.1.5. Height

Image height, measured in points regardless of the Size unit attribute.

<Image value="'filename.jpg'"
 height="100" />

Default is unset. The image would not be shown, unless both width and height are set.

When the image is used as a line element, this setting is ignored. Instead, the image is automatically
scaled according to the line height.

8.19.1.6. Text width

When the image is used as a line element, this is the width in which the image is shown. Its unit is
subject to the Size unit attribute, by default it's measured in text character width for the parent <Line>.
This setting is only used when the image is a line element. Two variants are accepted:

<Image value="'filename.jpg'"

87

Report XML description

 text_width="8" />

<Image value="'filename.jpg'"
 textWidth="8" />

Default is 0. As a result, the image would be 0 points wide, i.e. not shown.

This setting is ignored when the image is used as an output subsection.

8.19.1.7. Background color

Image background color. When the image is a line element, then the width in which it's shown may
be wider than the scaled image width. Or possibly, the image is vector graphics (SVG) and there is no
background defined in the image file. Or the image file contains transparency (i.e. PNG). The color
background will be shown around the image or where there are transparent pixels.

<Image value="'filename.jpg'"
 bgcolor="'red'" />

Default is unset, i.e. white.

8.19.1.8. Alignment

Image alignment. When the image is a line element, then the width in which it's shown may be wider
than the scaled image width. The image then may be aligned. left, right and center are accepted.

<Image value="'filename.jpg'"
 align="'center'" />

Default is left alignment.

This setting is ignored when the image is used as an output subsection.

8.20. Image end
Terminator for a previous image. This node doesn't have any attributes or child nodes. Its purpose is
to reset indentation caused by a previous Image node or Barcode node.

<Output>
 <ImageEnd/>
</Output

8.21. Barcode element
This line or output element renders a barcode in various formats.

<Line>
 <Barcode value="expression..." ... />
</Line>

The Barcode does not have child nodes, only attributes.

8.21.1. Barcode element attributes
Note that Expressions in attribute settings below depend on the parent node context. Some may
only use constant expressions or query column references from Independent queries. Child nodes of
<Output> nodes in <Report> context may also use report query column references.

88

Report XML description

8.21.1.1. Suppress

<Barcode> elements in <Output> may be suppressed.

<Line>
 <Barcode suppress="yes" ... />
</Line>

Default value is false, i.e. no suppression.

The expression for suppress must be a constant expression. An environment variable (since it can't
- or shouldn't - change during the report execution) is considered constant. See Expressions.

8.21.1.2. Value

The string value to be encoded as barcode.

<Line>
 <Barcode value="'1234567890128'" />
</Line>

The value is parsed as an expression from the value attribute. See Expressions.

8.21.1.3. Delayed (precalculated) value

This setting indicates whether the value is "precalculated", i.e. the value for the last row in the data
set is used, or it would be the actual value for the current row in the data set.

<Barcode delayed="yes" />
<Barcode precalculate="yes" />

Default is false.

This setting is only applicable for line elements in the Output node node in <ReportHeader>,
<ReportFooter>, <Fieldheaders> <FieldDetails>, since they are the ones under the
<Report> scope with a query.

8.21.1.4. Barcode type

The format string is used to format the value to be displayed in the generated output. For example,
to print a number with two decimal places:

<Barcode value="'123456789012'" type="'ean-13'" />

The type may be optional, in which case it's autodetected and the barcode is rendered in the format that
first allows the value string to be rendered. Possible types (in the order of autodetection) are: upc-a,
ean-13, upc-e, ean-8, isbn, code39, code39ext, code128b, code128c, or code128.
If type is specified, the value is rendered in that barcode type if the string is valid for the type. If
the value is invalid for the specified type, or autodetection fails, because the value is invalid for
any of the above listed types, the barcode is not rendered.

8.21.1.5. Width

The field width.

<Barcode value="'...'" width="6" />

Default is unset, i.e. the field width is implicitly set to the rendered width (in points) of the barcode's
inherent encoding width.

89

Report XML description

If set, the barcode is scaled to the specified width. Its unit depends on the Size unit attribute.

When the field is the last one in the <Line> and its width is unset, then depending on the remaining
width of the line, the barcode is either rendered as is, or it's scaled to the remaining width.

When the Size unit attribute is set to rlib, the field width is measured in number of characters that
is set for the <Line>.

8.21.1.6. Height

The field height.

<Barcode value="'...'" height="6" />

Default is unset, i.e. the barcode height is implicitly controlled by the text in the line or the font height
set for the line.

If set, and it's larger than the text in the line, the barcode height controls the line height, with empty
space added before and after the text elements vertically. is scaled to the specified width. It's measured
in points, i.e. 1/72th of an inch.

When the field is the last one in the <Line> and its width is unset, then depending on the remaining
width of the line, the barcode is either rendered as is (if the remaining width is larger), or it's scaled
down to the remaining width.

8.21.1.7. Barcode color

This color is used to render the barcode's bars. It's accepted with both American and British spelling.

<Barcode color="'blue'">
<Barcode colour="'blue'">

Default is what's set for Line node, otherwise black. See Color specification.

8.21.1.8. Barcode background color

This color is used to render the background (the "gaps") in the barcode. It's accepted with both
American and British spelling.

<Barcode bgcolor="'blue'">
<Barcode bgcolour="'blue'">

Default is what's set for Line node, otherwise white. See Color specification.

8.22. Color specification
Colors may be specified by HTML notation. This contains six hexadecimal digits, representing RGB
(red, green, blue) values between 0 and 255 for each color component, prefixed by the # character.

<Line bgcolor="'#ffff00'" ... >
<HorizontalLine color="'#ff00ff'" ... >

Colors may also be specified by hexadecimal notation. This contains six hexadecimal digits,
representing RGB (red, green, blue) values between 0 and 255 for each color component, prefixed
by 0x.

<Line bgcolor="'0xffff00'" ... >
<HorizontalLine color="'0xff00ff'" ... >

90

Report XML description

Color names may also be specified by name. The following color names are supported for RLIB
compatibility. Color names are matched in a case-insensitive way.

91

Chapter 9. High level C language API
reference
9.1. Header file

For using OpenCReports, this single header must be used:

#include <opencreport.h>

The header can be used from C and C++ source code.

9.2. High level C API
Example code using the high level C API where everything concerning the report (including the data
source) is described in the report XML:

#include <opencreport.h>

int main(void) {
 opencreport *o = ocrpt_init();

 if (!ocrpt_parse_xml(o, "report.xml")) {
 printf("XML parse error\n");
 ocrpt_free(o);
 return 1;
 }

 ocrpt_set_output_format(o, OCRPT_OUTPUT_PDF);
 ocrpt_execute(o);
 ocrpt_spool(o);
 ocrpt_free(o);
 return 0;
}

The above code will load report.xml, set the output format to PDF, runs the report and prints its
output on stdout.

9.2.1. Report handler initialization
opencreport *
ocrpt_init(void);

9.2.2. Load a report XML description
This function loads the specified XML file into the report handler. It returns true for success, false
for failure.

bool
ocrpt_parse_xml(opencreport *o,
 const char *filename);

9.2.3. Parse report XML description from a buffer
This function parses the buffer as if it contained XML contents and loads the details into the report
handler. It returns true for success, false for failure.

92

High level C language API reference

bool
ocrpt_parse_xml_from_buffer(opencreport *o,
 const char *buffer,
 size_t size);

9.2.4. Set report output format
enum ocrpt_format_type {
 OCRPT_OUTPUT_PDF = 1,
 OCRPT_OUTPUT_HTML,
 OCRPT_OUTPUT_TXT,
 OCRPT_OUTPUT_CSV,
 OCRPT_OUTPUT_XML,
 OCRPT_OUTPUT_JSON,
 OCRPT_OUTPUT_LAST
};
typedef enum ocrpt_format_type ocrpt_format_type;

void
ocrpt_set_output_format(opencreport *o,
 ocrpt_format_type format);

9.2.5. Get report output format as enum or string
ocrpt_format_type
ocrpt_get_output_format(opencreport *o);

const char *
ocrpt_get_output_format_name(ocrpt_format_type format);

9.2.6. Set report output parameter
Set output parameters for the report.

void
ocrpt_set_output_parameter(opencreport *o,
 const char *param,
 const char *value);

Possible parameters for the HTML output driver:

• document_root sets the document root for trimming path prefix from image paths.

• meta extends the default <meta charset="utf-8">. The passed-in string value may contain
the whole <meta ...>, in which case the inner parameters are used only. The charset
specification is ignored. Only the rest is used.

• suppress_head suppresses the default <head> ... </head> section. Possible values are
yes, true, on or any positive non-zero number. Anything else disables it. Be aware, that the
default section contains importand CSS stylesheet settings that are needed for the correct layout.

Possible parameters for the CSV output driver:

• csv_filename sets the file name for Content-Disposition in the HTTP metadata returned
by ocrpt_get_content_type().

• csv_as_text sets the MIME type for Content-Type in the HTTP metadata returned by
ocrpt_get_content_type() to text/plain when enabled. By default it's text/csv.

93

High level C language API reference

Possible values to enable it are yes, true, on or any positive non-zero number. Anything else
disables it.

• csv_delimiter (also aliased as csv_delimeter according to the historical typo in RLIB)
sets the CSV field delimiter to the first character of the string. By default it's a comma.

• no_quotes will create a CSV output with values unquoted. Possible values to enable it are yes,
true, on or any positive non-zero number. Anything else disables it. It takes precedence over
only_quote_strings

• only_quote_strings will create a CSV output with only string values quoted. Possible values
to enable it are yes, true, on or any positive non-zero number. Anything else disables it.

Note that some languages (e.g. German, Swedish and Hungarian) use comma as the decimal separator
instead of the decimal dot. For these languages, either set csv_delimiter to something else, or
don't enable either no_quotes or only_quote_strings.

Possible parameters for the XML output driver:

• xml_rlib_compat sets the flag to create an RLIB compatible XML output. Possible values to
enable it are yes, true, on or any positive non-zero number. Anything else disables it.

When enabled, the toplevel element will be <rlib> and <Report>s inside <pd> won't be
embedded in a report element.

9.2.7. Run the report
This function executes the report, constructs the result in memory. It returns true for success, false
for failure. It is a failure if the output format is unset.

bool
ocrpt_execute(opencreport *o);

9.2.8. Dump report result
Dump the report output on the program's standard output channel.

void
ocrpt_spool(opencreport *o);

9.2.9. Get report result
Get the report output. The application then can save it as a file.

const char *
ocrpt_get_output(opencreport *o, size_t *length);

9.2.10. Get report content type
Get the report content type for web publishing. The content type depends on the output type the report
was executed with. It returns an array of ocrpt_string * pointers for potentially multiple HTTP
header lines. The last pointer in the array is NULL.

const ocrpt_string **
ocrpt_get_content_type(opencreport *o);

9.2.11. Report handler destruction
Calling this function frees up the report handler structure and everything created for it, even the details
that were created by the low level API.

94

High level C language API reference

void
ocrpt_free(opencreport *o);

9.2.12. Get library version
This function reports the OpenCReports library version.

const char *
ocrpt_version(void);

95

Chapter 10. Low level C language API
reference
10.1. Low level C API

The low level API extends the High level C API to either fine-tune the report behaviour, or to create
a report purely from program code.

10.1.1. Numeric behavior related functions

10.1.1.1. Set numeric precision

The default is 256 bits of floating point precision. The expression string must evaluate to a numeric
value, the integer part will be used to set the number of precision bits for numeric calculations.

void
ocrpt_set_numeric_precision_bits(opencreport *o,
 const char *expr_string);

10.1.1.2. Get numeric precision

The report XML description may set the numeric precision. This function allows the application to
query it.

mpfr_prec_t
ocrpt_get_numeric_precision_bits(opencreport *o);

10.1.1.3. Set rounding mode

The expression string must evaluate to a string value. Possible values are: nearest,
to_minus_inf, to_inf, to_zero, away_from_zero and faithful. The default is
nearest.

void
ocrpt_set_rounding_mode(opencreport *o,
 const char *expr_string);

10.1.2. Locale related functions

10.1.2.1. Set up translation

Setting up the translation needs two parameters: the so called translation domain and the toplevel
directory for the translations. It relies on GNU Gettext.

void
ocrpt_bindtextdomain(opencreport *o,
 const char *domainname,
 const char *dirname);

10.1.2.2. Set up translation (delayed variant)

Setting up the translation needs two parameters: the so called translation domain and the toplevel
directory for the translations. It relies on GNU Gettext. This function allows setting the translation

96

Low level C language API reference

from a supplemental query. The passed in expressions strings must evaluate to string values, with
potential fallbacks to plain strings in case of parse errors or if the expressions may be interpreted as
query columns but no such column names exist in any query.

void
ocrpt_bindtextdomain_from_expr(opencreport *o,
 const char *domain_expr,
 const char *dir_expr);

10.1.2.3. Set report locale

Setting the locale for the report does not affect the main program or other threads. A locale setting
includes the language and the country. The UTF-8 suffix is necessary. E.g.: en_GB.UTF-8 or
de_DE.UTF-8

void
ocrpt_set_locale(opencreport *o,
 const char *locale);

10.1.2.4. Set report locale (delayed variant)

This function allows setting the locale from a supplementary query of the report. It is used by the
report XML parser code and it's a lower priority setting than the previous function: the application
executing the report may need to be run a different locale. The expression string must evaluate to a
string value that's a valid locale string.

void
ocrpt_set_locale_from_expr(opencreport *o,
 const char *expr_string);

10.1.2.5. Print monetary data in the report locale

A customized monetary printing function was implemented for the purposes of the report which MPFR
doesn't provide. It is used in OpenCReports both internally and by unit tests.

ssize_t
ocrpt_mpfr_strfmon(opencreport *o,
 char *s, size_t maxsize,
 const char *format, ...);

10.1.3. Data source and query related functions
The following enum and struct types are used by OpenCReports for datasources and queries.

enum ocrpt_result_type {
 OCRPT_RESULT_ERROR,
 OCRPT_RESULT_STRING,
 OCRPT_RESULT_NUMBER,
 OCRPT_RESULT_DATETIME
};

struct ocrpt_datasource;
typedef struct ocrpt_datasource ocrpt_datasource;

struct ocrpt_query;
typedef struct ocrpt_query ocrpt_query;

struct ocrpt_query_result;

97

Low level C language API reference

typedef struct ocrpt_query_result ocrpt_query_result;

For more details, see Data sources and queries. Multiple queries may use the same data source.

10.1.3.1. Add a datasource

Add a datasource of the specific type to the report handler with the associated source_name, using
optional connection parameters.

ocrpt_datasource *
ocrpt_datasource_add(opencreport *o,
 const char *source_name,
 const char *type,
 const ocrpt_input_connect_parameter
 *conn_params);

The pointer to connection parameters can be NULL for array, csv, json, and xml datasource
types.

10.1.3.1.1. MariaDB connection parameters

There are two methods to connect to a MariaDB (or MySQL) database.

The first method uses a MariaDB (MySQL) specific configuration ini file and the group name in
it. The group parameter is mandatory as the main database configuration may also have such a group
section, in which case the separate optionfile is not needed.

ocrpt_input_connect_parameter conn_params[] = {
 { .param_name = "group", .param_value = "..." },
 { .param_name = "optionfile", .param_value = "..." },
 { .param_name = NULL }
};

The second method spells out individual connection parameters. This allows local and remote database
connections. The dbname parameter is mandatory, others are optional.

ocrpt_input_connect_parameter conn_params[] = {
 { .param_name = "dbname", .param_value = "..." },
 { .param_name = "host", .param_value = "..." },
 { .param_name = "port", .param_value = "..." },
 { .param_name = "unix_socket", .param_value = "..." },
 { .param_name = "user", .param_value = "..." },
 { .param_name = "password", .param_value = "..." },
 { .param_name = NULL }
};

These connection parameters can be used as XML node attributes, see MariaDB database connection.

10.1.3.1.2. PostgreSQL connection parameters

There are three methods to connect to a PostgreSQL database.

The first method uses the PostgreSQL specific connection string. It is the only setting and as such, it's
mandatory. Its content is almost freeform, with optional elements. See PostgreSQL connection string1.

ocrpt_input_connect_parameter conn_params[] = {
 { .param_name = "connstr", .param_value = "..." },
 { .param_name = NULL }
};

1 https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

98

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

Low level C language API reference

The second method spells out individual connection parameters. This allows local database
connections on a named socket. The unix_socket and dbname parameters are mandatory, others
are optional.

ocrpt_input_connect_parameter conn_params[] = {
 { .param_name = "unix_socket", .param_value = "..." },
 { .param_name = "dbname", .param_value = "..." },
 { .param_name = "user", .param_value = "..." },
 { .param_name = "password", .param_value = "..." },
 { .param_name = NULL }
};

The third method also spells out individual connection parameters. This allows remote database
connection using the host and port parameters. Only the dbname parameter is mandatory, others
are optional.

ocrpt_input_connect_parameter conn_params[] = {
 { .param_name = "dbname", .param_value = "..." },
 { .param_name = "host", .param_value = "..." },
 { .param_name = "port", .param_value = "..." },
 { .param_name = "user", .param_value = "..." },
 { .param_name = "password", .param_value = "..." },
 { .param_name = NULL }
};

There are also two optional parameters that control the behaviour of the PostgreSQL driver in
OpenCReports, rather than being actual connection parameters to a PostgreSQL server. These
parameters may be used with any of the above connection methods.

• The parameter usecursor may have a boolean value: true, false, yes, no, or a numeric
value interpreted as a boolean value: non-zero values mean true, zero means false.

When usecursor is enabled, the SQL query will be wrapped in a cursor, and the result is retrieved
in parts. Otherwise, the SQL query is executed as is and the result is retrieved in whole.

The default value is usually true but this can be controlled when OpenCReports is built.

• When usecursor is enabled, the parameter fetchsize controls the number of rows retrieved
at once. Default value is 1024.

Using a cursor as a regular SQL query is a PostgreSQL extension. Other SQL databases only allow
it in stored procedures. But this allows a trade-off: queries that return a large number of rows may be
processed without the risk of running out of memory, with marginally lower performance.

SQL queries added to the same PostgreSQL datasource (connection) will behave the same way. Either
all of them are executed as is, or all of them will use a cursor.

These connection parameters can be used as XML node attributes, see PostgreSQL database
connection.

10.1.3.1.3. ODBC connection parameters

There are two methods to connect to an ODBC database.

The first method uses the ODBC specific connection string. It is the only setting, and as such, it's
mandatory. Its content is defined by the ODBC knowledge base with optional elements. See Microsoft
Open Database Connectivity2 and Connection string examples 3.

2 https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
3 https://www.connectionstrings.com/

99

https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://www.connectionstrings.com/
https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://www.connectionstrings.com/

Low level C language API reference

ocrpt_input_connect_parameter conn_params[] = {
 { .param_name = "connstr", .param_value = "..." },
 { .param_name = NULL }
};

The second method spells out some individual connection parameters. It requires that an ODBC data
source (DSN) is already configured. Whether the database connections is local or remote depends on
the pre-configured DSN. The dbname parameters is mandatory, others are optional.

ocrpt_input_connect_parameter conn_params[] = {
 { .param_name = "dbname", .param_value = "..." },
 { .param_name = "user", .param_value = "..." },
 { .param_name = "password", .param_value = "..." },
 { .param_name = NULL }
};

These connection parameters can be used as XML node attributes, see ODBC database connection.

10.1.3.1.4. Spreadsheet connection parameters

There is only one connection parameter for spreadsheet based datasources, the file name.

ocrpt_input_connect_parameter conn_params[] = {
 { .param_name = "filename", .param_value = "..." },
 { .param_name = NULL }
};

This parameter can be used as an XML node attribute, see Spreadsheet file type.

10.1.3.2. Find a datasource

Find the data source using its name. It returns NULL if the named data source is not found.

ocrpt_datasource *
ocrpt_datasource_get(opencreport *o,
 const char *source_name);

10.1.3.3. Set the encoding of a datasource

Set the encoding of a datasource in case if it's not already UTF-8, so data provided by it is automatically
converted.

void
ocrpt_datasource_set_encoding(ocrpt_datasource *source,
 const char *encoding);

10.1.3.4. Free a datasource

Free a datasource from the opencreport structure it was added to. It's not needed to be called, all
datasources are automatically free with ocrpt_free()

void
ocrpt_datasource_free(ocrpt_datasource *source);

10.1.3.5. Add a direct data based query

Add a direct (application internal) data based query to the report handler.

ocrpt_query *

100

Low level C language API reference

ocrpt_query_add_data(ocrpt_datasource *source,
 const char *name,
 const void *data,
 int32_t rows, int32_t cols,
 const int32_t *types,
 int32_t types_cols);

The built-in array datasource interprets void *data as a two-dimensional array containing
pointers to C strings, a.k.a.

char *array[rows + 1][cols]

The first row of the array are the column (field) names. The types array contains cols (or fewer)
number of enum ocrpt_result_type elements to indicate the column data types.

If the types pointer is NULL, the column values are treated as string data. This is how RLIB
worked.

The call is only successful if the datasource is direct data based. See Section 10.1.3.9 and Datasource
input driver details.

10.1.3.6. Add a symbolic data based query

Add a "symbolic" (discoverable by name) data based query.

ocrpt_query *
ocrpt_query_add_symbolic_data(ocrpt_datasource *source,
 const char *name,
 const char *data_name,
 int32_t rows, int32_t cols,
 const char *types_name,
 int32_t types_cols);

Symbols of the application can be discovered via dlsym() if the application was built with the
compiler option -rdynamic.

The call is only successful if the datasource is symbolic data based. See Section 10.1.3.10 and
Datasource input driver details.

10.1.3.7. Add a file based query

Add a file based query to the report handler.

ocrpt_query *
ocrpt_query_add_file(ocrpt_datasource *source,
 const char *name,
 const char *filename,
 const int32_t *types,
 int32_t types_cols);

The call is only successful if the datasource is file based. See Section 10.1.3.11 and Datasource input
driver details.

The types array pointer may be NULL. For file based datasource types that don't support data type
specifiers internally (or they are optional and omitted), this means that the column values are of the
string data type. This is how RLIB worked. In this case, conversion functions like Section 4.12.4,
Section 4.10.16 and Section 4.10.10 are needed to process the values using their actual data type.

When the types array pointer is not NULL, it is used to set the data type specifiers for built-in file
based datasources, even if the file contains type specifiers.

101

Low level C language API reference

The JSON file format expected by OpenCReports is defined in JSON file type.

The XML file format expected by OpenCReports is defined in XML file type.

10.1.3.8. Add an SQL statement based query

Add an SQL statement based query to the report handler.

ocrpt_query *
ocrpt_query_add_sql(ocrpt_datasource *source,
 const char *name,
 const char *querystr);

The call is only successful if the datasource is SQL based. See Section 10.1.3.12 and Datasource input
driver details.

10.1.3.9. Test whether a datasource is direct data based

bool
ocrpt_datasource_is_data(ocrpt_datasource *source);

10.1.3.10. Test whether a datasource is direct data based

bool
ocrpt_datasource_is_symbolic_data(ocrpt_datasource *source);

10.1.3.11. Test whether a datasource is file based

bool
ocrpt_datasource_is_file(ocrpt_datasource *source);

10.1.3.12. Test whether a datasource is SQL based

bool
ocrpt_datasource_is_sql(ocrpt_datasource *source);

10.1.3.13. Find a query

Find a query using its name.

ocrpt_query *
ocrpt_query_get(opencreport *o,
 const char *name);

10.1.3.14. Get the current data row from a query

Create (first call) or get the ocrpt_query_result array from a query. Output parameter cols
returns the number of columns in the result array. It must be re-run after ocrpt_navigate_next() since
the previously returned pointer becomes invalid.

ocrpt_query_result *
ocrpt_query_get_result(ocrpt_query *q,
 int32_t *cols);

10.1.3.15. Get column name

Using the ocrpt_query_result * result from ocrpt_query_get_result(), the column
names can be discovered from a query.

102

Low level C language API reference

const char *
ocrpt_query_result_column_name(ocrpt_query_result *qr,
 int32_t col);

10.1.3.16. Get column data

Using the ocrpt_query_result * result from ocrpt_query_get_result(), get a pointer
to the column data in its internal (hidden) representation.

ocrpt_result *
ocrpt_query_result_column_result(ocrpt_query_result *qr,
 int32_t col);

10.1.3.17. Add a follower query

Add a follower query to the leader query. The leader is the primary query and the follower will
run in parallel with it until the leader runs out of rows. In case the leader has more rows than the
follower, then for rows in the leader where there are no follower rows, the follower fields are set to
NULL.

bool
ocrpt_query_add_follower(ocrpt_query *leader,
 ocrpt_query *follower);

10.1.3.18. Add an N:1 follower query

Add an N:1 follower query to the leader query. The leader is the primary query and rows from
the follower will be matched using the match expression. If there are multiple rows in the follower
matching the leader row, then the leader row will be listed that many times. For rows in the leader
where there are no matching rows in the follower, the follower fields are set to NULL. It is similar
to LEFT OUTER JOIN in SQL databases. For creating an ocrpt_expr expression pointer, see
the next section.

bool
ocrpt_query_add_follower_n_to_1(ocrpt_query *leader,
 ocrpt_query *follower,
 ocrpt_expr *match);

10.1.3.19. Refresh query contents

Call the ocrpt_input::refresh() method for datasources that support it. It returns true if all queries
were successfully refreshed.

bool
ocrpt_query_refresh(opencreport *o);

10.1.3.20. Free a query

Free a query and remove it from the report handler. It's optional. ocrpt_free() frees the queries
added to the opencreport structure.

void
ocrpt_query_free(ocrpt_query *q);

10.1.3.21. Start the main query

Start query (or query set) navigation. q should be the primary query of the report.

103

Low level C language API reference

void
ocrpt_query_navigate_start(ocrpt_query *q);

10.1.3.22. Navigate to the next query row

Navigate the query (or query set) to the next row. Returns false if there was no more rows. in
which case the ocrpt_query_result arrays for all queries in the query set (returned by previous
ocrpt_query_get_result() calls contain invalid data.

bool
ocrpt_query_navigate_next(ocrpt_query *q);

10.1.3.23. Navigate use previous/next row

These functions expose an implementation detail of the data traversal in OpenCReports. There is a 3-
row data cache in which there is always the current row. One past row is kept so e.g. break boundaries
can be detected and there is one row read-ahead to detect the end-of-data condition early. These
functions allow to switch back and forth in the 3-row data cache, making the previous or next row the
"current" one momentarily. The query must always be the primary query of the report. Used by unit
tests that don't use ocrpt_execute().

void
ocrpt_query_navigate_use_prev_row(ocrpt_query *q);

void
ocrpt_query_navigate_use_next_row(ocrpt_query *q);

10.1.3.24. API specific data discovery function

For direct (application internal) data based data sources and queries, OpenCReports needs a way to
to find the data pointer and the supplementary type identifier array. These are language specific. The
below ones are the C specific ones. An override function is also provided to set a new discovery
function. The discovery function should return the dimensions for both the (usuall 2D array) data
and the 1D types array. It also returns whether types must be freed by the caller.

typedef void
(*ocrpt_query_discover_func)(const char *,
 void **,
 int32_t *,
 int32_t *,
 const char *,
 void **,
 int32_t *,
 bool *);

void
ocrpt_query_set_discover_func(ocrpt_query_discover_func func);

extern ocrpt_query_discover_func ocrpt_query_discover_array;

void
ocrpt_query_discover_array_c(const char *arrayname,
 void **array,
 int32_t *rows,
 int32_t *cols,
 const char *typesname,
 void **types,
 int32_t *types_cols,

104

Low level C language API reference

 bool *free_types);

Note that the C specific generic discovery function does not and cannot return the array dimensions,
since there is no official API related to dlsym() that would return the size associated with a symbol.
It's up to the application writers to come up with a smarter (application specific) discovery function
that also returns the array dimensions. With such a smart discovery function, one can specify the array
and the column types array name without the related dimensions, i.e. the rows and cols specifiers
in Array queries and File based queries.

10.1.4. Expression related functions
Expressions in OpenCReports is explained in the Expressions chapter.

10.1.4.1. Parse an expression string

This function parses an expression string and creates an expression tree. It returns a pointer to the
ocrpt_expr structure.

If an error occurs, it returns NULL and optionally returns the error message in err pointer if it's not
NULL.

ocrpt_expr *
ocrpt_expr_parse(opencreport *o,
 const char *expr_string,
 char **err);

The returned pointer must be freed with ocrpt_expr_free().

10.1.4.2. Parse an expression string and bind it to a report

This function parses an expression string, creates an expression tree and binds it to a report. It returns
a pointer to the ocrpt_expr structure.

If an error occurs, it returns NULL and optionally returns the error message in err pointer if it's not
NULL.

ocrpt_expr *
ocrpt_report_expr_parse(ocrpt_report *r,
 const char *expr_string,
 char **err);

The returned pointer is automatically freed by ocrpt_free()

10.1.4.3. Free an expression parse tree

Free an expression parse tree. If it was bound to the passed-in ocrpt_report, this association is also
deleted. Alternatively, the expression doesn't need to be freed if it was bound to a report when it was
parsed, as it will be automatically freed when freeing either the report, or the global opencreport
structure.

void
ocrpt_expr_free(ocrpt_expr *e);

10.1.4.4. Get the original expression string

Get the original expression string from an expression parse tree.

const char *
ocrpt_expr_get_expr_string(ocrpt_expr *e);

105

Low level C language API reference

10.1.4.5. Resolve expression references

This function resolves variable (identifier) references in the expression. This is needed to bind query
columns to expressions that use them.

void
ocrpt_expr_resolve(ocrpt_expr *e);

10.1.4.6. Optimize an expression

This function optimizes an expression so it may needs fewer computation steps during report
execution.

void
ocrpt_expr_optimize(ocrpt_expr *e);

10.1.4.7. Evaluate an expression

This function evaluates the expression. It returns the expression's ocrpt_result result
structure. The result must not be freed with ocrpt_result_free(). It will be done by
ocrpt_expr_free()

For expressions with query column references, this function must be called after
ocrpt_query_navigate_next otherwise the result is not valid.

ocrpt_result *
ocrpt_expr_eval(ocrpt_expr *e);

10.1.4.8. Get expression result without evaluation

This function returns the expression result if it was already evaluated. The result must not be freed
with ocrpt_result_free(). It will be done by ocrpt_expr_free(). Used by unit tests.

ocrpt_result *
ocrpt_expr_get_result(ocrpt_expr *e);

10.1.4.9. Print an expression tree

Print an expression tree in its processed form on the standard output. Used by unit tests.

void
ocrpt_expr_print(ocrpt_expr *e);

10.1.4.10. Print an expression tree with subexpressions and their
results

Print an expression tree with subexpressions and their results in its processed form on the standard
output. Used by unit tests.

void
ocrpt_expr_result_deep_print(ocrpt_expr *e);

10.1.4.11. Count the number of expression nodes

This function returns the number of expression nodes. Used by unit tests to validate optimizazion.

int32_t
ocrpt_expr_nodes(ocrpt_expr *e);

106

Low level C language API reference

10.1.4.12. Initialize expression result type

OpenCReports keeps track of the last three query rows and computes three result values for expressions
for internal reasons. These functions initialize the type for either the current result or all results of
the expression.

enum ocrpt_result_type {
 OCRPT_RESULT_ERROR,
 OCRPT_RESULT_STRING,
 OCRPT_RESULT_NUMBER,
 OCRPT_RESULT_DATETIME
};

bool ocrpt_expr_init_result(ocrpt_expr *e,
 enum ocrpt_result_type type);

void ocrpt_expr_init_results(ocrpt_expr *e,
 enum ocrpt_result_type type);

10.1.4.13. Set an error string as expression result

ocrpt_result *
ocrpt_expr_make_error_result(ocrpt_expr *e,
 const char *format, ...);

10.1.4.14. Set start value flag for an iterative expression

Set whether the iterative expression's first value is computed from its base expression or from its result
expression.

void
ocrpt_expr_set_iterative_start_value(ocrpt_expr *e,
 bool start_with_init);

10.1.4.15. Get current value of an expression in base type

Get the current value of an expression in a C base type. Used by parsing report description XML files
and unit tests.

const char *
ocrpt_expr_get_string(ocrpt_expr *e);

long
ocrpt_expr_get_long(ocrpt_expr *e);

double
ocrpt_expr_get_double(ocrpt_expr *e);

10.1.4.16. Set current value of an expression in a base type

Used by unit tests.

void
ocrpt_expr_set_string(ocrpt_expr *e,
 const char *s);

void
ocrpt_expr_set_long(ocrpt_expr *e,
 long l);

107

Low level C language API reference

void
ocrpt_expr_set_double(ocrpt_expr *e,
 double d);

10.1.4.17. Set nth value of an expression in a base type

Expressions use OCRPT_EXPR_RESULTS number of values. With these functions, any of them can
be set. Used by unit tests.

void
ocrpt_expr_set_nth_result_string(ocrpt_expr *e,
 int which,
 const char *s);

void
ocrpt_expr_set_nth_result_long(ocrpt_expr *e,
 int which,
 long l);

void
ocrpt_expr_set_nth_result_double(ocrpt_expr *e,
 int which,
 double d);

10.1.4.18. Compare the current of an expression with its previous
value

Compare the current value of an expression with its previous value and return true if they are equal.
It's used to implement Report breaks.

bool
ocrpt_expr_cmp_results(ocrpt_expr *e);

10.1.4.19. Set delayed flag of an expression

void
ocrpt_expr_set_delayed(ocrpt_expr *e,
 bool delayed);

10.1.4.20. Set field expression reference for an expression

If e contains r.value, the expression rvalue will be used to resolve this reference.

void
ocrpt_expr_set_field_expr(ocrpt_expr *e,
 ocrpt_expr *rvalue);

10.1.5. Column data or expression result related
functions

The internal type ocrpt_result holds values either for query columns or expression results.

10.1.5.1. Create an expression result

The returned pointer must be freed with ocrpt_result_free().

ocrpt_result *

108

Low level C language API reference

ocrpt_result_new(opencreport *o);

10.1.5.2. Get expression result type

enum ocrpt_result_type
ocrpt_result_get_type(ocrpt_result *result);

10.1.5.3. Copy an expression result

Copy expression result from source to destination. Both results must have been created for the same
opencreport structure, either explicitly with ocrpt_result_new() or implicitly with an
expression parsed for this opencreport structure or a report structure owned by it.

void
ocrpt_result_copy(ocrpt_result *dst,
 ocrpt_result *src);

10.1.5.4. Print an expression result

Used by unit tests.

void
ocrpt_result_print(ocrpt_result *r);

10.1.5.5. Free an expression result

void
ocrpt_result_free(ocrpt_result *r);

10.1.5.6. Detect whether a column result is NULL

Using the ocrpt_result * result from a query column or an expression, detect whether the column
value is NULL.

bool
ocrpt_result_isnull(ocrpt_result *result);

10.1.5.7. Detect whether a column result is numeric

Using the ocrpt_result * result from a query column or an expression, detect whether the column
value is numeric.

bool
ocrpt_result_isnumber(ocrpt_result *result);

10.1.5.8. Get the numeric value of a column result

Using the ocrpt_result * result from a query column or an expression, get the numeric column
value. It returns NULL if the column is:

• not a numeric result

• NULL

mpfr_ptr
ocrpt_result_get_number(ocrpt_result *result);

10.1.5.9. Detect whether a column result is string

Using the ocrpt_result * result from a query column or an expression, detect whether the column
value is string.

109

Low level C language API reference

bool
ocrpt_result_isstring(ocrpt_result *result);

10.1.5.10. Get the string value of a column result

Using the ocrpt_result * result from a query column or an expression, get the string column
value. It returns NULL if the column is

• not a string result

• NULL

ocrpt_string *
ocrpt_result_get_string(ocrpt_result *result);

10.1.5.11. Detect whether a column result is datetime

Using the ocrpt_result * result from a query column or an expression, detect whether the column
value is datetime.

bool
ocrpt_result_isdatetime(ocrpt_result *result);

10.1.5.12. Get the datetime value of a column result

Using the ocrpt_result * result from a query column or an expression, get the datetime column
value. It returns NULL if the column is

• not a datetime result

• NULL

const struct tm *
ocrpt_result_get_datetime(ocrpt_result *result);

10.1.5.13. Detect whether a datetime column result is interval

Using the ocrpt_result * result from a query column or an expression, detect whether the
datetime column value is interval.

bool
ocrpt_result_datetime_is_interval(ocrpt_result *result);

10.1.5.14. Detect whether a datetime column result has valid date

Using the ocrpt_result * result from a query column or an expression, detect whether the
datetime column value has valid date.

bool
ocrpt_result_datetime_is_date_valid(ocrpt_result *result);

10.1.5.15. Detect whether a datetime column result has valid time

Using the ocrpt_result * result from a query column or an expression, detect whether the
datetime column value has valid time.

bool
ocrpt_result_datetime_is_time_valid(ocrpt_result *result);

110

Low level C language API reference

10.1.6. Variable related functions
Variables can be created for a report using the API.

10.1.6.1. Create a basic variable

Using this function, any variable type except OCRPT_VARIABLE_CUSTOM may be created. For a
custom variable, see the next function.

enum ocrpt_var_type {
 OCRPT_VARIABLE_INVALID,
 OCRPT_VARIABLE_EXPRESSION,
 OCRPT_VARIABLE_COUNT,
 OCRPT_VARIABLE_COUNTALL,
 OCRPT_VARIABLE_SUM,
 OCRPT_VARIABLE_AVERAGE,
 OCRPT_VARIABLE_AVERAGEALL,
 OCRPT_VARIABLE_LOWEST,
 OCRPT_VARIABLE_HIGHEST,
 OCRPT_VARIABLE_CUSTOM
};
typedef enum ocrpt_var_type ocrpt_var_type;

ocrpt_var *
ocrpt_variable_new(ocrpt_report *r,
 ocrpt_var_type type,
 const char *name,
 const char *expr,
 const char *ignoreexpr,
 const char *reset_on_break_name,
 bool precalculate);

10.1.6.2. Create a custom variable

Create a custom variable of the specified type with the specified subexpressions.

ocrpt_var *
ocrpt_variable_new_full(ocrpt_report *r,
 enum ocrpt_result_type type,
 const char *name,
 const char *baseexpr,
 const char *ignoreexpr,
 const char *intermedexpr,
 const char *intermed2expr,
 const char *resultexpr,
 const char *reset_on_break_name,
 bool precalculate);

10.1.6.3. Get the variable type

Get the type of the variable.

ocrpt_var_type
ocrpt_variable_get_type(ocrpt_var *v);

10.1.6.4. Get subexpressions of a variable

Get subexpressions of a previously created basic or custom variable.

111

Low level C language API reference

ocrpt_expr *
ocrpt_variable_baseexpr(ocrpt_var *v);

ocrpt_expr *
ocrpt_variable_ignoreexpr(ocrpt_var *v);

ocrpt_expr *
ocrpt_variable_intermedexpr(ocrpt_var *v);

ocrpt_expr *
ocrpt_variable_intermed2expr(ocrpt_var *v);

ocrpt_expr *
ocrpt_variable_resultexpr(ocrpt_var *v);

10.1.6.5. Get precalculate flag for a variable

bool
ocrpt_variable_get_precalculate(ocrpt_var *var);

10.1.6.6. Resolve a variable

Resolve subexpressions of a variable so it can be evaluated correctly.

void
ocrpt_variable_resolve(ocrpt_var *v);

10.1.6.7. Evaluate a variable

After evaluation, the result is in the expression returned by ocrpt_variable_resultexpr().

void
ocrpt_variable_evaluate(ocrpt_var *v);

10.1.6.8. Iterate over variables of a report

Iterate over variables of a report. The first call needs the iterator list pointer to be set to NULL.

ocrpt_var *
ocrpt_variable_get_next(ocrpt_report *r,
 ocrpt_list **list);

10.1.7. Break related functions

10.1.7.1. Create a break

Create a break. No need to free it, ocrpt_free() does it.

ocrpt_break *
ocrpt_break_new(ocrpt_report *r,
 const char *name);

10.1.7.2. Set attribute flag expressions for a break

Set break attributes from expression strings for headernewpage and suppressblank. There is
a 3rd flag accepted in the report XML DTD called newpage which is not represented (ignored) in
the API, because it's also ignored in RLIB and is only handled for RLIB compatibility.

112

Low level C language API reference

void
ocrpt_break_set_headernewpage(ocrpt_break *br,
 const char *headernewpage);

void
ocrpt_break_set_suppressblank(ocrpt_break *br,
 const char *suppressblank);

headernewpage="yes" instructs the layout to render <BreakHeader> on a new page.

suppressblank="yes" instructs the layout to suppress <BreakHeader> if any of the
<BreakField>s are NULL value or an empty string, if the break field is of the string type.

10.1.7.3. Get break using its name

Get the pointer to the break using its name.

ocrpt_break *
ocrpt_break_get(ocrpt_report *r,
 const char *name);

10.1.7.4. Get the name of a break

Get the name of the break using its structure pointer.

const char *
ocrpt_break_get_name(ocrpt_break *br);

10.1.7.5. Add a watched expression to a break

bool
ocrpt_break_add_breakfield(ocrpt_break *br,
 ocrpt_expr *bf);

10.1.7.6. Iterate over breaks of a report

Iterate over breaks of a report. The first call needs the iterator list pointer to be set to NULL.

ocrpt_break *
ocrpt_break_get_next(ocrpt_report *r,
 ocrpt_list **list);

10.1.7.7. Resolve and optimize break fields

void
ocrpt_break_resolve_fields(ocrpt_break *br);

10.1.7.8. Check whether the break triggers

bool
ocrpt_break_check_fields(ocrpt_break *br);

10.1.7.9. Check whether break field values are blank

The second parameter evaluate allows skipping evaluating the breakfield values. (This is
an optimization in case it's executed after ocrpt_break_check_fields() which already
evaluated the breakfields.)

bool

113

Low level C language API reference

ocrpt_break_check_blank(ocrpt_break *br,
 bool evaluate);

10.1.7.10. Reset variables for the break

void
ocrpt_break_reset_vars(ocrpt_break *br);

10.1.8. Function related functions

10.1.8.1. Add a user defined function

Add a user defined function by specifying the name, the function pointer that contains the
implementation, the number of operands (0 or greater for fixed number or operands, -1 is varying
number of operands) and the function mathematical properties that help optimizing it.

bool
ocrpt_function_add(opencreport *o,
 const char *fname,
 ocrpt_function_call func,
 void *user_data,
 int32_t n_ops,
 bool commutative,
 bool associative,
 bool left_associative,
 bool dont_optimize);

Adding a user defined function with a name of a pre-existing function will override it.

OpenCReports functions are called with the parameters as declared below.

#define OCRPT_FUNCTION_PARAMS \
 ocrpt_expr *e, void *user_data

OpenCReports functions may be declared with these convenience symbols below.

#define OCRPT_FUNCTION(name) \
 void name(OCRPT_FUNCTION_PARAMS)

#define OCRPT_STATIC_FUNCTION(name) \
 static void name(OCRPT_FUNCTION_PARAMS)

The above function (ocrpt_function_add()) is called with a function pointer which has this
type:

typedef void
(*ocrpt_function_call)(OCRPT_FUNCTION_PARAMS);

10.1.8.2. Find a named function

const ocrpt_function *
ocrpt_function_get(opencreport *o,
 const char *fname);

10.1.8.3. Get number of operands for an expression (function)

In an expression tree, functions are represented as subexpressions with operands. This call may be
used by OpenCReports functions to inspect whether the number of operands is in the expected range.

114

Low level C language API reference

int32_t
ocrpt_expr_get_num_operands(ocrpt_expr *e);

10.1.8.4. Get current value of a function operand

This function is used by OpenCReports functions internally to compute the result from its operands.

ocrpt_result *
ocrpt_expr_operand_get_result(ocrpt_expr *e,
 int32_t opnum);

10.1.9. Report part and report related functions

10.1.9.1. Create a report part

ocrpt_part *
ocrpt_part_new(opencreport *o);

10.1.9.2. Create a row in a report part

ocrpt_part_row *
ocrpt_part_new_row(ocrpt_part *p);

10.1.9.3. Create a column in report part row

ocrpt_part_column *
ocrpt_part_row_new_column(ocrpt_part_row *pr);

10.1.9.4. Create a new report in a part column

ocrpt_report *
ocrpt_part_column_new_report(ocrpt_part_column *pd);

10.1.9.5. Report part related iterators

Iterators for getting report parts, part rows, columns in rows and reports in columns. Every iterator
function must be called the first time with the list pointer set to NULL.

ocrpt_part *
ocrpt_part_get_next(opencreport *o,
 ocrpt_list **list);

ocrpt_part_row *
ocrpt_part_row_get_next(ocrpt_part *p,
 ocrpt_list **list);

ocrpt_part_column *
ocrpt_part_column_get_next(ocrpt_part_row *pr,
 ocrpt_list **list);

ocrpt_report *
ocrpt_report_get_next(ocrpt_part_column *pd,
 ocrpt_list **list);

10.1.9.6. Set the main query for a report

Set the main query for a report either by the query structure pointer, or from expression. The expression
must resolve to a string value, with fallback to a plain string.

115

Low level C language API reference

void
ocrpt_report_set_main_query(ocrpt_report *r,
 const ocrpt_query *query);

void
ocrpt_report_set_main_query_from_expr(ocrpt_report *r,
 const char *expr_string);

See Report query name. Unlike with the XML description, where the first globally declared query is
used for the report if its main query is not set, the default via the low level API is unset.

10.1.9.7. Get the current row number of the main query

The row number starts from 1.

long
ocrpt_report_get_query_rownum(ocrpt_report *r);

10.1.9.8. Resolve all report variables

void
ocrpt_report_resolve_variables(ocrpt_report *r);

10.1.9.9. Evaluate all report variables

void
ocrpt_report_evaluate_variables(ocrpt_report *r);

10.1.9.10. Resolve all report breaks

void
ocrpt_report_resolve_breaks(ocrpt_report *r);

10.1.9.11. Resolve all report expressions

void
ocrpt_report_resolve_expressions(ocrpt_report *r);

10.1.9.12. Evaluate all report expressions

void
ocrpt_report_evaluate_expressions(ocrpt_report *r);

10.1.10. Layout related functions

10.1.10.1. Global layout options

10.1.10.1.1. Set or get "size unit" option

See Size unit attribute. The expression string must evaluate to a string value, where points will set
the layout rendering to use points for size units. Any other value will make the layout rendering use
the convoluted RLIB compatible size units, mostly based on font sizes.

ocrpt_expr *
ocrpt_set_size_unit(opencreport *o,
 const char *expr_string);

The expression also has a getter function, so its result (value) can be queried. Which may be useful, in
case it's set in the report XML description and callbacks and the report processing needs to inspect it.

116

Low level C language API reference

ocrpt_expr *
ocrpt_get_size_unit(opencreport *o);

10.1.10.1.2. Set or get "no query show NoData" option

See No query show NoData attribute. The expression string should evaluate to a boolean value.

ocrpt_expr *
ocrpt_set_noquery_show_nodata(opencreport *o,
 const char *expr_string);

ocrpt_expr *
ocrpt_get_noquery_show_nodata(opencreport *o);

10.1.10.1.3. Set or get "report height after last" option

See Report height after last attribute. The expression string should evaluate to a boolean value.

ocrpt_expr *
ocrpt_set_report_height_after_last(opencreport *o,
 const char *expr_string);

ocrpt_expr *
ocrpt_get_report_height_after_last(opencreport *o);

10.1.10.1.4. Set "follower match single" option

See Follower match single attribute. The expression string should evaluate to a boolean value.

ocrpt_expr *
ocrpt_set_follower_match_single(opencreport *o,
 const char *expr_string);

ocrpt_expr *
ocrpt_get_follower_match_single(opencreport *o);

10.1.10.1.5. Set or get "follower match single" option directly

See above and Follower match single attribute. The difference is that the modified behaviour is set
directly and immediately. Used by unit tests.

void
ocrpt_set_follower_match_single_direct(opencreport *o,
 bool value);

bool
ocrpt_get_follower_match_single_direct(opencreport *o);

10.1.10.2. Report part options

10.1.10.2.1. Set or get part iterations

See Part iterations attribute. The expression string must evaluate to a numeric value.

ocrpt_expr *
ocrpt_part_set_iterations(ocrpt_part *p,
 const char *expr_string);

ocrpt_expr *

117

Low level C language API reference

ocrpt_part_get_iterations(ocrpt_part *p);

10.1.10.2.2. Set or get part font name

See Part font name.

ocrpt_expr *
ocrpt_part_set_font_name(ocrpt_part *p,
 const char *expr_string);

ocrpt_expr *
ocrpt_part_get_font_name(ocrpt_part *p);

10.1.10.2.3. Set or get part font size

See Part font size.

ocrpt_expr *
ocrpt_part_set_font_size(ocrpt_part *p,
 const char *expr_string);

ocrpt_expr *
ocrpt_part_get_font_size(ocrpt_part *p);

10.1.10.2.4. Set or get part paper type

See Paper type.

ocrpt_expr *
ocrpt_part_set_paper_type(ocrpt_part *p,
 const char *expr_string);

ocrpt_expr *
ocrpt_part_get_paper_type(ocrpt_part *p);

10.1.10.2.5. Set or get part paper's orientation

See Part page orientation. The expression string must evaluate to a string value, with possible options
of portrait and landscape. By default, the part uses portrait orientation.

ocrpt_expr *
ocrpt_part_set_orientation(ocrpt_part *p,
 const char *expr_string);

ocrpt_expr *
ocrpt_part_get_orientation(ocrpt_part *p);

10.1.10.2.6. Set or get part margins

See Margin settings. The margin values must be passed in via strings as they can be expressions.

ocrpt_expr *
ocrpt_part_set_top_margin(ocrpt_part *p,
 const char *expr_string);

ocrpt_expr *
ocrpt_part_get_top_margin(ocrpt_part *p);

ocrpt_expr *
ocrpt_part_set_bottom_margin(ocrpt_part *p,

118

Low level C language API reference

 const char *expr_string);

ocrpt_expr *
ocrpt_part_get_bottom_margin(ocrpt_part *p);

ocrpt_expr *
ocrpt_part_set_left_margin(ocrpt_part *p,
 const char *expr_string);

ocrpt_expr *
ocrpt_part_get_left_margin(ocrpt_part *p);

ocrpt_expr *
ocrpt_part_set_right_margin(ocrpt_part *p,
 const char *expr_string);

ocrpt_expr *
ocrpt_part_get_right_margin(ocrpt_part *p);

10.1.10.2.7. Set or get part suppression

See Part suppress attribute. The expression string must evaluate to a numeric (boolean) value.

ocrpt_expr *
ocrpt_part_set_suppress(ocrpt_part *p,
 const char *expr_string);

ocrpt_expr *
ocrpt_part_get_suppress(ocrpt_part *p);

10.1.10.2.8. Set or get part's page header suppressed on the first page

See Suppress page header on the first page. The expression string must evaluate to a numeric (boolean)
value.

ocrpt_expr *
ocrpt_part_set_suppress_pageheader_firstpage(ocrpt_part *p,
 const char
 *expr_string);

ocrpt_expr *
ocrpt_part_get_suppress_pageheader_firstpage(ocrpt_part *p);

10.1.10.3. Part row options

10.1.10.3.1. Set or get part row suppression

See Part row suppress attribute. The expression string must evaluate to a numeric (boolean) value.

ocrpt_expr *
ocrpt_part_row_set_suppress(ocrpt_part_row *pr,
 const char *expr_string);

ocrpt_expr *
ocrpt_part_row_get_suppress(ocrpt_part_row *pr);

10.1.10.3.2. Set or get part row new page

See Part row new page attribute. The expression string must evaluate to a numeric (boolean) value.

119

Low level C language API reference

ocrpt_expr *
ocrpt_part_row_set_newpage(ocrpt_part_row *pr,
 const char *expr_string);

ocrpt_expr *
ocrpt_part_row_get_newpage(ocrpt_part_row *pr);

10.1.10.3.3. Set or get part row layout mode

See Part row layout attribute. The expression string must evaluate to a string value, with possible
options flow and fixed. This setting is ignored, it's only accepted for RLIB compatibility.

ocrpt_expr *
ocrpt_part_row_set_layout(ocrpt_part_row *pr,
 const char *expr_string);

ocrpt_expr *
ocrpt_part_row_get_layout(ocrpt_part_row *pr);

10.1.10.4. Part column options

10.1.10.4.1. Set or get part column suppression

See Part column suppress attribute. The expression must evaluate to a numeric (boolean) value.

ocrpt_expr *
ocrpt_part_column_set_suppress(ocrpt_part_column *pd,
 const char *expr_string);

ocrpt_expr *
ocrpt_part_column_get_suppress(ocrpt_part_column *pd);

10.1.10.4.2. Set or get part column width

See Part column width attribute. The expression must evaluate to a numeric value.

ocrpt_expr *
ocrpt_part_column_set_width(ocrpt_part_column *pd,
 const char *expr_string);

ocrpt_expr *
ocrpt_part_column_get_width(ocrpt_part_column *pd);

10.1.10.4.3. Set or get part column height

See Part column height attribute. The expression must evaluate to a numeric value.

ocrpt_expr *
ocrpt_part_column_set_height(ocrpt_part_column *pd,
 const char *expr_string);

ocrpt_expr *
ocrpt_part_column_get_height(ocrpt_part_column *pd);

10.1.10.4.4. Set or get part column border width

See Part column border width. The expression must evaluate to a numeric value.

ocrpt_expr *

120

Low level C language API reference

ocrpt_part_column_set_border_width(ocrpt_part_column *pd,
 const char *expr_string);

ocrpt_expr *
ocrpt_part_column_get_border_width(ocrpt_part_column *pd);

10.1.10.4.5. Set or get part column border color

See Part column border color. The expression must evaluate to a string value with a valid color name
or specification.

ocrpt_expr *
ocrpt_part_column_set_border_color(ocrpt_part_column *pd,
 const char *expr_string);

ocrpt_expr *
ocrpt_part_column_get_border_color(ocrpt_part_column *pd);

10.1.10.4.6. Set or get part column's number of detail columns

See Detail columns. The expression must evaluate to a numeric value.

ocrpt_expr *
ocrpt_part_column_set_detail_columns(ocrpt_part_column *pd,
 const char *expr_string);

ocrpt_expr *
ocrpt_part_column_get_detail_columns(ocrpt_part_column *pd);

10.1.10.4.7. Set or get part column's detail column padding

See Column padding. The expression must evaluate to a numeric value.

ocrpt_expr *
ocrpt_part_column_set_column_padding(ocrpt_part_column *pd,
 const char *expr_string);

ocrpt_expr *
ocrpt_part_column_get_column_padding(ocrpt_part_column *pd);

10.1.10.5. Report options

10.1.10.5.1. Set or get report suppression

See Report suppress attribute. The expression must evaluate to a numeric (boolean) value.

ocrpt_expr *
ocrpt_report_set_suppress(ocrpt_report *r,
 const char *expr_string);

ocrpt_expr *
ocrpt_report_get_suppress(ocrpt_report *r);

10.1.10.5.2. Set or get report iterations

See Report iterations attribute. The expression must evaluate to a numeric value.

ocrpt_expr *
ocrpt_report_set_iterations(ocrpt_report *r,

121

Low level C language API reference

 const char *expr_string);

ocrpt_expr *
ocrpt_report_get_iterations(ocrpt_report *r);

10.1.10.5.3. Set or get report font name

See Report font name. The expression must evaluate to a string value, with fallback to plain string: in
case of a parsing error, the value string is taken as is.

ocrpt_expr *
ocrpt_report_set_font_name(ocrpt_report *r,
 const char *expr_string);

ocrpt_expr *
ocrpt_report_get_font_name(ocrpt_report *r);

10.1.10.5.4. Set or get report font size

See Report font size. The expression must evaluate to a numeric value.

ocrpt_expr *
ocrpt_report_set_font_size(ocrpt_report *r,
 const char *expr_string);

ocrpt_expr *
ocrpt_report_get_font_size(ocrpt_report *r);

10.1.10.5.5. Set or get report height

See Report height. The expression must evaluate to a numeric value.

ocrpt_expr *
ocrpt_report_set_height(ocrpt_report *r,
 const char *expr_string);

ocrpt_expr *
ocrpt_report_get_height(ocrpt_report *r);

10.1.10.5.6. Set or get report's field header priority

See Report field header priority attribute. The expression must evaluate to a string value with the
options of high and low. Default is low.

ocrpt_expr *
ocrpt_report_set_fieldheader_priority(ocrpt_report *r,
 const char *expr_string);

ocrpt_expr *
ocrpt_report_get_fieldheader_priority(ocrpt_report *r);

10.1.10.6. Get part layout sections

Get the part's <Output> sections for <PageHeader> or <PageFooter>.

ocrpt_output *
ocrpt_layout_part_page_header(ocrpt_part *p);

ocrpt_output *

122

Low level C language API reference

ocrpt_layout_part_page_footer(ocrpt_part *p);

10.1.10.7. Set report for part layout sections

Set the report pointer for the part's <Output> sections for <PageHeader> or <PageFooter>.

void
ocrpt_layout_part_page_header_set_report(ocrpt_part *p,
 ocrpt_report *r);

void
ocrpt_layout_part_page_footer_set_report(ocrpt_part *p,
 ocrpt_report *r);

10.1.10.8. Get report layout sections

Get the report's <Output> sections for <NoData>, <ReportHeader>, <ReportFooter>,
<FieldHeaders> or <FieldDetails>.

ocrpt_output *
ocrpt_layout_report_nodata(ocrpt_report *r);

ocrpt_output *
ocrpt_layout_report_header(ocrpt_report *r);

ocrpt_output *
ocrpt_layout_report_footer(ocrpt_report *r);

ocrpt_output *
ocrpt_layout_report_field_header(ocrpt_report *r);

ocrpt_output *
ocrpt_layout_report_field_details(ocrpt_report *r);

10.1.10.8.1. Miscellaneous report layout and line element functions

It is possible to load a report XML descriptor and modify the layout contents defined by it using code.

The first iterator function loops through toplevel output elements: line, horizontal line, image, barcode.
An abstract opaque pointer type is returned by the iterator. Further boolean functions determine the
actual element type. The void **iter pointer must point to a NULL pointer initially and the iterator
function returns NULL when there are no more elements in the output section. Depending on the
boolean function results, the abstract opaque pointer type can be case to the actual output element
type: ocrpt_line *, ocrpt_hline *, ocrpt_image * or ocrpt_barcode *.

struct ocrpt_output_element;
typedef struct ocrpt_output_element ocrpt_output_element;

ocrpt_output_element *
ocrpt_output_element_get_next(ocrpt_output *output, ocrpt_list
 **iter);

bool
ocrpt_output_element_is_line(ocrpt_output_element *elem);

bool
ocrpt_output_element_is_hline(ocrpt_output_element *elem);

123

Low level C language API reference

bool
ocrpt_output_element_is_image(ocrpt_output_element *elem);

bool
ocrpt_output_element_is_barcode(ocrpt_output_element *elem);

The second iterator function loops through line elements: text, image and barcode. An abstract opaque
pointer type is returned by the iterator. Further boolean functions determine the actual element type.
The void **iter pointer must point to a NULL pointer initially and the iterator function returns
NULL when there are no more elements in the output section. Depending on the boolean function
results, the abstract opaque pointer type can be cast to the actual output element type: ocrpt_text
*, ocrpt_image * or ocrpt_barcode *.

struct ocrpt_line_element;
typedef struct ocrpt_line_element ocrpt_line_element;

ocrpt_line_element *
ocrpt_line_element_get_next(ocrpt_line *line, void **iter);

bool
ocrpt_line_element_is_text(ocrpt_line_element *elem);

bool
ocrpt_line_element_is_image(ocrpt_line_element *elem);

bool
ocrpt_line_element_is_barcode(ocrpt_line_element *elem);

10.1.10.9. Get break layout sections

Get the break's <Output> sections for <BreakHeader> or <BreakFooter>.

ocrpt_output *
ocrpt_break_get_header(ocrpt_break *br);

ocrpt_output *
ocrpt_break_get_footer(ocrpt_break *br);

10.1.10.10. Set output section global settings

Note that part (page) header and footer, and report header and footer sections must be constant
expressions. Other sections may depend on data derived from query columns. See Expressions.

10.1.10.10.1. Set or get output section suppression

Set suppression from an expression string.

ocrpt_expr *
ocrpt_output_set_suppress(ocrpt_output *output,
 const char *expr_string);

ocrpt_expr *
ocrpt_output_get_suppress(ocrpt_output *output);

10.1.10.11. Add a text line to an output section

ocrpt_line *
ocrpt_output_add_line(ocrpt_output *output);

124

Low level C language API reference

10.1.10.12. Text line settings

Note that settings in the part (page) header and footer sections must be constant expressions. Settings
in other sections may depend on data derived from query columns. See Expressions.

10.1.10.12.1. Set or get line font name

Set the text line's font name from an expression string.

ocrpt_expr *
ocrpt_line_set_font_name(ocrpt_line *line,
 const char *expr_string);

ocrpt_expr *
ocrpt_line_get_font_name(ocrpt_line *line);

10.1.10.12.2. Set line font size

Set the text line's font size from an expression string.

ocrpt_expr *
ocrpt_line_set_font_size(ocrpt_line *line,
 const char *expr_string);

ocrpt_expr *
ocrpt_line_get_font_size(ocrpt_line *line);

10.1.10.12.3. Set or get line bold value

Set the text line's bold value from an expression string.

ocrpt_expr *
ocrpt_line_set_bold(ocrpt_line *line,
 const char *expr_string);

ocrpt_expr *
ocrpt_line_get_bold(ocrpt_line *line);

10.1.10.12.4. Set or get line italic value

Set the text line's italic value from an expression string.

ocrpt_expr *
ocrpt_line_set_italic(ocrpt_line *line,
 const char *expr_string);

ocrpt_expr *
ocrpt_line_get_italic(ocrpt_line *line);

10.1.10.12.5. Set or get line suppression

Set the text line's suppression value from an expression string.

ocrpt_expr *
ocrpt_line_set_suppress(ocrpt_line *line,
 const char *expr_string);

ocrpt_expr *
ocrpt_line_get_suppress(ocrpt_line *line);

125

Low level C language API reference

10.1.10.12.6. Set or get line text color

Set the text line's text color from an expression string.

ocrpt_expr *
ocrpt_line_set_color(ocrpt_line *line,
 const char *expr_string);

ocrpt_expr *
ocrpt_line_get_color(ocrpt_line *line);

10.1.10.12.7. Set or get line background color

Set or get the text line's background color from an expression string.

ocrpt_expr *
ocrpt_line_set_bgcolor(ocrpt_line *line,
 const char *expr_string);

ocrpt_expr *
ocrpt_line_get_bgcolor(ocrpt_line *line);

10.1.10.13. Add a text element to a text line

ocrpt_text *
ocrpt_line_add_text(ocrpt_line *line);

10.1.10.14. Text element settings

Note that settings in the part (page) header and footer sections must be constant expressions. Settings
in other sections may depend on data derived from query columns. See Expressions.

10.1.10.14.1. Set text element literal value

Set the text element's literal value from a string.

ocrpt_expr *
ocrpt_text_set_value_string(ocrpt_text *text,
 const char *string);

10.1.10.14.2. Set or get text element value

Set the text element's value from an expression string.

ocrpt_expr *
ocrpt_text_set_value_expr(ocrpt_text *text,
 const char *expr_string);

The getter function for the text element's value also works when the text value is set as a literal.

ocrpt_expr *
ocrpt_text_get_value(ocrpt_text *text);

10.1.10.14.3. Set or get text element value's delayed property

Set the text element value's delayed property from an expression string.

ocrpt_expr *
ocrpt_text_set_value_delayed(ocrpt_text *text,

126

Low level C language API reference

 const char *expr_string);

ocrpt_expr *
ocrpt_text_get_value_delayed(ocrpt_text *text);

10.1.10.14.4. Set or get text element format string

Set the text element's format string from an expression string.

ocrpt_expr *
ocrpt_text_set_format(ocrpt_text *text,
 const char *expr_string);

ocrpt_expr *
ocrpt_text_get_format(ocrpt_text *text);

10.1.10.14.5. Set or get text element translation

Set the text element's translation from an expression string.

ocrpt_expr *
ocrpt_text_set_translate(ocrpt_text *text,
 const char *expr_string);

ocrpt_expr *
ocrpt_text_get_translate(ocrpt_text *text);

OpenCReports will attempt to translate both the format string and the text element's value.

10.1.10.14.6. Set or get text element field width

Set the text element's field width from an expression string.

ocrpt_expr *
ocrpt_text_set_width(ocrpt_text *text,
 const char *expr_string);

ocrpt_expr *
ocrpt_text_get_width(ocrpt_text *text);

10.1.10.14.7. Set or get text element alignment

Set the text element's alignment from a string or an expression string.

ocrpt_expr *
ocrpt_text_set_alignment(ocrpt_text *text,
 const char *expr_string);

ocrpt_expr *
ocrpt_text_get_alignment(ocrpt_text *text);

String values left, right, center and justified are accepted either as is, or as an expression.

10.1.10.14.8. Set or get text element text color

Set the text element's text color from an expression string.

ocrpt_expr *

127

Low level C language API reference

ocrpt_text_set_color(ocrpt_text *text,
 const char *expr_string);

ocrpt_expr *
ocrpt_text_get_color(ocrpt_text *text);

10.1.10.14.9. Set or get text element background color

Set the text element's background color from an expression string.

ocrpt_expr *
ocrpt_text_set_bgcolor(ocrpt_text *text,
 const char *expr_string);

ocrpt_expr *
ocrpt_text_get_bgcolor(ocrpt_text *text);

10.1.10.14.10. Set or get text element font name

Set the text element's font name from an expression string.

ocrpt_expr *
ocrpt_text_set_font_name(ocrpt_text *text,
 const char *expr_string);

ocrpt_expr *
ocrpt_text_get_font_name(ocrpt_text *text);

10.1.10.14.11. Set or get text element font size

Set the text element's font size from an expression string.

ocrpt_expr *
ocrpt_text_set_font_size(ocrpt_text *text,
 const char *expr_string);

ocrpt_expr *
ocrpt_text_get_font_size(ocrpt_text *text);

10.1.10.14.12. Set or get text element bold value

Set the text element's bold value from an expression string.

ocrpt_expr *
ocrpt_text_set_bold(ocrpt_text *text,
 const char *expr_string);

ocrpt_expr *
ocrpt_text_get_bold(ocrpt_text *text);

10.1.10.14.13. Set or get text element italic value

Set the text element's italic value from an expression string.

ocrpt_expr *
ocrpt_text_set_italic(ocrpt_text *text,
 const char *expr_string);

ocrpt_expr *

128

Low level C language API reference

ocrpt_text_get_italic(ocrpt_text *text);

10.1.10.14.14. Set or get text element link URL

Set the text element's link URL from an expression string.

ocrpt_expr *
ocrpt_text_set_link(ocrpt_text *text,
 const char *expr_string);

ocrpt_expr *
ocrpt_text_get_link(ocrpt_text *text);

10.1.10.14.15. Set or get text element multiline property

Set the text element's multiline property from an expression string. The expression must evaluate to
a numeric (boolean) value.

ocrpt_expr *
ocrpt_text_set_memo(ocrpt_text *text,
 const char *expr_string);

ocrpt_expr *
ocrpt_text_get_memo(ocrpt_text *text);

10.1.10.14.16. Set or get text element "hyphenate" property

Set the text element's "hyphenate" property from an expression string. The expression must evaluate
to a numeric (boolean) value. This setting is only used for multiline fields. When set to false, words
at the end of the lines in the multiline text field would break over to the next line as a whole. When
set to true, the word will be hyphenated. Default is true. When character wrapping is in used (see
below), this setting in not used.

ocrpt_expr *
ocrpt_text_set_memo_hyphenate(ocrpt_text *text,
 const char *expr_string);

ocrpt_expr *
ocrpt_text_get_memo_hyphenate(ocrpt_text *text);

10.1.10.14.17. Set or get text element "wrap at characters" property

Set the text element's "wrap at characters" property from an expression string. The expression must
evaluate to a numeric (boolean) value. This setting is only used for multiline fields. When unset or set
to false, multiline text fields wrap at word boundaries.

ocrpt_expr *
ocrpt_text_set_memo_wrap_chars(ocrpt_text *text,
 const char *expr_string);

ocrpt_expr *
ocrpt_text_get_memo_wrap_chars(ocrpt_text *text);

10.1.10.14.18. Set or get text element maximum lines

Set the text element's maximum lines property from an expression string. The expression must evaluate
to a numeric value. This setting is only used for multiline fields. When unset or set to 0, the whole
content of the multiline field is rendered. Otherwise, not more than the maximum lines are rendered
from the multiline field value. The used font size, the field's width and word/character wrapping
influence the number of lines the field value is rendered into.

129

Low level C language API reference

ocrpt_expr *
ocrpt_text_set_memo_max_lines(ocrpt_text *text,
 const char *expr_string);

ocrpt_expr *
ocrpt_text_get_memo_max_lines(ocrpt_text *text);

10.1.10.15. Add a horizontal line to an output section

ocrpt_hline *
ocrpt_output_add_hline(ocrpt_output *output);

10.1.10.16. Horizontal line settings

Note that settings in the part (page) header and footer sections must be constant expressions. Settings
in other sections may depend on data derived from query columns. See Expressions.

10.1.10.16.1. Set or get horizontal line size (width)

Set the horizontal line's size (width) from an expression string.

ocrpt_expr *
ocrpt_hline_set_size(ocrpt_hline *hline,
 const char *expr_string);

ocrpt_expr *
ocrpt_hline_get_size(ocrpt_hline *hline);

10.1.10.16.2. Set or get horizontal line alignment

Set the horizontal line's alignment from an expression string. Possibly values are left, right and
center. Default is left alignment. The alignment is only applied if the line length is shorter than
the designated page or column width without the margins.

ocrpt_expr *
ocrpt_hline_set_alignment(ocrpt_hline *hline,
 const char *expr_string);

ocrpt_expr *
ocrpt_hline_get_alignment(ocrpt_hline *hline);

10.1.10.16.3. Set or get horizontal line indentation

Set the horizontal line's indentation value from an expression string. The indentation is used if left
alignment is set.

ocrpt_expr *
ocrpt_hline_set_indentation(ocrpt_hline *hline,
 const char *expr_string);

ocrpt_expr *
ocrpt_hline_get_indentation(ocrpt_hline *hline);

10.1.10.16.4. Set or get horizontal line length

Set the horizontal line's length from an expression string.

ocrpt_expr *
ocrpt_hline_set_length(ocrpt_hline *hline,

130

Low level C language API reference

 const char *expr_string);

ocrpt_expr *
ocrpt_hline_get_length(ocrpt_hline *hline);

10.1.10.16.5. Set or get horizontal line font size

Set the horizontal line's font size from an expression string. It's used in indentation and length
calculations if Size unit attribute is set to rlib.

ocrpt_expr *
ocrpt_hline_set_font_size(ocrpt_hline *hline,
 const char *expr_string);

ocrpt_expr *
ocrpt_hline_get_font_size(ocrpt_hline *hline);

10.1.10.16.6. Set or get horizontal line suppression

Set the horizontal line's suppression from an expression string.

ocrpt_expr *
ocrpt_hline_set_suppress(ocrpt_hline *hline,
 const char *expr_string);

ocrpt_expr *
ocrpt_hline_get_suppress(ocrpt_hline *hline);

10.1.10.16.7. Set or get horizontal line color

Set the horizontal line's color from an expression string.

ocrpt_expr *
ocrpt_hline_set_color(ocrpt_hline *hline,
 const char *expr_string);

ocrpt_expr *
ocrpt_hline_get_color(ocrpt_hline *hline);

10.1.10.17. Add a barcode to an output section

ocrpt_barcode *
ocrpt_output_add_barcode(ocrpt_output *output);

10.1.10.18. Add a barcode to a text line

ocrpt_barcode *
ocrpt_line_add_barcode(ocrpt_line *line);

10.1.10.19. Barcode settings

10.1.10.19.1. Set or get barcode value

Set the barcode's value from an expression string. The expression must evaluate to a string, whose
value is the string to be encoded as a barcode.

ocrpt_expr *
ocrpt_barcode_set_value(ocrpt_barcode *bc,

131

Low level C language API reference

 const char *expr_string);

ocrpt_expr *
ocrpt_barcode_get_value(ocrpt_barcode *bc);

10.1.10.19.2. Set or get barcode value delayed

Set the barcode's value delayed from an expression string. The expression must evaluate to a boolean
value.

ocrpt_expr *
ocrpt_barcode_set_value_delayed(ocrpt_barcode *bc,
 const char *expr_string);

ocrpt_expr *
ocrpt_barcode_get_value_delayed(ocrpt_barcode *bc);

10.1.10.19.3. Set or get barcode suppression

Set the barcode's suppression value from an expression string. The expression must evaluate to a
boolean value.

ocrpt_expr *
ocrpt_barcode_set_suppress(ocrpt_barcode *bc,
 const char *expr_string);

ocrpt_expr *
ocrpt_barcode_get_suppress(ocrpt_barcode *bc);

Default value is false, i.e. no suppression.

10.1.10.19.4. Set or get barcode type

Set the barcode's type from an expression string.

ocrpt_expr *
ocrpt_barcode_set_type(ocrpt_barcode *bc,
 const char *expr_string);

ocrpt_expr *
ocrpt_barcode_get_type(ocrpt_barcode *bc);

The type may be optional, in which case it's autodetected and the barcode is rendered in the format that
first allows the value string to be rendered. Possible types (in the order of autodetection) are: upc-
a, ean-13, upc-e, ean-8, isbn, code39, code39ext, code128b code128c, or code128.
If type is specified, the value is rendered in that barcode type if the string is valid for the type. If
value is invalid for the specified type, or autodetection fails, because the value is invalid for any
of the above listed types, the barcode is not rendered.

10.1.10.19.5. Set or get barcode width

Set the barcode's width from an expression string.

ocrpt_expr *
ocrpt_barcode_set_width(ocrpt_barcode *bc,
 const char *expr_string);

ocrpt_expr *
ocrpt_barcode_get_width(ocrpt_barcode *bc);

132

Low level C language API reference

The width is set according to Size unit attribute, either in points (1/72th inch) or in (monospace) font
width units set by <Line>.

10.1.10.19.6. Set or get barcode width

Set the barcode's height from an expression string.

ocrpt_expr *
ocrpt_barcode_set_height(ocrpt_barcode *bc,
 const char *expr_string);

ocrpt_expr *
ocrpt_barcode_get_height(ocrpt_barcode *bc);

This setting is always in points, i.e. 1/72th of an inch. The line height will be determined by greatest
height of all the <field>, <literal> and <Barcode> fields in the same <Line> in a way that
the elements of the same line will appear (approximately) centered vertically.

10.1.10.19.7. Set or get barcode line color

Set the barcode's line color from an expression string.

ocrpt_expr *
ocrpt_barcode_set_color(ocrpt_barcode *bc,
 const char *expr_string);

ocrpt_expr *
ocrpt_barcode_get_color(ocrpt_barcode *bc);

10.1.10.19.8. Set or get barcode background color

Set the barcode's background color from an expression string.

ocrpt_expr *
ocrpt_barcode_set_bgcolor(ocrpt_barcode *bc,
 const char *expr_string);

ocrpt_expr *
ocrpt_barcode_get_bgcolor(ocrpt_barcode *bc);

10.1.10.20. Add an image to an output section

ocrpt_image *
ocrpt_output_add_image(ocrpt_output *output);

10.1.10.21. Add an image to a text line

ocrpt_image *
ocrpt_line_add_image(ocrpt_line *line);

10.1.10.22. Image settings

Note that settings in the part (page) header and footer sections must be constant expressions. Settings
in other sections may depend on data derived from query columns. See Expressions.

10.1.10.22.1. Set or get image value

Set the image's value (filename) from an expression string.

133

Low level C language API reference

ocrpt_expr *
ocrpt_image_set_value(ocrpt_image *image,
 const char *expr_string);

ocrpt_expr *
ocrpt_image_get_value(ocrpt_image *image);

10.1.10.22.2. Set or get image suppression

Set the image's suppression from an expression string.

ocrpt_expr *
ocrpt_image_set_suppress(ocrpt_image *image,
 const char *expr_string);

ocrpt_expr *
ocrpt_image_get_suppress(ocrpt_image *image);

10.1.10.22.3. Set or get image type

Set the image's type from an expression string.

ocrpt_expr *
ocrpt_image_set_type(ocrpt_image *image,
 const char *expr_string);

ocrpt_expr *
ocrpt_image_get_type(ocrpt_image *image);

10.1.10.22.4. Set or get image width

Set the image's width from an expression string. Used when the image is directly added to an output
section.

ocrpt_expr *
ocrpt_image_set_width(ocrpt_image *image,
 const char *expr_string);

ocrpt_expr *
ocrpt_image_get_width(ocrpt_image *image);

10.1.10.22.5. Set or get image height

Set the image's width from an expression string. Used when the image is directly added to an output
section.

ocrpt_expr *
ocrpt_image_set_height(ocrpt_image *image,
 const char *expr_string);

ocrpt_expr *
ocrpt_image_get_height(ocrpt_image *image);

10.1.10.22.6. Set or get image alignment

Set the image's alignment from an expression string. Used when the image is added to text line.

ocrpt_expr *
ocrpt_image_set_alignment(ocrpt_image *image,

134

Low level C language API reference

 const char *expr_string);

ocrpt_expr *
ocrpt_image_get_alignment(ocrpt_image *image);

10.1.10.22.7. Set or get image background color

Set the image's background color from an expression string.

ocrpt_expr *
ocrpt_image_set_bgcolor(ocrpt_image *image,
 const char *expr_string);

ocrpt_expr *
ocrpt_image_get_bgcolor(ocrpt_image *image);

10.1.10.22.8. Set or get image field width

Set the image's field width from an expression string. Used when the image is added to a text line.

ocrpt_expr *
ocrpt_image_set_text_width(ocrpt_image *image,
 const char *expr_string);

ocrpt_expr *
ocrpt_image_get_text_width(ocrpt_image *image);

10.1.10.23. Add an image end marker to an output section

void
ocrpt_output_add_image_end(ocrpt_output *output);

10.1.11. Callback related functions
Certain stages of the report execution can notify the application about the stage being executed or
finished.

Every "add a callback" function below return true for success, false for failure.

10.1.11.1. Add a "part added" callback

typedef void
(*ocrpt_part_cb)(opencreport *,
 ocrpt_part *,
 void *data);

bool
ocrpt_add_part_added_cb(opencreport *o,
 ocrpt_part_cb func,
 void *data);

10.1.11.2. Add a "report added" callback

typedef void
(*ocrpt_report_cb)(opencreport *,
 ocrpt_report *,
 void *data);

135

Low level C language API reference

bool
ocrpt_add_report_added_cb(opencreport *o,
 ocrpt_report_cb func,
 void *data);

10.1.11.3. Add an "all precalculations done" callback

typedef void
(*ocrpt_cb)(opencreport *,
 void *data);

bool
ocrpt_add_precalculation_done_cb(opencreport *o,
 ocrpt_cb func,
 void *data);

10.1.11.4. Add a "part iteration" callback

bool
ocrpt_part_add_iteration_cb(ocrpt_part *r,
 ocrpt_part_cb func,
 void *data);

bool
ocrpt_part_add_iteration_cb2(opencreport *o,
 ocrpt_part_cb func,
 void *data);

The second variant adds the callback in the opencreport structure context, making the callback
apply to every report part. It's for RLIB compatibility.

10.1.11.5. Add a "report started" callback

bool
ocrpt_report_add_start_cb(ocrpt_report *r,
 ocrpt_report_cb func,
 void *data);

bool
ocrpt_report_add_start_cb2(opencreport *o,
 ocrpt_report_cb func,
 void *data);

The second variant adds the callback in the opencreport structure context, making the callback
apply to every report. It's for RLIB compatibility.

10.1.11.6. Add a "report done" callback

bool
ocrpt_report_add_done_cb(ocrpt_report *r,
 ocrpt_report_cb func,
 void *data);

bool
ocrpt_report_add_done_cb2(opencreport *o,
 ocrpt_report_cb func,
 void *data);

136

Low level C language API reference

The second variant adds the callback in the opencreport structure context, making the callback
apply to every report. It's for RLIB compatibility.

10.1.11.7. Add a "new row" callback

bool
ocrpt_report_add_new_row_cb(ocrpt_report *r,
 ocrpt_report_cb func,
 void *data);

bool
ocrpt_report_add_new_row_cb2(opencreport *o,
 ocrpt_report_cb func,
 void *data);

The second variant adds the callback in the opencreport structure context, making the callback
apply to every report. It's for RLIB compatibility.

10.1.11.8. Add a "report iteration done" callback

bool
ocrpt_report_add_iteration_cb(ocrpt_report *r,
 ocrpt_report_cb func,
 void *data);

bool
ocrpt_report_add_iteration_cb2(opencreport *o,
 ocrpt_report_cb func,
 void *data);

The second variant adds the callback in the opencreport structure context, making the callback
apply to every report. It's for RLIB compatibility.

10.1.11.9. Add a "report precalculation done" callback

bool
ocrpt_report_add_precalculation_done_cb(ocrpt_report *r,
 ocrpt_report_cb func,
 void *data);

bool
ocrpt_report_add_precalculation_done_cb2(opencreport *o,
 ocrpt_report_cb func,
 void *data);

The second variant adds the callback in the opencreport structure context, making the callback
apply to every report. It's for RLIB compatibility.

10.1.11.10. Add a "break triggers" callback

typedef void
(*ocrpt_break_trigger_cb)(opencreport *,
 ocrpt_report *,
 ocrpt_break *,
 void *);

bool
ocrpt_break_add_trigger_cb(ocrpt_break *br,

137

Low level C language API reference

 ocrpt_break_trigger_cb func,
 void *data);

10.1.12. Environment related functions

10.1.12.1. Indirect function to get an environment variable

typedef ocrpt_result *
(*ocrpt_env_query_func)(opencreport *,
 const char *);

extern ocrpt_env_query_func
ocrpt_env_get;

10.1.12.2. Set the environment query function

void
ocrpt_env_set_query_func(ocrpt_env_query_func func);

10.1.12.3. C API environment query function

ocrpt_result *
ocrpt_env_get_c(opencreport *o,
 const char *env);

10.1.12.4. Add an "m" domain variable

Set an "m" domain variable. If such a variable name didn't exist yet, and value is not NULL, then the
variable is set. If value is NULL, the variable is removed. Such an explicit variable takes precedence
over the environment variable of the same name when used in expressions.

void
ocrpt_set_mvariable(opencreport *o,
 const char *name,
 const char *value);

10.1.13. File handling related functions

10.1.13.1. Return a canonical file path

The returned path contains only single directory separators and doesn't contains symlinks.

char *
ocrpt_canonicalize_path(const char *path);

10.1.13.2. Add search path

Add a new directory path to the list of search paths. It's useful to find files referenced with relative path.

void
ocrpt_add_search_path(opencreport *o,
 const char *path);

10.1.13.3. Add search path (delayed variant)

Add a new directory path from an expression string to the list of search paths. It's useful to find files
referenced with relative path. The expression must evaluate to a string value. It is evaluated at the

138

Low level C language API reference

beginning of the report execution. This function may be used explicitly but it's also used when parsing
the <Path> nodes in a report XML description.

void
ocrpt_add_search_path_from_expr(opencreport *o,
 const char *expr_string);

10.1.13.4. Resolve search paths

Resolve expressions added by ocrpt_add_search_path_from_expr(). It's used internally
when executing the report.

void
ocrpt_resolve_search_paths(opencreport *o);

10.1.13.5. Find a file

Find a file and return the canonicalized path to it. This function takes the search paths into account.

char *
ocrpt_find_file(opencreport *o,
 const char *filename);

Note that search paths added by ocrpt_add_search_path() and
ocrpt_add_search_path_from_expr() are used in their order of appearance when
searching for files during executing the report.

10.1.14. Color related functions

10.1.14.1. Find a color by its name

The function fills in the ocrpt_color structure with RGB values in Cairo values (0.0 ... 1.0).

If the color name starts with # or 0x or 0X then it must be in HTML notation.

Otherwise, the color name is looked up in the color name database in a case insensitive way. If found,
the passed-in ocrpt_color structure is filled with the RGB color value of that name.

If not found or the passed-in color name is NULL, depending on the the expected usage (foreground
or background color), the ocrpt_color structure is filled with either white or black.

void
ocrpt_get_color(opencreport *o,
 const char *cname,
 ocrpt_color *color,
 bool bgcolor);

10.1.15. Paper size related functions
Paper size in OpenCReports is handled via libpaper4.

This structure is used in OpenCReports to represent paper name and size:

struct ocrpt_paper {
 const char *name;
 double width;
 double height;

4 http://packages.qa.debian.org/libp/libpaper.html

139

http://packages.qa.debian.org/libp/libpaper.html
http://packages.qa.debian.org/libp/libpaper.html

Low level C language API reference

};
typedef struct ocrpt_paper ocrpt_paper;

10.1.15.1. Get the system default paper

const ocrpt_paper *
ocrpt_get_system_paper(void);

10.1.15.2. Get the paper specified by name

const ocrpt_paper *
ocrpt_get_paper_by_name(const char *paper);

10.1.15.3. Set the global paper

Set global paper using an ocrpt_paper structure. The contents of the structure is copied.

void
ocrpt_set_paper(opencreport *o,
 const ocrpt_paper *paper);

10.1.15.4. Set global paper specified by name

Set paper for the report using a paper name. If the paper name is unknown, the system default paper
is set.

void
ocrpt_set_paper_by_name(opencreport *o,
 const char *paper);

10.1.15.5. Get currently set global paper

const ocrpt_paper *
ocrpt_get_paper(opencreport *o);

10.1.15.6. Iterate over paper sizes

Get the next ocrpt_paper structure in the iterator. For the first call, the iterator pointer must be
NULL. It returns NULL when there are no more papers known to the system.

const ocrpt_paper *
ocrpt_paper_next(opencreport *o,
 void **iter);

10.1.16. Memory handling related functions
Memory handling is done through an indirection, to help with bindings (that may do their own memory
handling) override the default.

10.1.16.1. Indirect function pointers

typedef void *
(*ocrpt_mem_malloc_t)(size_t);

typedef void *
(*ocrpt_mem_realloc_t)(void *,
 size_t);

140

Low level C language API reference

typedef void *
(*ocrpt_mem_reallocarray_t)(void *,
 size_t,
 size_t);

typedef void
(*ocrpt_mem_free_t)(const void *);

typedef char *
(*ocrpt_mem_strdup_t)(const char *);

typedef char *
(*ocrpt_mem_strndup_t)(const char *,
 size_t);

typedef void
(*ocrpt_mem_free_size_t)(void *,
 size_t);

extern ocrpt_mem_malloc_t ocrpt_mem_malloc0;
extern ocrpt_mem_realloc_t ocrpt_mem_realloc0;
extern ocrpt_mem_reallocarray_t ocrpt_mem_reallocarray0;
extern ocrpt_mem_free_t ocrpt_mem_free0;
extern ocrpt_mem_strdup_t ocrpt_mem_strdup0;
extern ocrpt_mem_strndup_t ocrpt_mem_strndup0;

10.1.16.2. Allocate memory

void *
ocrpt_mem_malloc(size_t sz);

10.1.16.3. Reallocate memory

void *
ocrpt_mem_realloc(void *ptr,
 size_t sz);

10.1.16.4. Reallocate array of memory

void *
ocrpt_mem_reallocarray(void *ptr,
 size_t nmemb,
 size_t sz);

10.1.16.5. Free memory

void
ocrpt_mem_free(const void *ptr);

10.1.16.6. Duplicate C string

void *
ocrpt_mem_strdup(const char *ptr);

10.1.16.7. Duplicate C string up to the specified length

void *
ocrpt_mem_strndup(const char *ptr,

141

Low level C language API reference

 size_t sz);

10.1.16.8. Free a C string

It'a convenience alias for ocrpt_mem_free().

void
ocrpt_strfree(const char *s);

10.1.16.9. Set indirect allocation functions

void
ocrpt_mem_set_alloc_funcs(ocrpt_mem_malloc_t rmalloc,
 ocrpt_mem_realloc_t rrealloc,
 ocrpt_mem_reallocarray_t rreallocarray,
 ocrpt_mem_free_t rfree,
 ocrpt_mem_strdup_t rstrdup,
 ocrpt_mem_strndup_t rstrndup);

10.1.17. List related functions
These functions implement a single linked list. The list element structure is hidden:

struct ocrpt_list;
typedef struct ocrpt_list ocrpt_list;

10.1.17.1. Get the list length

size_t
ocrpt_list_length(ocrpt_list *l);

10.1.17.2. Make a list from one element

ocrpt_list *
ocrpt_makelist1(const void *data);

10.1.17.3. Make a list from multiple elements

This function can be used with variable number of arguments.

ocrpt_list *
ocrpt_makelist(const void *data1, ...);

10.1.17.4. Get the last element of a list

ocrpt_list *
ocrpt_list_last(const ocrpt_list *l);

10.1.17.5. Get the nth element of a list

ocrpt_list *
ocrpt_list_nth(const ocrpt_list *l, uint32_t n);

10.1.17.6. Append a new element to a list

ocrpt_list *
ocrpt_list_append(ocrpt_list *l,
 const void *data);

142

Low level C language API reference

10.1.17.7. Append to list using the last element

This function make appending to the list work O(1) instead of O(n).

ocrpt_list *
ocrpt_list_end_append(ocrpt_list *l,
 ocrpt_list **e,
 const void *data);

10.1.17.8. Prepend a new element to a list

ocrpt_list *
ocrpt_list_prepend(ocrpt_list *l,
 const void *data);

10.1.17.9. Remove a data element from a list

ocrpt_list *
ocrpt_list_remove(ocrpt_list *l,
 const void *data);

10.1.17.10. Remove a data element from a list and update the last
link

ocrpt_list *
ocrpt_list_end_remove(ocrpt_list *l,
 ocrpt_list **endptr,
 const void *data);

10.1.17.11. Get next link in the list

This can be used to iterate through a list. It returns NULL if the passed-in link is the last list in the
list or it's an empty list.

ocrpt_list *
ocrpt_list_next(ocrpt_list *l);

10.1.17.12. Get the data element from a list

void *
ocrpt_list_get_data(ocrpt_list *l);

10.1.17.13. Free a list

void
ocrpt_list_free(ocrpt_list *l);

10.1.17.14. Free a list and its data elements

void
ocrpt_list_free_deep(ocrpt_list *l,
 ocrpt_mem_free_t freefunc);

10.1.18. String related functions
For memory safety and higher performance, a wrapper structure is used over C functions.

143

Low level C language API reference

struct ocrpt_string {
 char *str;
 size_t allocated_len;
 size_t len;
};
typedef struct ocrpt_string ocrpt_string;

10.1.18.1. Create a new string

Create a new string from a C string. The ownership of the input string may be taken over, or the
original string's contents are copied.

ocrpt_string *
ocrpt_mem_string_new(const char *str,
 bool copy);

10.1.18.2. Create a new string with specified allocated length

Create a new string with specified allocated length so future growth can be done without reallocation.
The input string is always copied.

ocrpt_string *
ocrpt_mem_string_new_with_len(const char *str,
 size_t len);

10.1.18.3. Create a string from a formatted string with maximum
length

ocrpt_string *
ocrpt_mem_string_new_vnprintf(size_t len,
 const char *format,
 va_list va);

10.1.18.4. Create a string from a formatted string

ocrpt_string *
ocrpt_mem_string_new_printf(const char *format, ...);

10.1.18.5. Resize a string

Resize the string to the specified allocated length.

ocrpt_string *
ocrpt_mem_string_resize(ocrpt_string *string,
 size_t len);

10.1.18.6. Free a string

char *
ocrpt_mem_string_free(ocrpt_string *string,
 bool free_str);

10.1.18.7. Append a C string of the specified length to a string

void
ocrpt_mem_string_append_len(ocrpt_string *string,
 const char *str,

144

Low level C language API reference

 const size_t len);

10.1.18.8. Append a binary string of the specified length to a
string

void
ocrpt_mem_string_append_len_binary(ocrpt_string *string,
 const char *str,
 const size_t len);

10.1.18.9. Append a C string of unspecified length to a string

void
ocrpt_mem_string_append(ocrpt_string *string,
 const char *str);

10.1.18.10. Append a byte to a string

void
ocrpt_mem_string_append_c(ocrpt_string *string,
 const char c);

10.1.18.11. Append a formatted string to a string

void
ocrpt_mem_string_append_printf(ocrpt_string *string,
 const char *format, ...);

145

Chapter 11. Implement a datasource
input driver
11.1. Datasource input driver registration API

A datasource driver can be implemented and registered with OpenCReports easily. In fact, all the
built-in datasource input drivers use the registration interface. A newly registered datasource input
driver can also replace the built-in ones.

11.1.1. Register a datasource input driver
bool
ocrpt_input_register(const ocrpt_input * const input);

11.1.2. Get a datasource input driver
Get a datasource input driver using its name.

const ocrpt_input * const
ocrpt_input_get(const char *name);

11.2. Datasource input driver details

11.2.1. Datasource input driver interface
Below is the driver interface that defines the driver names, the connect_parameters used by
adding a datasource (see Section 10.1.3.1) and the driver methods.

struct ocrpt_input {
 const char **names;
 const ocrpt_input_connect_parameter **connect_parameters;
 bool (*connect)(ocrpt_datasource *ds,
 const ocrpt_input_connect_parameter *params);
 ocrpt_query *(*query_add_sql)(ocrpt_datasource *ds,
 const char *name,
 const char *sql);
 ocrpt_query *(*query_add_file)(ocrpt_datasource *ds,
 const char *name,
 const char *filename,
 const int32_t *types,
 int32_t types_cols);
 ocrpt_query *(*query_add_data)(ocrpt_datasource *ds,
 const char *name,
 const void *data,
 int32_t rows,
 int32_t cols,
 const int32_t *types,
 int32_t types_cols);
 ocrpt_query *(*query_add_symbolic_data)(
 ocrpt_datasource *ds,
 const char *name,
 const char *dataname,
 int32_t rows,

146

Implement a datasource input driver

 int32_t cols,
 const char *types,
 int32_t types_cols);
 void (*describe)(ocrpt_query *query,
 ocrpt_query_result **result,
 int32_t *result_cols);
 bool (*refresh)(ocrpt_query *query);
 void (*rewind)(ocrpt_query *query);
 bool (*next)(ocrpt_query *query);
 bool (*populate_result)(ocrpt_query *query);
 bool (*isdone)(ocrpt_query *query);
 void (*free)(ocrpt_query *query);
 bool (*set_encoding)(ocrpt_datasource *ds,
 const char *encoding);
 void (*close)(const ocrpt_datasource *);
};
typedef struct ocrpt_input ocrpt_input;

The driver names is a NULL-terminated array of name strings. This allows the driver to be picked
up using either name. For example the built-in MariaDB driver does so:

static const char *
ocrpt_mariadb_input_names[] = {
 "mariadb", "mysql", NULL
};

The connect_parameters data pointer and the connect method are either both set as valid,
or both are NULL.

The query_add*() methods are optional. Some datasource drivers support direct or symbolic data,
some support file formats, some are SQL based. A datasource input driver must support at least one
of the interfaces.

The describe() method is mandatory. It returns an array of ocrpt_query_result data
together with the number of columns in the result set. The result array must contain elements 3 times
the number of columns in total due to the internal operation of OpenCReports.

#define OCRPT_EXPR_RESULTS (3)

The refresh() method is optional. See the PHP module source code for its potential uses.

The rewind(), next(), populate_result() and isdone() methods are all mandatory as
they are required to traverse the result set.

The free() method is optional. It's needed if the query uses private data.

The set_encoding() method is optional. It's needed if the datasource input driver can use data
in encodings other than UTF-8.

The close() method is optional. It's needed if the datasource connection uses private data.

11.3. Helper functions to implement a
datasource input driver

11.3.1. Get the parent pointer of a datasource
opencreport *
ocrpt_datasource_get_opencreport(const ocrpt_datasource *ds);

147

Implement a datasource input driver

11.3.2. Get the name of a datasource
const char *
ocrpt_datasource_get_name(const ocrpt_datasource *ds);

11.3.3. Get the input driver pointer of a datasource
const ocrpt_input *
ocrpt_datasource_get_input(const ocrpt_datasource *ds);

11.3.4. Set the private pointer of a datasource
void
ocrpt_datasource_set_private(ocrpt_datasource *ds,
 void *priv);

11.3.5. Get the private pointer of a datasource
void *
ocrpt_datasource_get_private(ocrpt_datasource *ds);

11.3.6. Allocate a query structure
Allocate a query structure and add the query name.

ocrpt_query *
ocrpt_query_alloc(const ocrpt_datasource *source,
 const char *name);

11.3.7. Get the query name
char *
ocrpt_query_get_name(const ocrpt_query *query);

11.3.8. Get the datasource pointer of a query
ocrpt_datasource *
ocrpt_query_get_source(const ocrpt_query *query);

11.3.9. Set the private pointer of a query
void
ocrpt_query_set_private(ocrpt_query *query,
 const void *priv);

11.3.10. Get the private pointer of a query
void *
ocrpt_query_get_private(const ocrpt_query *query);

11.3.11. Set current row of a query all NULL
void
ocrpt_query_result_set_values_null(ocrpt_query *q);

148

Implement a datasource input driver

11.3.12. Set a column value of a query
Set the ith column value in the current row of a query. The value can be set to NULL if the isnull
parameter is true, or to a valid value using the str and the length parameters.

void
ocrpt_query_result_set_value(ocrpt_query *q,
 int32_t i,
 bool isnull,
 iconv_t conv,
 const char *str,
 size_t len);

149

Chapter 12. PHP language API
reference
12.1. The OpenCReports PHP module

OpenCReports comes with a PHP module, which must be enabled in the PHP configuration:

extension=opencreports.so

12.2. The OpenCReport class
The main class in OpenCReports is called OpenCReport. (Note that the project name is used as
singular.)

class OpenCReport {
 public const RESULT_ERROR;
 public const RESULT_STRING;
 public const RESULT_NUMBER;
 public const RESULT_DATETIME;

 public const VARIABLE_EXPRESSION;
 public const VARIABLE_COUNT;
 public const VARIABLE_COUNTALL;
 public const VARIABLE_SUM;
 public const VARIABLE_AVERAGE;
 public const VARIABLE_AVERAGEALL;
 public const VARIABLE_LOWEST;
 public const VARIABLE_HIGHEST;

 public final __construct();

 public final parse_xml(string $filename): bool;
 public final parse_xml_from_buffer(string $buffer): bool;

 public const OUTPUT_PDF;
 public const OUTPUT_HTML;
 public const OUTPUT_TXT;
 public const OUTPUT_CSV;
 public const OUTPUT_XML;
 public const OUTPUT_JSON;
 public final set_output_format(long $format): void;
 public final get_output_format(): long;
 public static final get_output_format_name(long $format):
 string;

 public final set_output_parameter(
 string $param,
 string $value): void;

 public final execute(): bool;
 public final spool(): void;
 public final get_output(): string|false;
 public final get_content_type(): array|false;

 public static final version(): string;

150

PHP language API reference

 public final set_numeric_precision_bits(
 string $expr_string): void;
 public final get_numeric_precision_bits(): long;
 public final set_rounding_mode(
 string $expr_string): void;

 public final bindtextdomain(
 string $domainname,
 string $dirname): void;
 public final set_locale(string $locale): void;

 public final datasource_add(string $source_name,
 string $source_type,
 ?array $conn_params = null):
 ?OpenCReport\Datasource;

 public final datasource_get(string $source_name):
 ?OpenCReport\Datasource;
 public final query_get(string $query_name):
 ?OpenCReport\Query;

 public final query_refresh(): void;

 public final expr_parse(string $expr_string):
 ?OpenCReport\Expr;
 public final expr_error(): ?string;

 public final part_new(): OpenCReport\Part;
 public final part_get_next(): OpenCReport\Part;

 public final function_add(
 string $expr_func_name,
 string $zend_func_name,
 long $n_ops,
 bool $commutative,
 bool $associative,
 bool $left_associative,
 bool $dont_optimize): bool;

 public final add_precalculation_done_cb(
 string $callback): void;
 public final add_part_added_cb(
 string $callback): void;
 public final add_report_added_cb(
 string $callback): void;

 public final env_get(string $var_name):
 OpenCReport\Result;

 public final result_new():
 OpenCReport\Result;

 public final set_mvariable(
 string $name,
 ?string $value = null): void;

 public final add_search_path(

151

PHP language API reference

 string $path): void;
 public static final canonicalize_path(
 string $path): string;
 public final find_file(string $path): $string;

 public static final get_color(
 string $color_name,
 ?bool $bgcolor = false): array;

 public final set_paper(string $paper): void;

 public final set_size_unit(string $expr_string):
 ?OpenCReport\Expr;
 public final get_size_unit():
 ?OpenCReport\Expr;
 public final set_noquery_show_nodata(
 string $expr_string):
 ?OpenCReport\Expr;
 public final get_noquery_show_nodata():
 ?OpenCReport\Expr;
 public final set_report_height_after_last(
 string $expr_string):
 ?OpenCReport\Expr;
 public final get_report_height_after_last():
 ?OpenCReport\Expr;
 public final set_follower_match_single(
 string $expr_string):
 ?OpenCReport\Expr;
 public final get_follower_match_single():
 ?OpenCReport\Expr;
 public final set_follower_match_single_direct(
 bool $value): void;
 public final get_follower_match_single_direct()
 bool;
}

12.3. High level PHP API
Here is an example code using the high level PHP API where everything concerning the report
(including the data source) is described in the report XML:

<?php
$o = new OpenCReport();

if (!$o->parse_xml(o, "report.xml")) {
 printf("XML parse error\n");
 exit(1);
}

$o->set_output_format(o, OpenCReport::OUTPUT_PDF);
$o->execute();
$->spool();

This code will load report.xml, set the output format to PDF, runs the report and dumps the result
on stdout, which ends up in your browser if the PHP code is run behind a webserver.

Most of the class methods are direct wrappers of the corresponding C API functions.

152

PHP language API reference

12.3.1. Constructor
The class constructor creates an OpenCReport object.

public final
OpenCReport::__construct();

12.3.2. Load a report XML description
These methods load the report description either from the specified XML file or from the XML content
provided in the string. They return true for success, false for failure.

public final
OpenCReport::parse_xml(string $filename): bool;

public final
OpenCReport::parse_xml_from_buffer(string $buffer): bool;

12.3.3. Set report output format
Default is public const OpenCReport::OUTPUT_PDF.

public const OpenCReport::OUTPUT_PDF;
public const OpenCReport::OUTPUT_HTML;
public const OpenCReport::OUTPUT_TXT;
public const OpenCReport::OUTPUT_CSV;
public const OpenCReport::OUTPUT_XML;
public const OpenCReport::OUTPUT_JSON;

public final
OpenCReport::set_output_format(int $format): void;

Note that these constants are not to be overridden in subclasses. With PHP 8.1 and newer, the final
flag is added so overriding these constants will throw an exception.

12.3.4. Get report output format
This method returns the previously set output format, or the default if it wasn't set.

public final
OpenCReport::get_output_format(): long;

12.3.5. Get report output format name
This method returns the name of the output format as string.

public static final
OpenCReport::get_output_format_name(long $format):
 string;

12.3.6. Set report output parameter
public final
OpenCReport::set_output_parameter(
 string $param,

153

PHP language API reference

 string $value): void;

Possible parameters for the HTML output driver:

• document_root sets the document root for trimming path prefix from image paths.

• meta extends the default <meta charset="utf-8">. literal (see The passed-in string
value may contain the whole <meta ...>, in which case the inner parameters are used only. The
charset specification is ignored. Only the rest is used.

• suppress_head suppresses the default <head> ... </head> section. Possible values to
enable suppressing the default <head> ... </head> are yes, true and on. Anything else
disables it. Be aware, that the default section contains importand CSS stylesheet settings that are
needed for the correct layout.

Possible parameters for the CSV output driver:

• csv_filename sets the file name for Content-Disposition in the HTTP metadata returned
by ocrpt_get_content_type().

• csv_as_text sets the MIME type for Content-Type in the HTTP metadata returned by
ocrpt_get_content_type().

• csv_delimiter (also aliased as csv_delimeter according to the historical typo in RLIB)
sets the CSV field delimiter to the first character of the string. By default it's a comma.

• no_quotes will create a CSV output with values unquoted. Possible values to enable it are yes,
true, on or any positive non-zero number. Anything else disables it. It takes precedence over
only_quote_strings

• only_quote_strings will create a CSV output with only string values quoted. Possible values
to enable it are yes, true, on or any positive non-zero number. Anything else disables it.

Note that some languages (e.g German, Swedish and Hungarian) use comma as the decimal
separator instead of decimal point. For these languages, either set csv_delimiter or set neither
no_quotes, nor only_quote_strings

Possible parameters for the XML output driver:

• xml_rlib_compat sets the flag to create an RLIB compatible XML output. Possible values to
enable it are yes, true, on or any positive non-zero number. Anything else disables it.

When enabled, the toplevel element will be <rlib> and <Report>s inside <pd> won't be
embedded in a report element.

12.3.7. Run the report
This method executes the report, constructs the result in memory. It returns true for success, false
for failure. It is a failure if the output format is unset.

public final
OpenCReport::execute(): bool;

12.3.8. Dump report result
Dump the report output on the program's standard output channel.

public final
OpenCReport::spool(): void;

154

PHP language API reference

12.3.9. Get report result
Get the report output. The application then can save it as a file. This method returns the output in a
string if report execution succeeded, otherwise it returns false.

public final
OpenCReport::get_output(): string|false;

12.3.10. Get report content type
Get the report content type. The application then can add it as HTTP header line(s) to the request. This
method returns an array of strings with Content-Type:, Content-Length: and other header
lines if report execution succeeded. Otherwise it returns false.

public final
OpenCReport::get_content_type(): array|false;

12.3.11. Get library version
This method reports the OpenCReports library version.

public final static
OpenCReport::version(): string;

12.4. Low level PHP API
The High level PHP API is also part of the low level API. The class methods described below allow
creating a report using program code, or simply fine tuning the report behavior by mostly using the
High level PHP API.

Note that whenever the method argument is string $expr_string, such arguments are treated
as Expressions and are only parsed when calling the method. Evaluation of the expressions is delayed
to report execution time.

Also note that for class methods that return objects, the parent object must not be unset() before
using such a derived object. These derived objects are merely wrappers over C pointers in their parent
objects' C representation. Such a "use after free" is a sure way to crash the PHP process.

12.4.1. Numeric behavior related methods

12.4.1.1. Set numeric precision

The default is 256 bits of floating point precision.

public final
OpenCReport::set_numeric_precision_bits(
 string $expr_string): void;

12.4.1.2. Get numeric precision

public final
OpenCReport::get_numeric_precision_bits(): long;

12.4.1.3. Set rounding mode

The rounding modes may be nearest, to_minus_inf, to_inf, to_zero,
away_from_zero and faithful. The default is nearest.

155

PHP language API reference

final public
OpenCReport::set_rounding_mode(
 string $expr_string): void;

12.4.2. Locale related methods

12.4.2.1. Set up translation

Setting up the translation needs two parameters: the so called translation domain and the toplevel
directory for the translations. It relies on GNU Gettext.

public final
OpenCReport::bindtextdomain(
 string $domainname,
 string $dirname): void;

12.4.2.2. Set report locale

Setting the locale for the report does not affect the main program or other threads. Locale setting
includes the language, the country. The UTF-8 suffix is necessary. E.g.: en_GB.UTF-8 or
de_DE.UTF-8

public final
OpenCReport::set_locale(string $locale): void;

12.4.3. Data source and query related methods

12.4.3.1. Add a datasource

For the OpenCReport\Datasource class methods, see The OpenCReport\Datasource class

public final
OpenCReport::datasource_add(string $source_name,
 string $source_type,
 ?array $conn_params = null):
 ?OpenCReport\Datasource;

This method adds a datasource of the specified type to the report, using the optional connection
parameters.

The possible datasource types are: array, csv, json, xml, mariadb (also aliased as mysql),
postgresql and odbc.

The connection parameter array is an associative array which contains keys and value pairs. The
contents of this array is needed to connect to SQL databases. For example:

$conn_params = [
 "dbname" => "mydatabase",
 "user" => "myuser"
];

The array, csv, json, and xml datasource types do not need connection parameters.

The list of connection parameters to establish database connection for mariadb, postgresql, and
odbc are listed at Section 10.1.3.1, in the Low level C API Reference.

12.4.3.2. Get a named datasource

For the OpenCReport\Datasource class methods, see The OpenCReport\Datasource class.

156

PHP language API reference

public final
OpenCReport:: datasource_get(string $source_name):
 ?OpenCReport\Datasource;

12.4.3.3. Get a named query

For the OpenCReport\Query class methods, see The OpenCReport\Query class.

public final
OpenCReport::query_get(string $query_name):
 ?OpenCReport\Query;

12.4.3.4. Refresh the internal representation of array queries

A two dimensional array (actually, a one dimensional array of one dimensional arrays) can be used
in PHP as an array query.

The PHP array may be modified during executing the report, e.g. in an event callback called after
one iteration of a report part. This method refreshes the the query's internals to be aware of the new
contents of the array.

public final
query_refresh(): void;

There are some limitations what may be done to the source PHP array, though.

• The array contents must not change during a report iteration, i.e. in a new row callback and
some others. This would invalidate the contents of the PHP internal representation in a way that
OpenCReports may break in subtle ways.

• Changes to the first row of the array (i.e. the column names) are ignored.

• The number of columns in the array must not change.

12.4.4. Expression related methods
Expressions in OpenCReports is explained in the Expressions chapter.

12.4.4.1. Parse an expression

The expression string may not reference report specific identifiers.

public final
OpenCReport::expr_parse(string $expr_string):
 ?OpenCReport\Expr;

If the expression is in any way invalid, OpenCReport::expr_parse() returns null. The error
is returned by:

public final
OpenCReport::expr_error(): ?string;

12.4.4.2. Add a custom report function

public final
OpenCReport::function_add(
 string $expr_func_name,
 string $zend_func_name,

157

PHP language API reference

 long $n_ops,
 bool $commutative,
 bool $associative,
 bool $left_associative,
 bool $dont_optimize): bool;

After this function returns with success, subsequently parsed expressions may use the function named
as the value of $expr_func_name. During evaluation of the function, the PHP function named as
the value of $zend_func_name is called. The expressions that use the new function may call it with
either the number of arguments given in $n_ops, or if the value is -1, any number of arguments.

The remaining bool arguments indicate the named properties of the function that the expression
optimizer considers.

The declaration of the PHP function named as the value of $zend_func_name must follow this:

function my_function(OpenCReport\Expr $e)

The function implementation may return any PHP base type (string, long, double or bool) or
it may not return a value at all (i.e. void). In the latter case, the function must set the return value
in the passed-in $e object.

For class methods of OpenCReport\Expr, please see The OpenCReport\Expr class.

12.4.5. Layout part related methods

12.4.5.1. Add a new report (layout) part

For class methods of OpenCReport\Part, see The OpenCReport\Part class.

public final
OpenCReport::part_new(): OpenCReport\Part;

12.4.5.2. Get first (layout) part

This function returns an object of the OpenCReport\Part class. The object is internally marked as
an "iterator object", so OpenCReport\Part::get_next() may be called on it again to iterate
through every report part of the parent OpenCReport object.

public final
OpenCReport::part_get_first(): OpenCReport\Part;

12.4.5.3. Set paper type

Set the paper type using the paper name, i.e. 'letter', 'A4', etc.

public final
OpenCReport::set_paper(string $paper): void;

12.4.5.4. Set or get size unit

Set the size unit. See Size unit attribute. Possible settings are points and rlib. Default is rlib
for RLIB compatibility.

public final
OpenCReport::set_size_unit(string $expr_string):
 ?OpenCReport\Expr;

158

PHP language API reference

public final
OpenCReport::get_size_unit():
 ?OpenCReport\Expr;

12.4.5.5. Set or get "no query show NoData" property

public final
OpenCReport::set_noquery_show_nodata(
 string $expr_string):
 ?OpenCReport\Expr;

public final
OpenCReport::get_noquery_show_nodata():
 ?OpenCReport\Expr;

12.4.5.6. Set or get "report height after last" property

public final
OpenCReport::set_report_height_after_last(
 string $expr_string):
 ?OpenCReport\Expr;

public final
OpenCReport::set_report_height_after_last():
 ?OpenCReport\Expr;

12.4.5.7. Set or get "follower match single" property

See Follower match single attribute.

public final
OpenCReport::set_follower_match_single(
 string $expr_string):
 ?OpenCReport\Expr;

public final
OpenCReport::get_follower_match_single():
 ?OpenCReport\Expr;
public final
OpenCReport::set_follower_match_single_direct(
 bool $value): void;

public final
OpenCReport::get_follower_match_single_direct():
 bool;

12.4.6. Callback related methods
These methods add a callback function that are called at certain points during executing the report.

public final
OpenCReport::add_precalculation_done_cb(
 string $callback): void;

public final
OpenCReport::add_part_added_cb(
 string $callback): void;

159

PHP language API reference

public final
OpenCReport::add_report_added_cb(
 string $callback): void;

The "precalculation done" callback is called after the first phase of the report is finished. The interface
of the callback function must follow this:

function
my_callback(OpenCReport $o)

The "part added" callback is called when either OpenCReport::part_new() is called,
or a report XML description is parsed via either OpenCReport::parse_xml() or
OpenCReport::parse_xml_from_buffer() and a <Part> node is being parsed. The
interface of the callback function must follow this:

function
my_callback(OpenCReport $o,
 OpenCReport\Part $p)

The "report added" callback is called when either OpenCReport\Column::report_new()
is called, or a report XML description is parsed via either OpenCReport::parse_xml() or
OpenCReport::parse_xml_from_buffer() and a <Report> node is being parsed. The
interface of the callback function must follow this:

function
my_callback(OpenCReport $o,
 OpenCReport\Report $r)

12.4.7. Environment related methods
In PHP, the "environment" includes both global variables and actual environment variables. If a global
variable name exists in the PHP environment, its value is returned as OpenCReport\Result. If
such a PHP global variable doesn't exist, the variable from operating (e.g. UNIX) environment is used
and its value is returned if it exists. Otherwise NULL is returned.

public final
OpenCReport::env_get(string $var_name):
 OpenCReport\Result;

12.4.8. Add "m" domain variable
Add an "m" domain variable. If such a variable name didn't exist yet, and value is not NULL, then
the variable is set. If value is NULL or omitted, the variable is removed. Such an explicit variable
takes precedence over the PHP global variable or the environment variable of the same name when
used in expressions.

public final
OpenCReport::set_mvariable(
 string $name,
 string $value): void;

12.4.9. Result related methods
This method creates an uninitialized OpenCReport\Result with no value. See The OpenCReport
\Result class to set the value.

public final

160

PHP language API reference

OpenCReport::result_new(): OpenCReport\Result;

12.4.10. Path related methods

12.4.10.1. Add a search path

public final
OpenCReport::add_search_path(string $path): void;

12.4.10.2. Canonicalize path

This method returns (a possibly modified) path that will create a canonical absolute path that doesn't
contain . and .. references, symlinks are replaced with the actual target directory, etc.

public static final
OpenCReport::canonicalize_path(string $path): string;

12.4.10.3. Find a file

Find a (possibly relative) file using the search paths and return the canonical absolute path if found.

public final
OpenCReport::find_file(string $path): $string;

12.4.11. Color related methods
Get an array with double components for the color name or color specification.

public static
OpenCReport::final get_color(
 string $color_name,
 ?bool $bgcolor = false): array;

12.5. The OpenCReport\Datasource class
This class has no constructor, so such an object cannot be created or used on its own. A datasource
only is only useful as part of a report. The OpenCReport::datasource_add() method return
an object of this class.

class OpenCReport\Datasource {
 public final free(): void;

 public final query_add(string $name,
 string $array_or_file_or_sql,
 ?string $coltypes = null):
 OpenCReport\Query;

 public final set_encoding(string $encoding): void;
}

12.5.1. Free a datasource
The datasource is freed for the parent OpenCReport object.

public final
OpenCReport\Datasource::free(): void;

161

PHP language API reference

12.5.2. Add a query to the datasource
Add a query to the parent OpenCReport object associated with the OpenCReport
\Datasource.

public final
OpenCReport\Datasource::query_add(string $name,
 string $array_or_file_or_sql,
 ?string $coltypes = null):
 OpenCReport\Query;

$name is the query name that Expressions may use as the identifier domain.

$array_or_file_or_sql contains the array name (for an array datasource), the file name (for
a file based datasource, like JSON, CSV or XML), or the SQL query statement for SQL based
datasources (like MariaDB, PostgreSQL or ODBC).

Passing $coltypes is optional and is only valid for array or file based datasources. File based
datasources may or may not include column type specification. Array datasources don't. The
$coltypes array contains long values OpenCReport::RESULT_*. See The OpenCReport class.
It helps the engine to add automatic data conversion for query column data. SQL based datasources
provide the data type for query columns.

12.5.3. Set datasource encoding
Set encoding for the datasource. By default, UTF-8 is expected.

public final
OpenCReport\Datasource::set_encoding(string $encoding): void;

12.6. The OpenCReport\Query class
class OpenCReport\Query {
 public final get_result():
 OpenCReport\QueryResult;

 public final navigate_start(): void;
 public final navigate_next(): bool;

 public final navigate_use_prev_row(): void;
 public final navigate_use_next_row(): void;

 public final add_follower(
 OpenCReport\Query $follower):
 bool;
 public final add_follower_n_to_1(
 OpenCReport\Query $follower,
 OpenCReport\Expr $match):
 bool;

 public final free(): void;
}

12.6.1. Get result for a query's current row
The result is OpenCReport\QueryResult. See Section 12.7.

public final

162

PHP language API reference

OpenCReport\Query::get_result():
 OpenCReport\QueryResult;

12.6.2. Start navigation for a query
Reset query (and all its followers) to go before the first row.

public final
OpenCReport\Query::navigate_start(): void;

12.6.3. Navigate to the next row
Navigate the query to the next row and return if the new row is valid. The current row of the query's
follower queries are also moved to the next valid row.

public final
OpenCReport\Query::navigate_next(): bool;

Usually queries do not have a uniform way to report the total number of rows, although some
datasource types may have such a facility. Instead, they can report that the dataset has ended.

12.6.4. Navigate use previous/next row
These functions expose an implementation detail of the data traversal in OpenCReports. There is a 3-
row data cache in which there is always the current row. One past row is kept so e.g. break boundaries
can be detected and there is one row read-ahead to detect the end-of-data condition early. These
functions allow to switch back and forth in the 3-row data cache, making the previous or next row the
"current" one momentarily. The query must always be the primary query of the report. Used by unit
tests that don't use ocrpt_execute().

public final
OpenCReport\Query::navigate_use_prev_row(): bool;

public final
OpenCReport\Query::navigate_use_next_row(): bool;

Usually queries do not have a uniform way to report the total number of rows, although some
datasource types may have such a facility. Instead, they can report that the dataset has ended.

12.6.5. Add a query follower
Add a query as an 1:1 follower to the main query object. The method returns whether the call
succeeded.

public final
OpenCReport\Query::add_follower(
 OpenCReport\Query $follower):
 bool;

Adding a circular reference between queries would fail.

12.6.6. Add an N:1 query follower
Add a query and the matching expression as a follower to the main query object. The method returns
whether the call succeeded.

public final
OpenCReport\Query::add_follower_n_to_1(

163

PHP language API reference

 OpenCReport\Query $follower,
 OpenCReport\Expr $match):
 bool;

Adding a circular reference between queries would fail.

The call takes over ownership of the match object and it must not be explicitly freed.

12.6.7. Free a query
public final
OpenCReport\Query::free(): void;

12.7. The OpenCReport\QueryResult class
class OpenCReport\QueryResult {
 public final columns(): long;

 public final column_name(long $index): ?string;

 public final column_result(long $index):
 ?OpenCReport\Result;
}

12.7.1. Get number of columns for a query result
This method returns the number of columns for the query result.

public final
OpenCReport\QueryResult::columns(): long;

12.7.2. Get the nth column name for a query result
This method returns the column name for the query result at $index. It returns NULL for invalid
indices.

public final
OpenCReport\QueryResult::column_name(long $index):
 ?string;

12.7.3. Get the nth column result for a query result
This method returns the column result for the query result at $index. It returns NULL for invalid
indices.

public final
OpenCReport\QueryResult::column_result(long $index):
 ?OpenCReport\Result;

12.8. The OpenCReport\Expr class
class OpenCReport\Expr {
 public final free(): void;

 public final get_expr_string(): string;

 public final print(): void;

164

PHP language API reference

 public final nodes(): long;

 public final resolve(): void;
 public final optimize(): void;
 public final eval():
 ?OpenCReport\Result;

 public final get_result():
 ?OpenCReport\Result;
 public final set_string(
 string $value): void;
 public final set_long(
 long $value): void;
 public final set_double(
 double $value): void;
 public final set_number(
 string $value): void;

 public final get_num_operands(): long;

 public final operand_get_result(
 long $opidx):
 ?OpenCReport\Result;

 public final cmp_results(): bool;

 public final init_results(long $result_type):
 void;
 public final get_string(): ?string;
 public final get_long(): long;
 public final get_double(): double;
 public final get_number(): ?string;

 public final set_nth_result_string(
 long $which,
 string $value): void;

 public final set_nth_result_long(
 long $which,
 long $value): void;

 public final set_nth_result_double(
 long $which,
 double $value): void;

 public final set_iterative_start_value(
 bool $value): void;

 public final set_delayed(
 bool $value): void;
}

12.8.1. Free an expression
Used by unit tests.

public final

165

PHP language API reference

OpenCReport\Expr::free(): void;

12.8.2. Get the original expression string
public final
OpenCReport\Expr::get_expr_string(): string;

12.8.3. Print an expression
Used by unit tests.

public final
OpenCReport\Expr::print(): void;

12.8.4. Get the number of expression tree nodes
Used by unit tests to compare the expression tree before and after optimization.

public final
OpenCReport\Expr::nodes(): long;

12.8.5. Resolve an expression
public final
OpenCReport\Expr::resolve(): void;

12.8.6. Optimize an expression
public final
OpenCReport\Expr::optimize(): void;

12.8.7. Evaluate an expression
public final
OpenCReport\Expr::eval():
 ?OpenCReport\Result;

12.8.8. Get the result of an expression
public final
OpenCReport\Expr::get_result():
 ?OpenCReport\Result;

12.8.9. Set expression result to a string value
Useful for user functions.

public final
OpenCReport\Expr::set_string(
 string $value): void;

12.8.10. Set expression result to a long value
Useful for user functions.

166

PHP language API reference

public final
OpenCReport\Expr::set_long(
 long $value): void;

12.8.11. Set expression result to a double value
Useful for user functions.

public final
OpenCReport\Expr::set_double(
 double $value): void;

12.8.12. Set expression result to a numeric value from
string

Useful for user functions. This allows using BC Math1

public final
OpenCReport\Expr::set_number_from_string(
 string $value): void;

12.8.13. Get number of operands of a expression
Useful for user functions.

public final
OpenCReport\Expr::get_num_operands(): long;

12.8.14. Get nth operands' result of a expression
Useful for user functions.

public final
OpenCReport\Expr::operand_get_result(
 long $opidx):
 ?OpenCReport\Result;

12.8.15. Compare the expression's current and
previous results

Used internally by the report executor and unit tests. Useful for implementing a custom report executor
with breaks.

public final
OpenCReport\Expr::cmp_results(): bool;

12.8.16. Initialize expression results
Used internally by the report executor and unit tests. Useful for implementing a custom report executor.

public final
OpenCReport\Expr::init_results(long $result_type):

1 https://www.php.net/manual/en/book.bc.php

167

https://www.php.net/manual/en/book.bc.php
https://www.php.net/manual/en/book.bc.php

PHP language API reference

 void;

12.8.17. Get string value of an expression
Used by unit tests.

public final
OpenCReport\Expr::get_string(): ?string;

12.8.18. Get long value of an expression
Used by unit tests.

public final
OpenCReport\Expr::get_long(): long;

12.8.19. Get double value of an expression
Used by unit tests.

public final
OpenCReport\Expr::get_double(): double;

12.8.20. Get numeric value of an expression as a string
Used internally by unit tests.

public final
OpenCReport\Expr::get_number():
 ?string;

12.8.21. Set nth result of an expression to a string
value

Used by unit tests.

public final
OpenCReport\Expr::set_nth_result_string(
 long $which,
 string $value): void;

12.8.22. Set nth result of an expression to a long value
Used by unit tests.

public final
OpenCReport\Expr::set_nth_result_long(
 long $which,
 long $value): void;

12.8.23. Set nth result of an expression to a double
value

Used by unit tests.

168

PHP language API reference

public final
OpenCReport\Expr::set_nth_result_double(
 long $which,
 double $value): void;

12.8.24. Set iterative start flag of an expression
Used internally by the report executor and by unit tests.

public final
OpenCReport\Expr::set_iterative_start_value(
 bool $value): void;

12.8.25. Set expression to delayed
A delayed expression's final value is precalculated, and this value is used in the output in every row
of the report.

public final
OpenCReport\Expr::set_delayed(
 bool $value): void;

12.9. The OpenCReport\Result class
class OpenCReport\Result {
 public final free(): void;

 public final copy(
 OpenCReport\Result $src_result):
 void;

 public final print(): void;

 public final get_type(): long;

 public final is_null(): bool;
 public final is_string(): bool;
 public final is_number(): bool;
 public final get_string(): ?string;
 public final get_number(?string $format): ?string;
}

12.9.1. Free a result object
Only use it for separately created result objects, like via OpenCReport::env_get() and
OpenCReport::result_new(). Not needed for freeing an expression.

public final
OpenCReport\Result::free(): void;

12.9.2. Copy a result object
Used by unit tests.

public final
OpenCReport\Result::copy(

169

PHP language API reference

 OpenCReport\Result $src_result):
 void;

12.9.3. Print a result object
Used by unit tests.

public final
OpenCReport\Result::print(): void;

12.9.4. Get result object value type
Useful for user functions.

public final
OpenCReport\Result::get_type(): long;

12.9.5. Detect whether result object value is NULL
Useful for user functions.

public final
OpenCReport\Result::is_null(): bool;

12.9.6. Detect whether result object value is a string
Useful for user functions.

public final
OpenCReport\Result::is_string(): bool;

12.9.7. Detect whether result object value is a number
Useful for user functions.

public final
OpenCReport\Result::is_number(): bool;

12.9.8. Get string value of a result object
Useful for user functions.

public final
OpenCReport\Result::get_string(): ?string;

12.9.9. Get numeric value of a result object as a string
Useful for user functions. The method may optionally use a format string to specify the number of
decimal digits. See MPFR format strings2. The returned value may be used with BC Math3 in PHP or
(if the precision is small enough) converted to double or long.

public final

2 https://www.mpfr.org/mpfr-current/mpfr.html#Format-String
3 https://www.php.net/manual/en/book.bc.php

170

https://www.mpfr.org/mpfr-current/mpfr.html#Format-String
https://www.php.net/manual/en/book.bc.php
https://www.mpfr.org/mpfr-current/mpfr.html#Format-String
https://www.php.net/manual/en/book.bc.php

PHP language API reference

OpenCReport\Result::get_number(?string $format): ?string;

12.10. The OpenCReport\Part class
class OpenCReport\Part {
 public final get_next():
 ?OpenCReport\Part;

 public final row_new():
 OpenCReport\Row;

 public final row_get_first():
 ?OpenCReport\Row;

 public final add_iteration_cb(
 string $callback): void;

 public final equals(
 OpenCReport\Part $part): bool;

 public final set_iterations(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_iterations():
 ?OpenCReport\Expr;

 public final set_font_name(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_font_name():
 ?OpenCReport\Expr;

 public final set_font_size(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_font_size():
 ?OpenCReport\Expr;

 public final set_paper(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_paper():
 ?OpenCReport\Expr;

 public final set_orientation(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_orientation():
 ?OpenCReport\Expr;

 public final set_top_margin(
 ?string $expr_string = null):

171

PHP language API reference

 ?OpenCReport\Expr;

 public final get_top_margin():
 ?OpenCReport\Expr;

 public final set_bottom_margin(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_bottom_margin():
 ?OpenCReport\Expr;

 public final set_left_margin(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_left_margin():
 ?OpenCReport\Expr;

 public final set_right_margin(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_right_margin():
 ?OpenCReport\Expr;

 public final set_suppress(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_suppress():
 ?OpenCReport\Expr;

 public final set_suppress_pageheader_firstpage(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_suppress_pageheader_firstpage():
 ?OpenCReport\Expr;

 public final page_header():
 ?OpenCReport\Output;

 public final page_header_set_report(
 OpenCReport\Report $report):
 void;

 public final page_footer():
 ?OpenCReport\Output;

 public final page_footer_set_report(
 OpenCReport\Report $report):
 void;
}

172

PHP language API reference

12.10.1. Get the next report part
Get the next object in the chain of report parts. This method may only be used on an object created with
OpenCReport::part_get_first(), i.e. one that was internally marked as an iterator object.

public final
OpenCReport\Part::get_next():
 ?OpenCReport\Part;

12.10.2. Create a new report part row
For class methods of OpenCReport\Row, see Section 12.11

public final
OpenCReport\Part::row_new():
 OpenCReport\Row;

12.10.3. Get the first report part row
Get the first part row from the part. The object is marked internally as an iterator. For class methods
of OpenCReport\Row, see Section 12.11

public final
OpenCReport\Part::row_get_first():
 ?OpenCReport\Row;

12.10.4. Add iteration callback for the part
Add an "iteration done" event callback for the part object.

public final
OpenCReport\Part::add_iteration_cb(
 string $callback): void;

12.10.5. Check whether two parts are identical
Check whether two part objects refer to the same internal part structure of the report. Used by unit tests.

public final
OpenCReport\Part::equals(
 OpenCReport\Part $part): bool;

12.10.6. Set or get number of part iterations
Set the number of iterations for the part. The expression must evaluate to a numeric (integer) value.
The part and all of its subsections will be calculated and rendered this many times. Default is 1.

public final
OpenCReport\Part::set_iterations(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Part::get_iterations():
 ?OpenCReport\Expr;

173

PHP language API reference

12.10.7. Set or get part font name
public final
OpenCReport\Part::set_font_name(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Part::get_font_name():
 ?OpenCReport\Expr;

12.10.8. Set or get part font size
public final
OpenCReport\Part::set_font_size(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Part::get_font_size():
 ?OpenCReport\Expr;

12.10.9. Set or get paper type
public final
OpenCReport\Part::set_paper(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Part::get_paper():
 ?OpenCReport\Expr;

12.10.10. Set or get part orientation
The expression must evaluate to a string value. The possible values are portrait and landscape.
Default is portrait.

public final
OpenCReport\Part::set_orientation(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Part::get_orientation():
 ?OpenCReport\Expr;

12.10.11. Set or get part top margin
public final
OpenCReport\Part::set_top_margin(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Part::get_top_margin():
 ?OpenCReport\Expr;

174

PHP language API reference

12.10.12. Set or get part bottom margin
public final
OpenCReport\Part::set_bottom_margin(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Part::get_bottom_margin():
 ?OpenCReport\Expr;

12.10.13. Set or get part left margin
public final
OpenCReport\Part::set_left_margin(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Part::get_left_margin():
 ?OpenCReport\Expr;

12.10.14. Set or get part right margin
public final
OpenCReport\Part::set_right_margin(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Part::get_right_margin():
 ?OpenCReport\Expr;

12.10.15. Set or get part suppression
Set whether the part is suppressed, i.e. all its subsections are omitted from calculating and rendering.
Default is false.

public final
OpenCReport\Part::set_suppress(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Part::get_suppress():
 ?OpenCReport\Expr;

12.10.16. Set or get suppression of the page header on
the first page

Set whether the page header of the part is suppressed on the first page. The expression must evaluate
to a numeric value, which is treated as a boolean (i.e. 0 or non-0). Default is false.

public final
OpenCReport\Part::set_suppress_pageheader_firstpage(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

175

PHP language API reference

public final
OpenCReport\Part::set_suppress_pageheader_firstpage():
 ?OpenCReport\Expr;

12.10.17. Get the part's page header
Get the part's page header <Output> section. See Section 12.16 and Output node.

public final
OpenCReport\Part::page_header():
 ?OpenCReport\Output;

12.10.18. Set the report object for the part's page
header

Set the report object for the part's page header. This will add the internal association between the
part's page header and the report, and expressions in the part page header may reference report query
column identifiers and report user variables. Therefore it is only recommended for single-part, single-
report reports.

public final
OpenCReport\Part::page_header_set_report(
 OpenCReport\Report $report):
 void;

12.10.19. Get the part's page footer
Get the part's page footer <Output> section. See Section 12.16 and Output node.

public final
OpenCReport\Part::page_footer():
 ?OpenCReport\Output;

12.10.20. Set the report object for the part's page
footer

Set the report object for the part's page footer. This will add the internal association between the part's
page footer and the report, and expressions in the part page footer may reference report query column
identifiers and report user variables. Therefore it is only recommended for single-part, single-report
reports.

public final
OpenCReport\Part::page_footer_set_report(
 OpenCReport\Report $report):
 void;

12.11. The OpenCReport\Row class
class OpenCReport\Row {
 public final get_next():
 ?OpenCReport\Row;

 public final column_new():
 OpenCReport\Column;

 public final column_get_first():

176

PHP language API reference

 ?OpenCReport\Column;

 public final set_suppress(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_suppress():
 ?OpenCReport\Expr;

 public final set_newpage(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_newpage():
 ?OpenCReport\Expr;

 public final set_layout(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final set_layout():
 ?OpenCReport\Expr;
}

12.11.1. Get the next part row
Get the next object in the chain of part rows. This method may only be used on an object created with
OpenCReport\Part::row_get_first(), i.e. one that was internally marked as an iterator
object.

public final
OpenCReport\Row::get_next():
 ?OpenCReport\Row;

12.11.2. Create a new part column for the row
For class methods of OpenCReport\Column, see Section 12.12.

public final
OpenCReport\Row::column_new():
 OpenCReport\Column;

12.11.3. Get first column of a part row
Get the first column from the part row. The object is marked internally as an iterator. For class methods
of OpenCReport\Column, see Section 12.12

public final
OpenCReport\Row::column_get_first():
 ?OpenCReport\Column;

12.11.4. Set or get suppression for the part row
public final
OpenCReport\Row:set_suppress(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

177

PHP language API reference

public final
OpenCReport\Row:get_suppress():
 ?OpenCReport\Expr;

12.11.5. Set or get new page for the part row
When set to yes, the part row will start on a new page.

public final
OpenCReport\Row:set_newpage(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Row:get_newpage():
 ?OpenCReport\Expr;

12.11.6. Set or get layout type for the part row
public final
OpenCReport\Row::set_layout(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Row::set_layout():
 ?OpenCReport\Expr;

12.12. The OpenCReport\Column class
class OpenCReport\Column {
 public final get_next():
 ?OpenCReport\Column;

 public final report_new():
 OpenCReport\Report;

 public final report_get_first():
 ?OpenCReport\Report;

 public final set_suppress(
 ?string $expr_string = null):
 ??OpenCReport\Expr;

 public final get_suppress():
 ??OpenCReport\Expr;

 public final set_width(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_width():
 ?OpenCReport\Expr;

 public final set_width(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

178

PHP language API reference

 public final get_width():
 ?OpenCReport\Expr;

 public final set_border_width(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_border_width():
 ?OpenCReport\Expr;

 public final set_border_color(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_border_color():
 ?OpenCReport\Expr;

 public final set_detail_columns(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_detail_columns():
 ?OpenCReport\Expr;

 public final set_column_padding(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_column_padding():
 ?OpenCReport\Expr;
}

12.12.1. Get next column
Get the next object in the chain of part columns. This method may only be used on an object created
with OpenCReport\Row::column_get_first(), i.e. one that was internally marked as an
iterator object.

public final
OpenCReport\Column::get_next():
 ?OpenCReport\Column;

12.12.2. Create a new report in the column
For class methods of OpenCReport\Report, see Section 12.13.

public final
OpenCReport\Column::report_new():
 OpenCReport\Report;

12.12.3. Get first report of a part column
Get the first report from the part column. The object is marked internally as an iterator. For class
methods of OpenCReport\Report, see Section 12.13

public final
OpenCReport\Column::report_get_first():

179

PHP language API reference

 ?OpenCReport\Report;

12.12.4. Set or get part column suppression
public final
OpenCReport\Column::set_suppress(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Column::get_suppress():
 ?OpenCReport\Expr;

12.12.5. Set or get part column width
Set the width of the whole part column. If an inner report is wider than the column width, it's rendering
is truncated.

public final
OpenCReport\Column::set_width(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Column::get_width():
 ?OpenCReport\Expr;

12.12.6. Set or get part column height
Set the part column height. During report execution, the column height is calculated for rendering.
Inner reports and the height of their lines that would be rendered are added. New lines of a report that
would exceed the part column height are not rendered and the report is rendered partially. The data
shown in rendered lines are identical in both cases, whether or not the pre-set height is set. When the
set column height is reached, further inner reports are not rendered. Default is unset, i.e. every inner
report is fully rendered.

public final
OpenCReport\Column::set_height(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Column::get_height():
 ?OpenCReport\Expr;

12.12.7. Set or get border width
Set the border width around the part column. The width is in points (1/72 inches). Default is 0, i.e. a
border is not rendered around the part column.

public final
OpenCReport\Column::set_border_width(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Column::get_border_width():
 ?OpenCReport\Expr;

180

PHP language API reference

12.12.8. Set or get border color
Set the border color around the part column. Only used if the border width is set.

public final
OpenCReport\Column::set_border_color(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Column::get_border_color():
 ?OpenCReport\Expr;

12.12.9. Set or get number of detail columns
Set the number of detail columns in the part column. Inner reports inside the part column may be
narrow and visually wasteful with empty areas on the page. In this case, when a page break would
occur, a column break would occur instead. Only reaching the last column would result in a page break.

public final
OpenCReport\Column::set_detail_columns(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Column::get_detail_columns():
 ?OpenCReport\Expr;

12.12.10. Set or get column padding
Set the padding between detail columns. It is used if the number of detail columns is greater than 1.

public final
OpenCReport\Column::set_column_padding(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Column::get_column_padding():
 ?OpenCReport\Expr;

12.13. The OpenCReport\Report class
class OpenCReport\Report {
 public final get_next():
 ?OpenCReport\Report;

 public final variable_new(
 long $variable_type,
 string $name,
 string $expr,
 ?string $ignoreexpr = null,
 ?string $reset_on_break_name = null,
 ?bool $precalculate = false):
 OpenCReport\Variable;

 public final variable_new_full(
 long $result_type,

181

PHP language API reference

 string $name,
 ?string $baseexpr = null,
 ?string $ignoreexpr = null,
 ?string $intermedexpr = null,
 ?string $intermed2expr = null,
 ?string $resultexpr = null,
 ?string $reset_on_break_name = null,
 ?bool $precalculate = fals):
 OpenCReport\Variable;

 public full variable_get_first():
 ?OpenCReport\Variable;

 public final expr_parse(
 string $expr_string):
 ?OpenCReport\Expr;

 public final expr_error(): ?string;

 public final resolve_variables(): void;

 public final evaluate_variables(): void;

 public final break_new(
 ?string $name):
 OpenCReport\ReportBreak;

 public final break_get(
 string $break_name):
 OpenCReport\ReportBreak;

 public final break_get_first():
 ?OpenCReport\ReportBreak;

 public final resolve_breaks(): void;

 public final get_query_rownum(): long;

 public final add_start_cb(
 string $callback): void;

 public final add_done_cb(
 string $callback): void;

 public final add_new_row_cb(
 string $callback): void;

 public final add_iteration_cb(
 string $callback): void;

 public final add_precalculation_done_cb(
 string $callback): void;

 public final equals(
 OpenCReport\Report $report):
 bool;

 public final set_main_query(

182

PHP language API reference

 OpenCReport\Query $query): void;

 public final set_main_query_by_name(
 string $query_name): void;

 public final set_suppress(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_suppress():
 ?OpenCReport\Expr;

 public final set_iterations(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_iterations():
 ?OpenCReport\Expr;

 public final set_font_name(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_font_name():
 ?OpenCReport\Expr;

 public final set_font_size(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_font_size():
 ?OpenCReport\Expr;

 public final set_height(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_height():
 ?OpenCReport\Expr;

 public final set_fieldheader_priority(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_fieldheader_priority():
 ?OpenCReport\Expr;

 public final nodata(): OpenCReport\Output;
 public final header(): OpenCReport\Output;
 public final footer(): OpenCReport\Output;
 public final field_header(): OpenCReport\Output;
 public final field_details(): OpenCReport\Output;
}

183

PHP language API reference

12.13.1. Get the next report
Get the next object in the chain of reports. This method may only be used on an object created with
OpenCReport\Column::report_get_first(), i.e. one that was internally marked as an
iterator object.

public final
OpenCReport\Report::get_next():
 ?OpenCReport\Report;

12.13.2. Create a new report variable
Create a new variable of the specified type and name, using the expression to produce the value.
Optionally a break name (see Report breaks) may be specified, where, upon a break change, the
variable is reset. See Report variables. For class methods of OpenCReport\Variable, see
Section 12.14.

public const OpenCReport\Report::VARIABLE_EXPRESSION;
public const OpenCReport\Report::VARIABLE_COUNT;
public const OpenCReport\Report::VARIABLE_COUNTALL;
public const OpenCReport\Report::VARIABLE_SUM;
public const OpenCReport\Report::VARIABLE_AVERAGE;
public const OpenCReport\Report::VARIABLE_AVERAGEALL;
public const OpenCReport\Report::VARIABLE_LOWEST;
public const OpenCReport\Report::VARIABLE_HIGHEST;

public final
OpenCReport\Report::variable_new(
 long $variable_type,
 string $name,
 string $expr,
 ?string $ignoreexpr,
 ?string $reset_on_break_name = null,
 ?bool $precalculate = false):
 OpenCReport\Variable;

A precalculated variable's value (or set of values) is calculated during the precalculation phase of
report execution. When the report is being rendered, the precalculated values are used. This allows
using an end value in a header, e.g. a report header may contain a summary of bottom line values.
Similarly, break headers may show values that would otherwise be shown only in break footer sections
for variables that are reset on a break.

12.13.3. Create a new custom report variable
Create a new custom variable of the specified name, with total control over the base expression,
intermediary expression(s) and the result expression. Optionally a break name (see Report breaks)
may be specified, where, upon a break change, the variable is reset. See Report variables. For class
methods of OpenCReport\Variable, see Section 12.14.

public final
OpenCReport\Report::variable_new_full(
 long $result_type,
 string $name,
 ?string $baseexpr = null,
 ?string $ignoreexpr,
 ?string $intermedexpr = null,
 ?string $intermed2expr = null,
 ?string $resultexpr = null,

184

PHP language API reference

 ?string $reset_on_break_name = null,
 ?bool $precalculate = false):
 OpenCReport\Variable;

12.13.4. Get the first variable of a report
Get the first variable object in the chain of variables of the report. The object is marked internally as
an iterator, so OpenCReport\Variable::get_next() may be used on it.

public final
OpenCReport\Report::variable_get_first():
 ?OpenCReport\Variable;

12.13.5. Parse and expression for the report
Parse and expression for the report. If the expression fails to parse, the method returns NULL and the
error is found in OpenCReport\Report::expr_parse().

public final
OpenCReport\Report::expr_parse(
 string $expr_string):
 ?OpenCReport\Expr;

The main difference between OpenCReport::expr_parse() (see Section 12.4.4.1) and this
method is that the former may not reference a report variable identifier. Since the expression for
the former method is not associated with a report, report variable identifiers in the expression may
not be resolved. The same applies to any function that is related to report internal details, e.g. the
brrownum() function (see Break row number function: the expression is not associated with a report
with breaks, the break name will not be found.

12.13.6. Get the error after a failed expression parsing
public final
OpenCReport\Report::expr_error(): ?string;

12.13.7. Resolve variables of the report
Resolve all variables of the report. This method may be useful to implement a custom report executor.
The equivalent C function is used internally. This method is used by unit tests.

public final
OpenCReport\Report::resolve_variables(): void;

12.13.8. Evaluate variables of the report
This method may be useful to implement a custom report executor. The equivalent C function is used
internally. This method is used by unit tests.

public final
OpenCReport\Report::evaluate_variables(): void;

12.13.9. Create a new report break
Create a new report break. A break is the basis for grouping data. See Report breaks. For the class
methods of OpenCReport\ReportBreak, see Section 12.15.

public final

185

PHP language API reference

OpenCReport\Report::break_new(
 ?string $name):
 OpenCReport\ReportBreak;

12.13.10. Get a report break by its name
Get a previously created break using its name. The object that's created this way is not marked as an
iterator, so OpenCReport\ReportBreak::get_next() may not be used on it.

public final
OpenCReport\Report::break_get(
 string $break_name):
 OpenCReport\ReportBreak;

12.13.11. Get the first report break
Get the first break object in the chain of breaks of the report. The object is marked internally as an
iterator, so OpenCReport\ReportBreak::get_next() may be used on it.

public final
OpenCReport\Report::break_get_first():
 ?OpenCReport\ReportBreak;

12.13.12. Resolve breaks of the report
Resolve all breaks of the report. It may be useful to create a custom report executor. The equivalent
C function is used internally. Used by unit tests.

public final
OpenCReport\Report::resolve_breaks(): void;

12.13.13. Get the current row number of the main
query

Get the current row number of the report's main query. Used by unit tests.

public final
OpenCReport\Report::get_query_rownum(): long;

12.13.14. Add a "report start" callback
Add a "report start" callback to the report. The callback is called when the report starts during report
execution.

public final
OpenCReport\Report::add_start_cb(
 string $callback): void;

The callback function interface must follow this:

function
my_callback(OpenCReport $o, OpenCReport\Report $r): void;

12.13.15. Add a "report done" callback
Add a "report done" callback to the report. The callback is called when the report is done during report
execution.

186

PHP language API reference

public final
OpenCReport\Report::add_done_cb(
 string $callback): void;

The callback function interface must follow this:

function
my_callback(OpenCReport $o, OpenCReport\Report $r): void;

12.13.16. Add a "new row" callback
Add a "new row" callback to the report. The callback is called for every data row for the report during
report execution.

public final
OpenCReport\Report::add_new_row_cb(
 string $callback): void;

The callback function interface must follow this:

function
my_callback(OpenCReport $o, OpenCReport\Report $r): void;

12.13.17. Add an "iteration done" callback
Add an "iteration done" callback to the report. The callback is called after every iteration for the report
during report execution.

public final
OpenCReport\Report::add_iteration_cb(
 string $callback): void;

The callback function interface must follow this:

function
my_callback(OpenCReport $o, OpenCReport\Report $r): void;

12.13.18. Add a "precalculation done" callback
Add a "precalculation done" callback to the report. The callback is called after precalculation is done
for the report during report execution.

public final
OpenCReport\Report::add_precalculation_done_cb(
 string $callback): void;

The callback function interface must follow this:

function
my_callback(OpenCReport $o, OpenCReport\Report $r): void;

12.13.19. Check whether two report objects are the
same

Check whether the main object's internal C representation is the same as the passed-in object's internal
representation.

187

PHP language API reference

public final
OpenCReport\Report::equals(
 OpenCReport\Report $report):
 bool;

12.13.20. Set the report's main query
Set the report's main query to the passed-in OpenCReport\Query.

public final
OpenCReport\Report::set_main_query(
 OpenCReport\Query $query): void;

12.13.21. Set the report's main query by name
Set the report's main query using the query name.

public final
OpenCReport\Report::set_main_query_by_name(
 string $query_name): void;

12.13.22. Set or get the report suppression
Set the report's suppression. The expression must evaluate too a numeric value. It's zero or non-zero
value will decide whether the report is suppressed, i.e. not calculated and not rendered in the output.

public final
OpenCReport\Report::public final set_suppress(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Report::public final get_suppress():
 ?OpenCReport\Expr;

12.13.23. Set or get number of iterations for the report
Set the number of iterations for the report. The report will be calculated and rendered this many times.
Default is 1.

public final
OpenCReport\Report::set_iterations(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Report::get_iterations():
 ?OpenCReport\Expr;

12.13.24. Set or get the font name for the report
Set the font name for the report. The report font name will be used for any child elements that don't
specify the font name themselves.

public final
OpenCReport\Report::set_font_name(

188

PHP language API reference

 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Report::get_font_name():
 ?OpenCReport\Expr;

12.13.25. Set or get the font size for the report
Set the font size for the report. The report font size will be used for any child elements that don't
specify the font size themselves.

public final
OpenCReport\Report::set_font_size(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Report::get_font_size():
 ?OpenCReport\Expr;

12.13.26. Set or get the report height
Set the report height. During report execution, the report height is calculated for rendering. Height of
lines that would be rendered are added. New lines that would exceed the report height are not rendered.
The data shown in rendered lines are identical in both cased, whether or not the report height is set.
Default is unset, i.e. every line is rendered and the number of lines determine the report height,

public final
OpenCReport\Report::set_height(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Report::get_height():
 ?OpenCReport\Expr;

12.13.27. Set or get the report's field header prioroty
Set the report's field header priority. See Report field header priority attribute for explanation.

public final
OpenCReport\Report::set_fieldheader_priority(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Report::get_fieldheader_priority():
 ?OpenCReport\Expr;

12.13.28. Get output sections of the report
Get the output sections of the report. See NoData node, Report header, Report footer and Detail node.
For class methods of , see Section 12.16.

public final
OpenCReport\Report::nodata(): OpenCReport\Output;

189

PHP language API reference

public final
OpenCReport\Report::header(): OpenCReport\Output;

public final
OpenCReport\Report::footer(): OpenCReport\Output;

public final
OpenCReport\Report::field_header(): OpenCReport\Output;

public final
OpenCReport\Report::field_details(): OpenCReport\Output;

12.14. The OpenCReport\Variable class
class OpenCReport\Variable {
 public final baseexpr():
 ?OpenCReport\Expr;

 public final ignoreexpr():
 ?OpenCReport\Expr;

 public final intermedexpr():
 ?OpenCReport\Expr;

 public final intermed2expr():
 ?OpenCReport\Expr;

 public final resultexpr():
 ?OpenCReport\Expr;

 public final get_type(): long;

 public final get_precalculate(): bool;

 public final resolve(): void;
 public final eval(): void;

 public final get_next():
 ?OpenCReport\Variable;
}

12.14.1. Get the base expression of a variable
Used by unit tests. For class methods of OpenCReport\Expr, see The OpenCReport\Expr class

public final
OpenCReport\Variable::baseexpr():
 ?OpenCReport\Expr;

12.14.2. Get the ignore expression of a variable
Used by unit tests. For class methods of OpenCReport\Expr, see The OpenCReport\Expr class

public final
OpenCReport\Variable::ignoreexpr():
 ?OpenCReport\Expr;

190

PHP language API reference

12.14.3. Get the first intermediary expression of a
variable

Used by unit tests. For class methods of OpenCReport\Expr, see The OpenCReport\Expr class

public final
OpenCReport\Variable::intermedexpr():
 ?OpenCReport\Expr;

12.14.4. Get the second intermediary expression of a
variable

Used by unit tests. For class methods of OpenCReport\Expr, see The OpenCReport\Expr class

public final
OpenCReport\Variable::intermed2expr():
 ?OpenCReport\Expr;

12.14.5. Get the result expression of a variable
Used by unit tests. For class methods of OpenCReport\Expr, see The OpenCReport\Expr class

public final
OpenCReport\Variable::resultexpr():
 ?OpenCReport\Expr;

12.14.6. Get the variable type
public final
OpenCReport\Variable::get_type(): long;

12.14.7. Get the variable precalculated flag
Get the variable's precalculated flag.

public final
OpenCReport\Variable::get_precalculate(): bool;

12.14.8. Resolve expressions of a variable
Resolve the base, intermediary and result expressions of a single variable. Used by unit tests.

public final
OpenCReport\Variable::resolve(): void;

12.14.9. Evaluate expressions of a variable
Evaluate the base, intermediary and result expressions of a single variable. Used by unit tests.

public final
OpenCReport\Variable::eval(): void;

12.14.10. Get the next variable of the same report
Get the next variable object from the chain of variables in the report this variable belongs to. This
method may only be called on an object that was marked as an iterator, i.e. one that was created by
OpenCReport\Report::variable_get_first().

191

PHP language API reference

public final
OpenCReport\Variable::get_next():
 ?OpenCReport\Variable;

12.15. The OpenCReport\ReportBreak class
class OpenCReport\ReportBreak {
 public final get_next():
 ?OpenCReport\ReportBreak;

 public final breakfield_add(
 OpenCReport\Expr $breakfield_expr):
 void;

 public final check_fields(): bool;

 public final reset_vars(): void;

 public final add_trigger_cb(
 ?string $callback):
 void;

 public final name(): string;

 public final header(): OpenCReport\Output;
 public final footer(): OpenCReport\Output;
}

12.15.1. Get next break
Get the next break object from the chain of breaks in the report this break belongs to. This method may
only be called on an object that was marked as an iterator, i.e. one that was created by OpenCReport
\Report::break_get_first().

public final
OpenCReport\ReportBreak::get_next():
 ?OpenCReport\ReportBreak;

12.15.2. Add a breakfield to a break
Add a breakfield to a break. A break may consists of multiple breakfields. A break triggers if any of
the breakfields change from one data line to another.

public final
OpenCReport\ReportBreak::breakfield_add(
 OpenCReport\Expr $breakfield_expr):
 void;

12.15.3. Check breakfields
Check breakfields of a break. This method returns true if the break triggers, i.e. field values for the
current data row do not match the values for the previous data row. It also the triggers for the first row
when there is no previous row. It is used internally by the report executor and also used by unit tests.
It may be useful to implement a custom report executor.

public final

192

PHP language API reference

OpenCReport\ReportBreak::check_fields(): bool;

12.15.4. Reset variables associated with a break
Reset report variables associated with a break. Such variables were created with specifying the "reset
on break" break name. These variables restart from their initial values. It is used internally by the
report executor and also used by unit tests. It may be useful to implement a custom report executor.

public final
OpenCReport\ReportBreak::reset_vars(): void;

12.15.5. Add a "trigger" callback to a break
Add a "trigger" callback to the break.

public final
OpenCReport\ReportBreak::add_trigger_cb(
 ?string $callback):
 void;

12.15.6. Get the name of a break
Get the name of a break. It may be useful if the breaks were added via a report XML descriptor but
variables are added afterwards from code.

public final
OpenCReport\ReportBreak::name(): string;

12.15.7. Get output sections of a break
Get the header and footer sections of a break. See also BreakHeader and BreakFooter. For class
methods of OpenCReport\Output, see Section 12.16

public final
OpenCReport\ReportBreak::header(): OpenCReport\Output;

public final
OpenCReport\ReportBreak::footer(): OpenCReport\Output;

12.16. The OpenCReport\Output class
class OpenCReport\Output {
 public final set_suppress(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_suppress():
 ?OpenCReport\Expr;

 public final add_line():
 ?OpenCReport\Line;

 public final add_hline():
 ?OpenCReport\HorizontalLine;

 public final add_image():

193

PHP language API reference

 ?OpenCReport\Image;

 public final add_image_end(): void;

 public final get_first_element():
 ?OpenCReport\OutputElement;
}

12.16.1. Set or get suppression of the output section
Set suppression of the output section. The expression must evaluate to a numeric value which will be
treated as a boolean, i.e. 0 or non-0. The default is false, i.e. the section is not suppressed.

public final
OpenCReport\Output::set_suppress(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Output::get_suppress():
 ?OpenCReport\Expr;

12.16.2. Add a (text) line
Add a (text) line to the output section. A line may have children elements, like OpenCReport\Text,
OpenCReport\Image and OpenCReport\Barcode. (See Section 12.20, Section 12.19 and
Section 12.21.) For class methods of OpenCReport\Line, see Section 12.17.

public final
OpenCReport\Output::add_line():
 ?OpenCReport\Line;

12.16.3. Add a horizontal line
Add a horizontal line (a visual separator) to the output section. For class methods of OpenCReport
\HorizontalLine, see Section 12.17.

public final
OpenCReport\Output::add_hline():
 ?OpenCReport\HorizontalLine;

12.16.4. Add an image
Add an image to the output section. The image will indent every subsequent elements in the section,
except other images and barcodes (see below). For class methods of OpenCReport\Image, see
Section 12.17.

public final
OpenCReport\Output::add_image():
 ?OpenCReport\Image;

12.16.5. Add a barcode
Add a barcode to the output section. The barcode behaves just like an image, i.e. it will indent
every subsequent elements in the section, except other images and barcodes. For class methods of
OpenCReport\Barcode, see Section 12.17.

194

PHP language API reference

public final
OpenCReport\Output::add_barcode():
 ?OpenCReport\Barcode;

12.16.6. Add an image end marker

Add an image end marker to the output section. Subsequent elements in the section won't be indented
and will be drawn vertically below the previous image.

public final
OpenCReport\Output::add_image_end(): void;

12.16.7. Get the first output element

Get the first output layout element. It starts an iterator for the output, and return the first element via
an OpenCReport\OutputElement object, or null if there is none. See also Section 12.22.

public final
OpenCReport\Output::get_first_element():
 ?OpenCReport\OutputElement;

12.17. The OpenCReport\Line class
class OpenCReport\Line {
 public final set_font_name(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_font_name():
 ?OpenCReport\Expr;

 public final set_font_size(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_font_size():
 ?OpenCReport\Expr;

 public final set_bold(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_bold():
 ?OpenCReport\Expr;

 public final set_italic(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_italic():
 ?OpenCReport\Expr;

 public final set_suppress(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

195

PHP language API reference

 public final get_suppress():
 ?OpenCReport\Expr;

 public final set_color(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_color():
 ?OpenCReport\Expr;

 public final set_bgcolor(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_bgcolor():
 ?OpenCReport\Expr;

 public final add_text():
 ?OpenCReport\Text;

 public final add_image():
 ?OpenCReport\Image;

 public final add_barcode():
 ?OpenCReport\Barcode;

 public final get_first_element():
 ?OpenCReport\LineElement;
}

12.17.1. Set or get the font name for the line
Set the font name for the line. This font will be used for child text elements that don't set the font
name themselves.

public final
OpenCReport\Line::set_font_name(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Line::get_font_name():
 ?OpenCReport\Expr;

12.17.2. Set or get the font size for the line
Set the font size for the line. This font size will be used for child text elements that don't set the font
size themselves.

public final
OpenCReport\Line::set_font_size(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Line::get_font_size():
 ?OpenCReport\Expr;

196

PHP language API reference

12.17.3. Set or get the font's bold flag for the line
Set the font's bold flag for the line. The expression must evaluate to a numeric value that is treated as
a boolean, i.e. 0 or non-0. Default is false. This bold flag value will be used for child text elements
that don't set it themselves.

public final
OpenCReport\Line::set_bold(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Line::get_bold():
 ?OpenCReport\Expr;

12.17.4. Set or get the font's italic flag for the line
Set the font's italic flag for the line. The expression must evaluate to a numeric value that is treated as
a boolean, i.e. 0 or non-0. Default is false. This italic flag value will be used for child text elements
that don't set it themselves.

public final
OpenCReport\Line::set_italic(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Line::get_italic():
 ?OpenCReport\Expr;

12.17.5. Set or get line suppression
Set the suppression flag for the line. The expression must evaluate to a numeric value that is treated
as a boolean, i.e. 0 or non-0. Default is false, i.e. not suppressed. When set to a non-0 value (i.e.
true), the whole line with all its child elements (text or image) will be suppressed, i.e. not rendered.

public final
OpenCReport\Line::set_suppress(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Line::set_suppress():
 ?OpenCReport\Expr;

12.17.6. Set or get text color for the line
Set text color for the line. See Color specification. This text color will be used for child elements that
don't set the text color themselves.

public final
OpenCReport\Line::set_color(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Line::get_color():

197

PHP language API reference

 ?OpenCReport\Expr;

12.17.7. Set or get background color for the line
Set background color for the line. See Color specification. This background color will be used for
child elements that don't set the background color themselves.

public final
OpenCReport\Line::set_bgcolor(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Line::get_bgcolor():
 ?OpenCReport\Expr;

12.17.8. Add a text element to the line
Add a child text element to the line. For class methods of OpenCReport\Text, see Section 12.20.

public final
OpenCReport\Line::add_text():
 ?OpenCReport\Text;

12.17.9. Add an image element to the line
Add a child image element to the line. For class methods of OpenCReport\Image, see
Section 12.19.

public final
OpenCReport\Line::add_image():
 ?OpenCReport\Image;

12.17.10. Get the first line element
Get the first element of the line. It starts an iterator for the output, and return the first element via an
OpenCReport\LineElement object, or null if there is none. See also Section 12.23.

public final
OpenCReport\Line::get_first_element():
 ?OpenCReport\LineElement;

12.18. The OpenCReport\HorizontalLine class
class OpenCReport\HorizontalLine {
 public final set_size(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_size():
 ?OpenCReport\Expr;

 public final set_alignment(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_alignment():

198

PHP language API reference

 ?OpenCReport\Expr;

 public final set_indentation(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_indentation():
 ?OpenCReport\Expr;

 public final set_length(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_length():
 ?OpenCReport\Expr;

 public final set_font_size(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_font_size():
 ?OpenCReport\Expr;

 public final set_suppress(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_suppress():
 ?OpenCReport\Expr;

 public final set_color(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_color():
 ?OpenCReport\Expr;
}

12.18.1. Set the line width
Set or get the line width in points. Also see Section 8.18.1.1

public final
OpenCReport\HorizontalLine::set_size(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\HorizontalLine::get_size():
 ?OpenCReport\Expr;

12.18.2. Set or get the line alignment
Set the line alignment. Also see Section 8.18.1.2

public final
OpenCReport\HorizontalLine::set_alignment(
 ?string $expr_string = null):

199

PHP language API reference

 ?OpenCReport\Expr;

public final
OpenCReport\HorizontalLine::get_alignment():
 ?OpenCReport\Expr;

12.18.3. Set or get the line indentation
Set the line indentation, i.e. starting point to the right of the left side of the report. Also see
Section 8.18.1.3

public final
OpenCReport\HorizontalLine::set_indentation(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\HorizontalLine::get_indentation():
 ?OpenCReport\Expr;

12.18.4. Set or get the line length
Set the line length. See HorizontalLine length and Size unit attribute.

public final
OpenCReport\HorizontalLine::set_length(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\HorizontalLine::get_length():
 ?OpenCReport\Expr;

12.18.5. Set or get the line's font size
Set the line's font size. This font size is used in calculating the line length. See HorizontalLine font size

public final
OpenCReport\HorizontalLine::set_font_size(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\HorizontalLine::get_font_size():
 ?OpenCReport\Expr;

12.18.6. Set or get the suppression flag for the line
Set the suppression flag for the line. The expression must evaluate to a numeric value that is treated
as a boolean, i.e. 0 or non-0. When set to true, the line is not rendered. Default is false.

public final
OpenCReport\HorizontalLine::set_suppress(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final

200

PHP language API reference

OpenCReport\HorizontalLine::get_suppress():
 ?OpenCReport\Expr;

12.18.7. Set or get the line color
Set the line color. See Color specification.

public final
OpenCReport\HorizontalLine::set_color(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\HorizontalLine::get_color():
 ?OpenCReport\Expr;

12.19. The OpenCReport\Image class
class OpenCReport\Image {
 public final set_value(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_value():
 ?OpenCReport\Expr;

 public final set_suppress(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_suppress():
 ?OpenCReport\Expr;

 public final set_type(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_type():
 ?OpenCReport\Expr;

 public final set_width(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_width():
 ?OpenCReport\Expr;

 public final set_height(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_height():
 ?OpenCReport\Expr;

 public final set_alignment(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

201

PHP language API reference

 public final get_alignment():
 ?OpenCReport\Expr;

 public final set_bgcolor(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_bgcolor():
 ?OpenCReport\Expr;

 public final set_text_width(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_text_width():
 ?OpenCReport\Expr;
}

12.19.1. Set or get the file name of the image
Set the file name of the image. The file name may be and absolute path, relative
to the work directory of the application, or relative to any of the paths added with
OpenCReport::add_search_path(). (See Section 12.4.10.1.)

public final
OpenCReport\Image::set_value(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Image::get_value():
 ?OpenCReport\Expr;

12.19.2. Set or get the suppression flag for the image
Set the suppression flag for the image. The expression must evaluate to a numeric value that is treated
as a boolean, i.e. 0 or non-0. Default is false.

public final
OpenCReport\Image::set_suppress(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Image::get_suppress():
 ?OpenCReport\Expr;

12.19.3. Set or get the image type
Set the image file type. Usually it's auto-detected and not needed.

public final
OpenCReport\Image::set_type(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final

202

PHP language API reference

OpenCReport\Image::get_type():
 ?OpenCReport\Expr;

12.19.4. Set or get the image width
Set the image width. This setting is used when the image element is a direct child of an output section.
See Section 8.19.1.4.

public final
OpenCReport\Image::set_width(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Image::get_width():
 ?OpenCReport\Expr;

12.19.5. Set or get the image height
Set the image height. This setting is used when the image element is a direct child of an output section.
See Section 8.19.1.4.

public final
OpenCReport\Image::set_height(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Image::get_height():
 ?OpenCReport\Expr;

12.19.6. Set or get the image alignment
Set the image alignment. This setting is used when the image element is a child of a text line. See
Section 8.19.1.8.

public final
OpenCReport\Image::set_alignment(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Image::get_alignment():
 ?OpenCReport\Expr;

12.19.7. Set or get the image background color
Set the image background color. This setting is used when the image element is a child of a text line.
See Section 8.19.1.7.

public final
OpenCReport\Image::set_bgcolor(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Image::get_bgcolor():
 ?OpenCReport\Expr;

203

PHP language API reference

12.19.8. Set or get the image "text width"
Set the image "text width". This setting is used when the image element is a child of a text line. See
Section 8.19.1.6.

public final
OpenCReport\Image::set_text_width(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Image::get_text_width():
 ?OpenCReport\Expr;

12.20. The OpenCReport\Text class
class OpenCReport\Text {
 public final set_value_string(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final set_value_expr(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_value():
 ?OpenCReport\Expr;

 public final set_value_delayed(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_value_delayed():
 ?OpenCReport\Expr;

 public final set_format(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_format():
 ?OpenCReport\Expr;

 public final set_translate(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_translate():
 ?OpenCReport\Expr;

 public final set_width(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_width():
 ?OpenCReport\Expr;

 public final set_alignment(

204

PHP language API reference

 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_alignment():
 ?OpenCReport\Expr;

 public final set_color(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_color():
 ?OpenCReport\Expr;

 public final set_bgcolor(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_bgcolor():
 ?OpenCReport\Expr;

 public final set_font_name(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_font_name():
 ?OpenCReport\Expr;

 public final set_font_size(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_font_size():
 ?OpenCReport\Expr;

 public final set_bold(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_bold():
 ?OpenCReport\Expr;

 public final set_italic(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_italic():
 ?OpenCReport\Expr;

 public final set_link(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_link():
 ?OpenCReport\Expr;

 public final set_memo(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

205

PHP language API reference

 public final get_memo():
 ?OpenCReport\Expr;

 public final set_memo_hyphenate(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_memo_hyphenate():
 ?OpenCReport\Expr;

 public final set_memo_wrap_chars(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_memo_wrap_chars():
 ?OpenCReport\Expr;

 public final set_memo_max_lines(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_memo_max_lines():
 ?OpenCReport\Expr;
}

12.20.1. Set literal value
Set the literal value for the text element.

public final
OpenCReport\Text::set_value_string(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

12.20.2. Set or get expression value
Set the expression value for the text element. And expression may depend on data row values. See
Expressions.

public final
OpenCReport\Text::set_value_expr(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Text::get_value():
 ?OpenCReport\Expr;

12.20.3. Set or get delayed flag for the field expression
Set delayed flag for the field expression. When set to true, the field expression's last value is
calculated during the precalculation phase of executing the report and this precalculated value is used
during rendering the report.

public final
OpenCReport\Text::set_value_delayed(

206

PHP language API reference

 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Text::get_value_delayed():
 ?OpenCReport\Expr;

12.20.4. Set or get the format string for the field
expression

Set the format string for the field expression. This format string will be used instead of the default
formats for specific types. See Formatting data

public final
OpenCReport\Text::set_format(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Text::set_format():
 ?OpenCReport\Expr;

12.20.5. Set or get the translation flag for the field
expression

Set the translation flag for the field expression. When set to true, the field value will be translated
according to the locale and translation settings. See Section 12.4.2

public final
OpenCReport\Text::set_translate(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Text::get_translate():
 ?OpenCReport\Expr;

12.20.6. Set or get the field width
Set the field width. See Text element width

public final
OpenCReport\Text::set_width(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Text::get_width():
 ?OpenCReport\Expr;

12.20.7. Set or get the field alignment
Set the field alignment. See Text element alignment

public final

207

PHP language API reference

OpenCReport\Text::set_alignment(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Text::get_alignment():
 ?OpenCReport\Expr;

12.20.8. Set or get the field text color
Set the field text color. See Section 8.17.1.6

public final
OpenCReport\Text::set_color(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Text::get_color():
 ?OpenCReport\Expr;

12.20.9. Set or get the field background color
Set the field background color. See Section 8.17.1.7

public final
OpenCReport\Text::set_bgcolor(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Text::get_bgcolor():
 ?OpenCReport\Expr;

12.20.10. Set or get the field font name
Set the field font name. See Text element font name

public final
OpenCReport\Text::set_font_name(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Text::get_font_name():
 ?OpenCReport\Expr;

12.20.11. Set or get the field font size
Set the field font size. See Text element font size

public final
OpenCReport\Text::set_font_size(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

208

PHP language API reference

public final
OpenCReport\Text::get_font_size():
 ?OpenCReport\Expr;

12.20.12. Set or get the field's bold flag
Set the field's bold flag. See Section 8.17.1.10

public final
OpenCReport\Text::set_bold(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Text::get_bold():
 ?OpenCReport\Expr;

12.20.13. Set or get the field's italic flag
Set the field's italic flag. See Section 8.17.1.11

public final
OpenCReport\Text::set_italic(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Text::get_italic():
 ?OpenCReport\Expr;

12.20.14. Set or get the field's link
Set the field's link URL. When set, the text field becomes a link with the specified URL. See
Section 8.17.1.12

public final
OpenCReport\Text::set_link(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Text::get_link():
 ?OpenCReport\Expr;

12.20.15. Set or get the field's memo flag
Set the field's memo (multi-line text) flag. When set to true, the text field becomes a multi-line field.
See Multi-line (memo) field

public final
OpenCReport\Text::set_memo(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Text::get_memo():

209

PHP language API reference

 ?OpenCReport\Expr;

12.20.16. Set or get the field's "hyphenate" flag
Set the field's "hyphenate" flag. Only used when the memo flag is set to true. When set to false,
words at the end of the lines in the multiline text field would break over to the next line as a whole.
When set to true, the word will be hyphenated. Default is true. When character wrapping is used
(see below), this setting is not used. See Section 8.17.1.14

public final
OpenCReport\Text::set_memo_hyphenate(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Text::get_memo_hyphenate():
 ?OpenCReport\Expr;

12.20.17. Set or get the field's "wrap at characters" flag
Set the field's "wrap at characters" flag. Only used when the memo flag is set to true. Default is
false, the text is wrapped at word boundaries. When set to true, text is wrapped at character
boundaries with hyphenation. See Section 8.17.1.15

public final
OpenCReport\Text::set_memo_wrap_chars(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Text::get_memo_wrap_chars():
 ?OpenCReport\Expr;

12.20.18. Set or get the field's maximum number of
lines

Set the field's maximum number of lines. Only used when the memo flag is set to true. The text
field's value is only rendered up to the set number of lines. Default is unset, the text is rendered fully.
See Section 8.17.1.16

public final
OpenCReport\Text::set_memo_max_lines(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Text::get_memo_max_lines():
 ?OpenCReport\Expr;

12.21. The OpenCReport\Barcode class
class OpenCReport\Barcode {
 public final set_value(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

210

PHP language API reference

 public final get_value():
 ?OpenCReport\Expr;

 public final set_value_delayed(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_value_delayed():
 ?OpenCReport\Expr;

 public final set_suppress(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_suppress():
 ?OpenCReport\Expr;

 public final set_type(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_type():
 ?OpenCReport\Expr;

 public final set_width(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_width():
 ?OpenCReport\Expr;

 public final set_height(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_height():
 ?OpenCReport\Expr;

 public final set_color(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_color():
 ?OpenCReport\Expr;

 public final set_bgcolor(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

 public final get_bgcolor():
 ?OpenCReport\Expr;
}

12.21.1. Set or get the barcode value
Set the barcode's value from an expression string. The expression must evaluate to a string, whose
value is the string to be encoded as a barcode.

211

PHP language API reference

public final
OpenCReport\Barcode::set_value(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Barcode::get_value():
 ?OpenCReport\Expr;

12.21.2. Set or get the barcode value delayed

Set the barcode's value delayed from an expression string. The expression must evaluate to a boolean
value.

public final
OpenCReport\Barcode::set_value_delayed(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Barcode::get_value_delayed():
 ?OpenCReport\Expr;

12.21.3. Set or get the barcode suppression

Set the barcode's suppression value from an expression string. The expression must evaluate to a
boolean value.

public final
OpenCReport\Barcode::set_suppress(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Barcode::get_suppress():
 ?OpenCReport\Expr;

Default value is false, i.e. no suppression.

12.21.4. Set or get the barcode type

Set the barcode type.

public final
OpenCReport\Barcode::set_type(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Barcode::get_type():
 ?OpenCReport\Expr;

The type may be optional, in which case it's autodetected and the barcode is rendered in the format that
first allows the value string to be rendered. Possible types (in the order of autodetection) are: upc-a,
ean-13, upc-e, ean-8, isbn, code39, code39ext, code128b, code128c, or code128.
If type is specified, the value is rendered in that barcode type if the string is valid for the type. If

212

PHP language API reference

value is invalid for the specified type, or autodetection fails, because the value is invalid for any
of the above listed types, the barcode is not rendered.

12.21.5. Set or get the barcode width
Set the barcode image width.

public final
OpenCReport\Barcode::set_width(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Barcode::get_width():
 ?OpenCReport\Expr;

The width is set according to Size unit attribute, either in points (1/72th inch) or in (monospace) font
width units set by <Line>.

12.21.6. Set or get the barcode height
Set the barcode image height.

public final
OpenCReport\Barcode::set_height(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Barcode::get_height():
 ?OpenCReport\Expr;

12.21.7. Set or get the barcode image line color
Set the barcode image line color.

public final
OpenCReport\Barcode::set_color(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Barcode::get_color():
 ?OpenCReport\Expr;

12.21.8. Set or get the barcode image background
color

Set the barcode image background color.

public final
OpenCReport\Barcode::set_bgcolor(
 ?string $expr_string = null):
 ?OpenCReport\Expr;

public final
OpenCReport\Barcode::get_bgcolor():

213

PHP language API reference

 ?OpenCReport\Expr;

12.22. The OpenCReport\OutputElement
class

class OpenCReport\OutputElement {
 public final get_next():
 ?OpenCReport\OutputElement;

 public final is_line(): bool;

 public final is_hline(): bool;

 public final is_image(): bool;

 public final is_barcode(): bool;

 public final get_line():
 ?OpenCReport\Line;

 public final get_hline():
 ?OpenCReport\HorizontalLine;

 public final get_image():
 ?OpenCReport\Image;

 public final get_barcode):
 ?OpenCReport\Barcode;
}

This class iterates through layout elements defined for the output section used in OpenCReport
\Output::get_first_element(). An OpenCReport\OutputElement object is an
"abstract" object in the sense that it encapsulates several explicit object types. These object types can
be determined using the is_*() methods and the actual objects underlying the abstract object can
be acquired using the get_*() methods.

12.23. The OpenCReport\LineElement class
class OpenCReport\LineElement {
 public final get_next():
 ?OpenCReport\LineElement;

 public final is_text(): bool;

 public final is_image(): bool;

 public final is_barcode(): bool;

 public final get_text():
 ?OpenCReport\Line;

 public final get_image():
 ?OpenCReport\Image;

 public final get_barcode):
 ?OpenCReport\Barcode;

214

PHP language API reference

}

This class iterates through line elements defined for the line object used in OpenCReport
\Line::get_first_element(). An OpenCReport\LineElement object is an "abstract"
object in the sense that it encapsulates several explicit object types. These object types can be
determined using the is_*() methods and the actual objects underlying the abstract object can be
acquired using the get_*() methods.

12.24. RLIB compatibility API
These functions mimic the behaviour of the RLIB PHP API but their declaration differ in a way that
the RLIB compatibility API in OpenCReports create and use OpenCReport objects, making the
OpenCReports methods and RLIB compatibility functions inter-operable.

12.24.1. Initialize a report
function
rlib_init(): ?OpenCReport;

Note that initializing the report using this function automatically enables some RLIB compatibility
settings, like the output parameter "xml_rlib_compat".

12.24.2. Destroy a report
function
rlib_free(OpenCReport $r): void;

12.24.3. Get library version
function
rlib_version(void): string;

12.24.4. Add a MySQL/MariaDB datasource
function
rlib_add_datasource_mysql(
 OpenCReport $r,
 string $source_name,
 string $host,
 string $user,
 string $password,
 string $dbname):
 OpenCReport\Datasource;

This function is equivalent to using OpenCReport::datasource_add() with the MariaDB
input driver with expanded connection parameters, but without specifying a custom port:

$o = new OpenCReport();

$conn_params = [
 "host" => "myserver",
 "dbname" => "ocrpttest",
 "user" => "ocrpt"
];

$ds = $o->datasource_add("mariadb", "mariadb", $conn_params);

215

PHP language API reference

12.24.5. Add a MySQL/MariaDB datasource from an INI
group

function
rlib_add_datasource_mysql_from_group(
 OpenCReport $r,
 string $source_name,
 string $group,
 ?string $option_file = null):
 OpenCReport\Datasource;

This function is equivalent to using OpenCReport::datasource_add() with MariaDB input
driver, using the option file and group parameters:

$o = new OpenCReport();

$conn_params = [
 "optionfile" => "./mariadb/ocrpt.cnf",
 "group" => "ocrpt"
];

$ds = $o->datasource_add("mariadb", "mariadb", $conn_params);

12.24.6. Add a PostgreSQL datasource
function
rlib_add_datasource_postgres(
 OpenCReport $r,
 string $source_name,
 ?string $connection_info = null):
 OpenCReport\Datasource;

This function is equivalent to using OpenCReport::datasource_add() with the PostgreSQL
input driver using the connection info string:

$o = new OpenCReport();

$conn_params = ["connstr" => "dbname=ocrpttest user=ocrpt"];

$ds = $o->datasource_add("pgsql", "postgresql", $conn_params);

12.24.7. Add an ODBC datasource
function
rlib_add_datasource_odbc(
 OpenCReport $r,
 string $source_name,
 string $dbname,
 ?string $user, = null,
 ?string $password = null):
 OpenCReport\Datasource;

This function is equivalent to using OpenCReport::datasource_add() with the ODBC input
driver with expanded connection parameters:

$o = new OpenCReport();

216

PHP language API reference

$conn_params = [
 "dbname" => "mydb",
 "user" => "myuser"
];

$ds = $o->datasource_add("odbc", "odbc", $conn_params);

12.24.8. Add an array datasource
function
rlib_add_datasource_array(
 OpenCReport $r,
 string $source_name):
 OpenCReport\Datasource;

This function is equivalent to using OpenCReport::datasource_add() with the array input
driver:

$o = new OpenCReport();

$ds = $o->datasource_add("array", "array");

12.24.9. Add an XML datasource
function
rlib_add_datasource_xml(
 OpenCReport $r,
 string $source_name):
 OpenCReport\Datasource;

This function is equivalent to using OpenCReport::datasource_add() with the XML input
driver:

$o = new OpenCReport();

$ds = $o->datasource_add("xml", "xml");

12.24.10. Add a CSV datasource
function
rlib_add_datasource_csv(
 OpenCReport $r,
 string $source_name):
 OpenCReport\Datasource;

This function is equivalent to using OpenCReport::datasource_add() with the CSV input
driver:

$o = new OpenCReport();

$ds = $o->datasource_add("csv", "csv");

12.24.11. Add a query
This function is equivalent to OpenCReport\Datasource::query_add() with a different
order of parameters. The query name is the last parameter.

function

217

PHP language API reference

rlib_add_query_as(
 OpenCReport $r,
 string $source_name,
 string $array_or_file_or_sql,
 string $name):
 OpenCReport\Datasource;

12.24.12. Add a resultset follower
This function is about equivalent to OpenCReport\Query::add_follower(). The $leader
and $follower are query names.

function
rlib_add_resultset_follower(
 OpenCReport $r,
 string $leader,
 string $follower): bool;

12.24.13. Add a resultset N:1 follower
This function is about equivalent to OpenCReport\Query::add_follower_n_to_1(). The
former allows an arbitrary match expression, while the RLIB compatibility function will use the
$leader_field = $follower_field expression. Similarly to the above function, $leader
and $follower are query names.

function
rlib_add_resultset_follower_n_to_1(
 OpenCReport $r,
 string $leader,
 string $leader_field,
 string $follower,
 string $follower_field): bool;

12.24.14. Set datasource encoding
This function is equivalent to OpenCReport\Datasource::set_encoding(). See
Section 12.5.3

function
rlib_set_datasource_encoding(
 OpenCReport $r,
 string $name,
 string $encoding): void;

12.24.15. Add a report XML
This function is equivalent to OpenCReport::parse_xml().

function
rlib_add_report(
 OpenCReport $r,
 string $filename): bool;

12.24.16. Add a report XML from buffer
This function is equivalent to OpenCReport::parse_xml_from_buffer().

218

PHP language API reference

function
rlib_add_report_from_buffer(
 OpenCReport $r,
 string $buffer): bool;

12.24.17. Add a search path
This function is equivalent to OpenCReport::add_search_path().

function
rlib_add_search_path(
 OpenCReport $r,
 string $path): bool;

12.24.18. Set locale
This function is equivalent to OpenCReport::set_locale().

function
rlib_set_locale(
 OpenCReport $r,
 string $locale): void;

12.24.19. Setup translation
This function is equivalent to OpenCReport::bindtextdomain().

function
rlib_bindtextdomain(
 OpenCReport $r,
 string $domain,
 string $dirname): void;

12.24.20. Set output format
This function is about equivalent to OpenCReport::set_output_format() but
accepts textual format names (like pdf instead of the numeric constants like
OpenCReport::OUTPUT_PDF

function
rlib_set_output_format_from_text(
 OpenCReport $r,
 string $format): void;

12.24.21. Add a custom report function
This function is the RLIB compatible variant of OpenCReport::function_add(). Unlike the
OpenCReports API, the function added by this function does not have the control knobs to optimize it
properly. After this function returns, subsequently parsed expressions may use a function name passed
in with $name. The PHP function name is in $function

function
rlib_add_function(
 OpenCReport $r,
 string $name,
 string $function,
 long $params): void;

219

PHP language API reference

The interface of the PHP function must follow the below prototype. It must contain the exact number
of arguments passed in via $params, i.e. it may not pass -1 to indicate variadic arguments.

function my_function($arg1, $arg2, ...)

The function implementation may return any PHP base type (string, long, double or bool).

12.24.22. Set output encoding
This function silently does nothing. For PDF, it's not relevant. Other (CURRENTLY NOT
IMPLEMENTED) output formats will all use UTF-8.

function
rlib_set_output_encoding(
 OpenCReport $r,
 string $encoding): void;

12.24.23. Add a report parameter
This function is equivalent to OpenCReport::set_mvariable().

function
rlib_add_parameter(
 OpenCReport $r,
 string $param,
 ?string $value = null): void;

12.24.24. Set an output parameter
Set output parameters for the report. For accepted parameters, see Section 12.3.6

function
rlib_set_output_parameter(
 OpenCReport $r,
 string $param,
 string $value): void;

12.24.25. Refresh array query contents
This function is equivalent to executing OpenCReport::query_refresh(). The same limitations apply.

function
rlib_query_refresh(OpenCReport $r): void;

12.24.26. Add an event callback
This function adds a callback for the specified $signal in an RLIB compatible way. The
signal name may be row_change, report_done, report_start, report_iteration,
part_iteration or precalculation_done.

function
rlib_signal_connect(
 OpenCReport $r,
 string $signal,
 string $function): void;

The PHP function prototype must follow this:

220

PHP language API reference

function my_callback()

This function is different from the methods that add specific callback types for parts, reports, breaks,
etc. in that the callback is added to the toplevel OpenCReport object context, meaning that a
report_start callback will be called for every report in case there are multiple reports in the same
context. Similarly, the same part_iteration callback will be called for every part in a multi-
part report.

Since there is no way to know which part or which report triggers the callback, it is recommended to
use rlib_signal_connect() for single-part single-report reports. For more special purposes,
the callback creation class methods are recommended.

12.24.27. Execute the report
It is equivalent to OpenCReport::execute()

function
rlib_execute(OpenCReport $r): bool;

12.24.28. Dump the report output
It is equivalent to OpenCReport::spool()

function
rlib_spool(OpenCReport $r): ?string;

12.24.29. Get content type
It is equivalent to OpenCReport::get_content_type()

function
rlib_get_content_type(OpenCReport $r): ?string;

12.24.30. Set radix character
This function silently does nothing. Formatting numbers correctly follow the locale information
regarding the decimal separator.

function
rlib_set_radix_character(OpenCReport $r): void;

12.24.31. Compile and evaluate an expression
function
rlib_compile_infix(string $expr_string):
 string|double|null;

Since only the expression string is passed but not the $r resource in RLIB, the compatibility
implementation of this function is equivalent to the sequence of creating an internal OpenCReport
object, parsing, optimizing and evaluating the expression, converting its result to a PHP base type, then
destroying the internal object. For this reason, the expression may not reference any query columns
or report variables.

12.24.32. Add graph background region
This function silently does nothing. GRAPHING IS NOT IMPLEMENTED YET.

function

221

PHP language API reference

rlib_graph_add_bg_region(
 OpenCReport $r,
 string $graph,
 string $region,
 string $color,
 double $start,
 double $end): void;

12.24.33. Clear graph background region
This function silently does nothing. GRAPHING IS NOT IMPLEMENTED YET.

function
rlib_graph_clear_bg_region(
 OpenCReport $r,
 string $graph): void;

12.24.34. Set graph minor tick
This function silently does nothing. GRAPHING IS NOT IMPLEMENTED YET.

function
rlib_graph_set_x_minor_tick(
 OpenCReport $r,
 string $graph,
 string $x): void;

12.24.35. Set graph minor tick by location
This function silently does nothing. GRAPHING IS NOT IMPLEMENTED YET.

function
rlib_graph_set_x_minor_tick_by_location(
 OpenCReport $r,
 string $graph,
 double $location): void;

222

Chapter 13. Examples
13.1. Simple report example

This example below uses a PostgreSQL query to generate a report in PDF output format, with many
settings used as default:

• Courier font

• 12 points font size

• automatically calculated field width where it's not specified (note the header and footer fields)

• black font color

• white background

• default paper size

Note that this particular default setting depends on your location, or rather, the computer's country
settings. For example, the U.S. uses the Letter page size as default. On the other hand, most of
Europe uses the A4 page size.

and so on.

13.1.1. Data
Data is created as follows in a database called ocrpttest using the user ocrpt

create table flintstones (id serial, name text, property text, age
 int, adult bool);
insert into flintstones (name, property, age, adult)
values
('Fred Flintstone','strong',31,true),
('Wilma Flintstone','charming',28,true),
('Pebbles Flintstone','young',0.5,false);

The data looks like this when queried:

ocrpttest=> select * from flintstones;
 id | name | property | age | adult
----+--------------------+----------+-----+-------
 1 | Fred Flintstone | strong | 31 | t
 2 | Wilma Flintstone | charming | 28 | t
 3 | Pebbles Flintstone | young | 1 | f
(3 rows)

13.1.2. C program code
The program code uses a minimalistic approach, putting everything into the report XML instead.

#include <stdio.h>
#include <opencreport.h>

int main(int argc, char **argv) {
 opencreport *o = ocrpt_init();

 if (!ocrpt_parse_xml(o, "example1.xml")) {
 printf("XML parse error\n");

223

Examples

 ocrpt_free(o);
 return 0;
 }

 ocrpt_set_output_format(o, OCRPT_OUTPUT_PDF);
 ocrpt_execute(o);
 ocrpt_spool(o);
 ocrpt_free(o);

 return 0;
}

13.1.3. PHP program code
Here's the equivalent program code in PHP.

<?php
$o = new OpenCReport();

if (!$o->parse_xml("example1.xml")) {
 echo "XML parse error" . PHP_EOL;
 exit(0);
}

$o->execute();
$o->spool();

13.1.4. RLIB compatible PHP program code
Here's the equivalent program code in PHP, using the RLIB compatibility functions.

<?php
$r = rlib_init();

if (!rlib_add_report($r, "example1.xml")) {
 echo "XML parse error" . PHP_EOL;
 exit(0);
}

rlib_execute($r);
rlib_spool($r);

13.1.5. Report description
The program code uses this file contents from example1.xml.

<?xml version="1.0"?>
<!DOCTYPE OpenCReport SYSTEM "opencreport.dtd">
<OpenCReport>
 <Datasources>
 <Datasource name="pgsql" type="postgresql"
 dbname="ocrpttest" user="ocrpt" />
 </Datasources>

 <Queries>
 <Query name="q" datasource="pgsql">select * from
 flintstones;</Query>
 </Queries>

224

Examples

 <Report query="q">
 <PageHeader>
 <Output>
 <Line>
 <literal width="20">The Flintstones</literal>
 <field value="printf('Page %d / %d', r.pageno,
 r.totpages)" align="right" />
 </Line>
 </Output>
 </PageHeader>

 <PageFooter>
 <Output>
 <Line>
 <literal>The Flintstones</literal>
 <field value="printf('Page %d / %d', r.pageno,
 r.totpages)" align="right" />
 </Line>
 </Output>
 </PageFooter>

 <Detail>
 <FieldHeaders>
 <Output>
 <Line>
 <literal width="4" align="'right'">ID</
literal>
 <literal width="1"/>
 <literal width="20">Name</literal>
 <literal width="1"/>
 <literal width="8"
 align="'center'">Property</literal>
 <literal width="1"/>
 <literal width="6">Age</literal>
 <literal width="1"/>
 <literal width="5" align="'center'">Adult</
literal>
 </Line>
 </Output>
 </FieldHeaders>

 <FieldDetails>
 <Output>
 <Line>
 <field width="4" align="right" value="id" /
>
 <literal width="1"/>
 <field width="20" value="name" />
 <literal width="1"/>
 <field width="8" align="'center'"
 value="property" />
 <literal width="1"/>
 <field width="6" align="'right'"
 value="age" format="'%.2d'" />
 <literal width="1"/>
 <field value="adult ? 'yes' : 'no'"
 width="5" align="'center'"/>

225

Examples

 </Line>
 </Output>
 </FieldDetails>
 </Detail>
 </Report>
</OpenCReport>

13.1.6. Report PDF result

13.2. Simple report example with data access
in code

This example below is mostly the same as the previous one, with one exception: the database access
is done from program code instead of putting it into the report XML description file.

13.2.1. Data
As the same data is used as in the previous example, it's not duplicated here.

13.2.2. C program code
The program code adds the datasource and the query before loading the report XML description. The
order of these are not important, as the ocrpt_execute() call performs matching expressions with
query column names internally.

#include <stdio.h>
#include <opencreport.h>

int main(int argc, char **argv) {
 opencreport *o = ocrpt_init();

 struct ocrpt_input_connect_parameter conn_params[] = {
 { .param_name = "dbname", .param_value = "ocrpttest" },
 { .param_name = "user", .param_value = "ocrpt" },
 { NULL }
 };

 ocrpt_datasource *ds = ocrpt_datasource_add(o, "pgsql",
 "postgresql", conn_params);

226

Examples

 ocrpt_query_add_sql(ds, "q", "select * from flintstones;");

 if (!ocrpt_parse_xml(o, "example2.xml")) {
 printf("XML parse error\n");
 ocrpt_free(o);
 return 0;
 }

 ocrpt_set_output_format(o, OCRPT_OUTPUT_PDF);
 ocrpt_execute(o);
 ocrpt_spool(o);
 ocrpt_free(o);

 return 0;
}

13.2.3. PHP program code
Here's the equivalent program code in PHP.

<?php
$o = new OpenCReport();

$conn_params = [
 "dbname" => "ocrpttest",
 "user" => "ocrpt"
];

$ds = $o->datasource_add("pgsql", "postgresql", $conn_params);

$ds->query_add("q", "select * from flintstones;");

if (!$o->parse_xml("example2.xml")) {
 echo "XML parse error" . PHP_EOL;
 exit(0);
}

$o->execute();
$o->spool();

13.2.4. RLIB compatible PHP program code
Here's the equivalent program code in PHP, using the RLIB compatibility functions.

<?php
$r = rlib_init();

rlib_add_datasource_postgres($r, "pgsql", "dbname=ocrpttest
 user=ocrpt");
rlib_add_query_as($r, "pgsql", "select * from flintstones;", "q");

if (!rlib_add_report($r, "example2.xml")) {
 echo "XML parse error" . PHP_EOL;
 exit(0);
}

rlib_execute($r);

227

Examples

rlib_spool($r);

13.2.5. Report description
The program code uses this file contents from example2.xml. Note that the <Datasources>
and <Queries> nodes that describe the database access and the query in the previous example are
missing here. The equivalent code was added to the different program codes above.

<?xml version="1.0"?>
<!DOCTYPE OpenCReport SYSTEM "opencreport.dtd">
<OpenCReport>
 <Report query="q">
 <PageHeader>
 <Output>
 <Line>
 <literal width="20">The Flintstones</literal>
 <field value="printf('Page %d / %d', r.pageno,
 r.totpages)" align="right" />
 </Line>
 </Output>
 </PageHeader>

 <PageFooter>
 <Output>
 <Line>
 <literal>The Flintstones</literal>
 <field value="printf('Page %d / %d', r.pageno,
 r.totpages)" align="right" />
 </Line>
 </Output>
 </PageFooter>

 <Detail>
 <FieldHeaders>
 <Output>
 <Line>
 <literal width="4" align="'right'">ID</
literal>
 <literal width="1"/>
 <literal width="20">Name</literal>
 <literal width="1"/>
 <literal width="8"
 align="'center'">Property</literal>
 <literal width="1"/>
 <literal width="6">Age</literal>
 <literal width="1"/>
 <literal width="5" align="'center'">Adult</
literal>
 </Line>
 </Output>
 </FieldHeaders>

 <FieldDetails>
 <Output>
 <Line>
 <field width="4" align="right" value="id" /
>
 <literal width="1"/>

228

Examples

 <field width="20" value="name" />
 <literal width="1"/>
 <field width="8" align="'center'"
 value="property" />
 <literal width="1"/>
 <field width="6" align="'right'"
 value="age" format="'%.2d'" />
 <literal width="1"/>
 <field value="adult ? 'yes' : 'no'"
 width="5" align="'center'"/>
 </Line>
 </Output>
 </FieldDetails>
 </Detail>
 </Report>
</OpenCReport>

13.2.6. Report PDF result
The result is identical to the previous example, it's not duplicated here.

13.3. Colors, images, horizontal lines and
fonts

This example below shows that reports may be more exciting, with colors and images and other visual
elements and settings.

13.3.1. Data
Data is created as follows in the same database as the first example.

create table flintstones2
(id serial primary key, name text, filename text);

insert into flintstones2 (name, filename)
values
('Fred Flintstone', 'FredFlintstone.png'),
('Wilma Flintstone', 'WilmaFlintstone.png'),
('Pebbles Flintstone', 'PebblesFlintstone.png'),
('Barney Rubble', 'BarneyRubble.png'),
('Betty Rubble', 'BettyRubble.png'),
('Bamm-Bamm Rubble', 'BammBammRubble.png'),
('The Great Gazoo', 'TheGreatGazoo.png');

The data looks like this when queried:

ocrpttest=> select * from flintstones2;
 id | name | filename
----+--------------------+-----------------------
 1 | Fred Flintstone | FredFlintstone.png
 2 | Wilma Flintstone | WilmaFlintstone.png
 3 | Pebbles Flintstone | PebblesFlintstone.png
 4 | Barney Rubble | BarneyRubble.png
 5 | Betty Rubble | BettyRubble.png
 6 | Bamm-Bamm Rubble | BammBammRubble.png
 7 | The Great Gazoo | TheGreatGazoo.png
(7 rows)

229

Examples

13.3.2. C program code
The program code is almost identical to the second example with the database connection and the
query added to program code, but it loads a different report XML description.

#include <stdio.h>
#include <opencreport.h>

int main(int argc, char **argv) {
 opencreport *o = ocrpt_init();

 struct ocrpt_input_connect_parameter conn_params[] = {
 { .param_name = "dbname", .param_value = "ocrpttest" },
 { .param_name = "user", .param_value = "ocrpt" },
 { NULL }
 };

 ocrpt_datasource *ds = ocrpt_datasource_add(o, "pgsql",
 "postgresql", conn_params);

 ocrpt_query_add_sql(ds, "q", "select * from flintstones2;");

 if (!ocrpt_parse_xml(o, "example3.xml")) {
 printf("XML parse error\n");
 ocrpt_free(o);
 return 0;
 }

 ocrpt_set_output_format(o, OCRPT_OUTPUT_PDF);
 ocrpt_execute(o);
 ocrpt_spool(o);
 ocrpt_free(o);

 return 0;
}

13.3.3. PHP program code
Here's the equivalent program code in PHP.

<?php
$o = new OpenCReport();

$conn_params = [
 "dbname" => "ocrpttest",
 "user" => "ocrpt"
];

$ds = $o->datasource_add("pgsql", "postgresql", $conn_params);

$ds->query_add("q", "select * from flintstones2;");

if (!$o->parse_xml("example3.xml")) {
 echo "XML parse error" . PHP_EOL;
 exit(0);
}

$o->execute();

230

Examples

$o->spool();

13.3.4. RLIB compatible PHP program code
Here's the equivalent program code in PHP, using the RLIB compatibility functions.

<?php
$r = rlib_init();

rlib_add_datasource_postgres($r, "pgsql", "dbname=ocrpttest
 user=ocrpt");
rlib_add_query_as($r, "pgsql", "select * from flintstones2;", "q");

if (!rlib_add_report($r, "example3.xml")) {
 echo "XML parse error" . PHP_EOL;
 exit(0);
}

rlib_execute($r);
rlib_spool($r);

13.3.5. Report description
The program code uses this file contents from example3.xml.

Note the new settings: fontName="...", fontSize="...", bold="...",
italic="...", color="...", bgcolor="..." and others.

Also note that the value="..." setting indicates the file names that are used with <Image>
elements in the report XML description. These files must be present in the report application work
directory, or can be found in Search paths added either in the report XML description or via
programming code.

<?xml version="1.0"?>
<!DOCTYPE OpenCReport SYSTEM "opencreport.dtd">
<OpenCReport>
 <Report query="q">
 <PageHeader>
 <Output>
 <Image width="227" height="92"
 value="'A_Flintstones_logo.png'" />
 <Line>
 <field fontName="'Arial'" fontSize="20"
 value="printf('Page %d / %d', r.pageno, r.totpages)"
 align="right" />
 </Line>
 </Output>
 </PageHeader>

 <PageFooter>
 <Output>
 <Image width="227" height="92"
 value="'A_Flintstones_logo.png'" />
 <Line>
 <field fontName="'Times New Roman'"
 fontSize="20" value="printf('Page %d / %d', r.pageno, r.totpages)"
 align="right" />
 </Line>
 </Output>

231

Examples

 </PageFooter>

 <Detail>
 <FieldHeaders>
 <Output>
 <HorizontalLine size="2" color="'black'" />
 <HorizontalLine size="2" color="'green'" />
 <Line bgcolor="'green'" bold="yes"
 fontSize="18">
 <literal fontName="'Petaluma Script'"
 width="7" align="'center'">Picture</literal>
 <literal width="1"/>
 <literal fontName="'Carlito'"
 italic="yes">Name</literal>
 </Line>
 <HorizontalLine size="2" color="'green'" />
 <HorizontalLine size="2" color="'black'" />
 <HorizontalLine size="2" color="'white'" />
 </Output>
 </FieldHeaders>

 <FieldDetails>
 <Output>
 <Line fontSize="18">
 <Image textWidth="7" bgcolor="'yellow'"
 align="'center'" value="filename" />
 <literal width="1" bgcolor="'yellow'" />
 <field color="'red'" bgcolor="'yellow'"
 value="name" />
 </Line>
 </Output>
 </FieldDetails>
 </Detail>
 </Report>
</OpenCReport>

13.3.6. Report PDF result

13.4. Report variables and breaks
This example below exercises report variables and breaks. Breaks use changes in a data series, like a
different last name. For more information, see Breaks.

232

Examples

13.4.1. Data
Data is created as follows in the same database using the same user as the first example.

create table flintstones3 (id serial, firstname text, lastname
 text, age int);

insert into flintstones3 (firstname, lastname, age)
values
('Fred', 'Flintstone', 31),
('Wilma', 'Flintstone', 28),
('Pebbles', 'Flintstone', 2),
('Barney', 'Rubble', 28),
('Betty', 'Rubble', 27),
('Bamm-Bamm', 'Rubble', 2),
('The Great', 'Gazoo', 600);

The data looks like this when queried:

ocrpttest=> select * from flintstones3;
 id | firstname | lastname | age
----+-----------+------------+-----
 1 | Fred | Flintstone | 31
 2 | Wilma | Flintstone | 28
 3 | Pebbles | Flintstone | 2
 4 | Barney | Rubble | 28
 5 | Betty | Rubble | 27
 6 | Bamm-Bamm | Rubble | 2
 7 | The Great | Gazoo | 600
(7 rows)

13.4.2. C program code
The program code is identical to the second and third examples, except that it uses a different report
XML description.

#include <stdio.h>
#include <opencreport.h>

int main(int argc, char **argv) {
 opencreport *o = ocrpt_init();

 struct ocrpt_input_connect_parameter conn_params[] = {
 { .param_name = "connstr", .param_value = "dbname=ocrpttest
 user=ocrpt" },
 { NULL }
 };

 ocrpt_datasource *ds = ocrpt_datasource_add(o, "pgsql",
 "postgresql", conn_params);

 ocrpt_query_add_sql(ds, "q", "select * from flintstones3;");

 if (!ocrpt_parse_xml(o, "example4.xml")) {
 printf("XML parse error\n");
 ocrpt_free(o);
 return 0;
 }

233

Examples

 ocrpt_set_output_format(o, OCRPT_OUTPUT_PDF);
 ocrpt_execute(o);
 ocrpt_spool(o);
 ocrpt_free(o);

 return 0;
}

13.4.3. PHP program code
Here's the equivalent program code in PHP.

<?php
$o = new OpenCReport();

$conn_params = ["connstr" => "dbname=ocrpttest user=ocrpt"];

$ds = $o->datasource_add("pgsql", "postgresql", $conn_params);

$ds->query_add("q", "select * from flintstones3;");

if (!$o->parse_xml("example4.xml")) {
 echo "XML parse error" . PHP_EOL;
 exit(0);
}

$o->execute();
$o->spool();

13.4.4. RLIB compatible PHP program code
Here's the equivalent program code in PHP, using the RLIB compatibility functions.

<?php
$r = rlib_init();

rlib_add_datasource_postgres($r, "pgsql", "dbname=ocrpttest
 user=ocrpt");
rlib_add_query_as($r, "pgsql", "select * from flintstones3;", "q");

if (!rlib_add_report($r, "example4.xml")) {
 echo "XML parse error" . PHP_EOL;
 exit(0);
}

rlib_execute($r);
rlib_spool($r);

13.4.5. Report description
The program code uses this file contents from example4.xml.

<?xml version="1.0"?>
<!DOCTYPE OpenCReport SYSTEM "opencreport.dtd">
<OpenCReport>
 <Report query="q">
 <Variables>
 <Variable name="var1" value="id" type="count" />

234

Examples

 <Variable name="var2" value="age" type="average"
 precalculate="yes" resetonbreak="family" />
 <Variable name="var3" value="age" type="average"
 precalculate="yes" />
 <Variable name="var4" value="age" type="sum" />
 <Variable name="var5" value="age" type="sum"
 precalculate="yes" />
 </Variables>

 <Breaks>
 <Break name="family">
 <BreakFields>
 <BreakField value="lastname" />
 </BreakFields>
 </Break>
 </Breaks>

 <Detail>
 <FieldHeaders>
 <Output>
 <HorizontalLine size="2" color="'black'" />
 <HorizontalLine size="2" color="'white'" />
 <Line bold="yes">
 <literal width="2" align="'center'">ID</
literal>
 <literal width="1"/>
 <literal width="20">Name</literal>
 <literal width="1"/>
 <literal width="8" align="'right'">Age</
literal>
 <literal width="8" align="'right'">Count</
literal>
 <literal width="8" align="'right'">Avg
 age</literal>
 <literal width="8" align="'right'">Avg
 age</literal>
 <literal width="8" align="'right'">Age
 sum</literal>
 <literal width="8" align="'right'">Age
 sum</literal>
 </Line>
 <Line bold="yes">
 <literal width="2"/>
 <literal width="1"/>
 <literal width="20"/>
 <literal width="1"/>
 <literal width="8"/>
 <literal width="8"/>
 <literal width="8" align="'right'">per
 fam</literal>
 <literal width="8" align="'right'">global</
literal>
 <literal width="8"
 align="'right'">running</literal>
 <literal width="8" align="'right'">total</
literal>
 </Line>
 <HorizontalLine size="2" color="'white'" />

235

Examples

 <HorizontalLine size="2" color="'black'" />
 <HorizontalLine size="2" color="'white'" />
 </Output>
 </FieldHeaders>

 <FieldDetails>
 <Output>
 <Line>
 <field width="2" align="'right'"
 value="id" />
 <literal width="1" />
 <field width="20" value="firstname + ' ' +
 lastname" />
 <literal width="1"/>
 <field width="8" value="age"
 format="'%.2d'" align="'right'" />
 <field width="8" value="v.var1"
 format="'%.2d'" align="'right'" />
 <field width="8" value="v.var2"
 format="'%.2d'" align="'right'" />
 <field width="8" value="v.var3"
 format="'%.2d'" align="'right'" />
 <field width="8" value="v.var4"
 format="'%.2d'" align="'right'" />
 <field width="8" value="v.var5"
 format="'%.2d'" align="'right'" />
 </Line>
 </Output>
 </FieldDetails>
 </Detail>
 </Report>
</OpenCReport>

13.4.6. Report PDF result

13.5. Follower queries
This example below exercises a basic follower query along with the main query. For more information,
see Follower queries.

236

Examples

13.5.1. Data
Data is created as follows in the same database using the same user as the first example.

create table flintstones4 (id serial, firstname text);
create table flintstones5 (id serial, lastname text);

insert into flintstones4 (firstname)
values
('Fred'),
('Wilma'),
('Pebbles'),
('Barney'),
('Betty'),
('Bamm-Bamm'),
('The Great');

insert into flintstones5 (lastname)
values
('Flintstone'),
('Flintstone'),
('Flintstone'),
('Rubble'),
('Rubble'),
('Rubble'),
('Gazoo');

The data looks like this when queried:

ocrpttest=> select * from flintstones4;
 id | firstname
----+-----------
 1 | Fred
 2 | Wilma
 3 | Pebbles
 4 | Barney
 5 | Betty
 6 | Bamm-Bamm
 7 | The Great
(7 rows)

ocrpttest=> select * from flintstones5;
 id | lastname
----+------------
 1 | Flintstone
 2 | Flintstone
 3 | Flintstone
 4 | Rubble
 5 | Rubble
 6 | Rubble
 7 | Gazoo
(7 rows)

13.5.2. C program code
The program code adds the two queries and establishes the follower link between them.

#include <stdio.h>

237

Examples

#include <opencreport.h>

int main(int argc, char **argv) {
 opencreport *o = ocrpt_init();

 struct ocrpt_input_connect_parameter conn_params[] = {
 { .param_name = "dbname", .param_value = "ocrpttest" },
 { .param_name = "user", .param_value = "ocrpt" },
 { NULL }
 };

 ocrpt_datasource *ds = ocrpt_datasource_add(o, "pgsql",
 "postgresql", conn_params);
 ocrpt_query *q1 = ocrpt_query_add_sql(ds, "q1", "select * from
 flintstones4;");
 ocrpt_query *q2 = ocrpt_query_add_sql(ds, "q2", "select * from
 flintstones5;");

 ocrpt_query_add_follower(q1, q2);

 if (!ocrpt_parse_xml(o, "example5.xml")) {
 printf("XML parse error\n");
 ocrpt_free(o);
 return 0;
 }

 ocrpt_set_output_format(o, OCRPT_OUTPUT_PDF);
 ocrpt_execute(o);
 ocrpt_spool(o);
 ocrpt_free(o);

 return 0;
}

13.5.3. PHP program code
Here's the equivalent program code in PHP.

<?php
$o = new OpenCReport();

$conn_params = [
 "dbname" => "ocrpttest",
 "user" => "ocrpt"
];

$ds = $o->datasource_add("pgsql", "postgresql", $conn_params);
$q1 = $ds->query_add("q1", "select * from flintstones4;");
$q2 = $ds->query_add("q2", "select * from flintstones5;");

$q1->add_follower($q2);

if (!$o->parse_xml("example5.xml")) {
 echo "XML parse error" . PHP_EOL;
 exit(0);
}

$o->execute();

238

Examples

$o->spool();

13.5.4. RLIB compatible PHP program code
Here's the equivalent program code in PHP, using the RLIB compatibility functions.

<?php
$r = rlib_init();

rlib_add_datasource_postgres($r, "pgsql", "dbname=ocrpttest
 user=ocrpt");

rlib_add_query_as($r, "pgsql", "select * from flintstones4;",
 "q1");
rlib_add_query_as($r, "pgsql", "select * from flintstones5;",
 "q2");

rlib_add_resultset_follower($r, "q1", "q2");

if (!rlib_add_report($r, "example5.xml")) {
 echo "XML parse error" . PHP_EOL;
 exit(0);
}

rlib_execute($r);
rlib_spool($r);

13.5.5. Report description
The program code uses this file contents from example5.xml.

Note that when using multiple queries in the same report, column names may be identical.
Because of this, using queryname.columnname will indicate which one is needed. When using
columnname then it will mean the first query's column.

<?xml version="1.0"?>
<!DOCTYPE OpenCReport SYSTEM "opencreport.dtd">
<OpenCReport>
 <Report query="q1">
 <Detail>
 <FieldHeaders>
 <Output>
 <HorizontalLine size="2" color="'black'" />
 <HorizontalLine size="2" color="'white'" />
 <Line bold="yes">
 <literal width="20">First name</literal>
 <literal width="20">Last name</literal>
 </Line>
 <HorizontalLine size="2" color="'white'" />
 <HorizontalLine size="2" color="'black'" />
 <HorizontalLine size="2" color="'white'" />
 </Output>
 </FieldHeaders>

 <FieldDetails>
 <Output>
 <Line>
 <field width="20" value="q1.firstname" />

239

Examples

 <field width="20" value="q2.lastname" />
 </Line>
 </Output>
 </FieldDetails>
 </Detail>
 </Report>
</OpenCReport>

13.5.6. Report PDF result

Note that compared to RLIB1, OpenCReports may or may not produce the same output. This is due
to the incomplete and faulty implementation of follower queries in RLIB.

13.6. N:1 follower queries
This example below exercises two N:1 (N-to-one) follower queries along with the main query. For
more information, see Follower queries.

13.6.1. Data
Data is created as follows in the same database using the same user as the first example.

create table data (id serial unique, name text);

create table more_data (
id serial unique,
boss_id int,
name text,
foreign key (boss_id) references data (id));

create table moar_data (
sk_id int,
name text,
foreign key (sk_id) references more_data (id));

insert into data (name)
values
('Snow White'),
('Batman'),
('Cinderella'),

1 https://sourceforge.net/projects/rlib/

240

https://sourceforge.net/projects/rlib/
https://sourceforge.net/projects/rlib/

Examples

('Hansel'),
('Little Red Riding Hood'),
('Robin Hood');

insert into more_data (boss_id, name)
values
(1, 'Doc'),
(1, 'Dopey'),
(1, 'Sneezy'),
(1, 'Happy'),
(1, 'Bashful'),
(1, 'Sleepy'),
(1, 'Grumpy'),
(2, 'Robin'),
(3, 'Fairy Godmother'),
(3, 'Mice'),
(3, 'Pidgeons'),
(4, 'Gretel'),
(6, 'Little John');

insert into moar_data (sk_id, name)
values
(3, 'Coughy'),
(3, 'Crippley'),
(9, 'Prince Charming'),
(9, 'Shrek'),
(13, 'Will Scarlet'),
(13, 'Brother Tuck');

The query that the N:1 followers in this report simulate is:

ocrpttest=> select * from data left outer join more_data on
 (data.id = more_data.boss_id)
ocrpttest-> left outer join moar_data on (more_data.id =
 moar_data.sk_id)
ocrpttest-> order by data.id, more_data.id;
 id | name | id | boss_id | name |
 sk_id | name
----+------------------------+----+---------+-----------------
+-------+-----------------
 1 | Snow White | 1 | 1 | Doc |
 |
 1 | Snow White | 2 | 1 | Dopey |
 |
 1 | Snow White | 3 | 1 | Sneezy |
 3 | Coughy
 1 | Snow White | 3 | 1 | Sneezy |
 3 | Crippley
 1 | Snow White | 4 | 1 | Happy |
 |
 1 | Snow White | 5 | 1 | Bashful |
 |
 1 | Snow White | 6 | 1 | Sleepy |
 |
 1 | Snow White | 7 | 1 | Grumpy |
 |
 2 | Batman | 8 | 2 | Robin |
 |

241

Examples

 3 | Cinderella | 9 | 3 | Fairy Godmother |
 9 | Shrek
 3 | Cinderella | 9 | 3 | Fairy Godmother |
 9 | Prince Charming
 3 | Cinderella | 10 | 3 | Mice |
 |
 3 | Cinderella | 11 | 3 | Pidgeons |
 |
 4 | Hansel | 12 | 4 | Gretel |
 |
 5 | Little Red Riding Hood | | | |
 |
 6 | Robin Hood | 13 | 6 | Little John |
 13 | Will Scarlet
 6 | Robin Hood | 13 | 6 | Little John |
 13 | Brother Tuck
(17 rows)

13.6.2. C program code
The program code adds the three queries and establishes the follower links between them. Note that the
match expressions can be anything, just like in SQL using the LEFT OUTER JOIN ON (...)
clause.

#include <stdio.h>
#include <opencreport.h>

int main(int argc, char **argv) {
 opencreport *o = ocrpt_init();
 struct ocrpt_input_connect_parameter conn_params[] = {
 { .param_name = "dbname", .param_value = "ocrpttest" },
 { .param_name = "user", .param_value = "ocrpt" },
 { NULL }
 };
 ocrpt_datasource *ds = ocrpt_datasource_add(o, "pgsql",
 "postgresql", conn_params);
 ocrpt_query *q1 = ocrpt_query_add_sql(ds, "q1", "select * from
 data order by id;");
 ocrpt_query *q2 = ocrpt_query_add_sql(ds, "q2", "select * from
 more_data order by id;");
 ocrpt_query *q3 = ocrpt_query_add_sql(ds, "q3", "select * from
 moar_data order by sk_id;");

 ocrpt_expr *match = ocrpt_expr_parse(o, "q1.id = q2.boss_id",
 NULL);
 ocrpt_query_add_follower_n_to_1(q1, q2, match);

 ocrpt_expr *match2 = ocrpt_expr_parse(o, "q2.id = q3.sk_id",
 NULL);
 ocrpt_query_add_follower_n_to_1(q2, q3, match2);

 if (!ocrpt_parse_xml(o, "example6.xml")) {
 printf("XML parse error\n");
 ocrpt_free(o);
 return 0;
 }

 ocrpt_set_output_format(o, OCRPT_OUTPUT_PDF);

242

Examples

 ocrpt_execute(o);
 ocrpt_spool(o);
 ocrpt_free(o);

 return 0;
}}

13.6.3. PHP program code
Here's the equivalent program code in PHP.

<?php
$o = new OpenCReport();

$conn_params = [
 "dbname" => "ocrpttest",
 "user" => "ocrpt"
];

$ds = $o->datasource_add("pgsql", "postgresql", $conn_params);
$q1 = $ds->query_add("q1", "select * from data order by id;");
$q2 = $ds->query_add("q2", "select * from more_data order by id;");
$q3 = $ds->query_add("q3", "select * from moar_data order by
 sk_id;");

$match1 = $o->expr_parse("q1.id = q2.boss_id");
$q1->add_follower_n_to_1($q2, $match1);

$match2 = $o->expr_parse("q2.id = q3.sk_id");
$q2->add_follower_n_to_1($q3, $match2);

if (!$o->parse_xml("example6.xml")) {
 echo "XML parse error" . PHP_EOL;
 exit(0);
}

$o->execute();
$o->spool();

13.6.4. RLIB compatible PHP program code
Here's the equivalent program code in PHP, using the RLIB compatibility functions. Note that the
RLIB compatible API is more limited as it expects a single field name matching.

<?php
$r = rlib_init();

rlib_add_datasource_postgres($r, "pgsql", "dbname=ocrpttest
 user=ocrpt");
rlib_add_query_as($r, "pgsql", "select * from data order by id;",
 "q1");
rlib_add_query_as($r, "pgsql", "select * from more_data order by
 id;", "q2");
rlib_add_query_as($r, "pgsql", "select * from moar_data order by
 sk_id;", "q3");

rlib_add_resultset_follower_n_to_1($r, "q1", "id", "q2",
 "boss_id");

243

Examples

rlib_add_resultset_follower_n_to_1($r, "q2", "id", "q3", "sk_id");

if (!rlib_add_report($r, "example6.xml")) {
 echo "XML parse error" . PHP_EOL;
 exit(0);
}

rlib_execute($r);
rlib_spool($r);

13.6.5. Report description

The program code uses this file contents from example6.xml.

Note that when using multiple queries in the same report, column names may be identical.
Because of this, using queryname.columnname will indicate which one is needed. When using
columnname then it will mean the first query's column.

<?xml version="1.0"?>
<!DOCTYPE report >
<OpenCReport>
<Report orientation="landscape">
 <Detail>
 <FieldHeaders>
 <Output>
 <Line>
 <literal width="30">Boss name</literal>
 <literal width="1"/>
 <literal width="30">Sidekick name</literal>
 <literal width="1"/>
 <literal width="30">Sidekick's sidekick name</
literal>
 </Line>
 </Output>
 </FieldHeaders>
 <FieldDetails>
 <Output>
 <Line>
 <field value="q1.name" width="30"
 align="left" />
 <literal width="1"/>
 <field value="q2.name" width="30"
 align="left" />
 <literal width="1"/>
 <field value="q3.name" width="30"
 align="left" />
 </Line>
 </Output>
 </FieldDetails>
 </Detail>
</Report>
</OpenCReport>

244

Examples

13.6.6. Report PDF result

Note that compared to RLIB2, OpenCReports likely do not produce the same output. This is due
to the incomplete and faulty implementation of follower queries in RLIB. OpenCReports faithfully
implements LEFT OUTER JOIN.

13.7. N:1 follower queries (RLIB compatibility
limits)

This example below exercises two N:1 (N-to-one) follower queries along with the main query. For
more information, see Follower queries.

13.7.1. Data
The same data is used as in the previous example.

The query that the RLIB compatible method for N:1 followers in this report simulates is:

ocrpttest=> select * from data
ocrpttest-> left outer join lateral (select * from more_data
ocrpttest-> where data.id = more_data.boss_id
ocrpttest-> order by more_data.id limit 1) x on (true)
ocrpttest-> left outer join lateral (select * from moar_data
ocrpttest-> where x.id = moar_data.sk_id
ocrpttest-> order by moar_data.sk_id limit 1) y on (true);
 id | name | id | boss_id | name |
 sk_id | name
----+------------------------+----+---------+-----------------
+-------+-----------------
 1 | Snow White | 1 | 1 | Doc |
 |
 2 | Batman | 8 | 2 | Robin |
 |
 3 | Cinderella | 9 | 3 | Fairy Godmother |
 9 | Prince Charming
 4 | Hansel | 12 | 4 | Gretel |
 |
 5 | Little Red Riding Hood | | | |
 |
 6 | Robin Hood | 13 | 6 | Little John |
 13 | Will Scarlet
(6 rows)

2 https://sourceforge.net/projects/rlib/

245

https://sourceforge.net/projects/rlib/
https://sourceforge.net/projects/rlib/

Examples

Note the amount of hoops the SQL query has to jump through to implement the LIMIT 1 clause
on both lateral derived queries that results in limiting the number of rows to the main query's number
of rows.

13.7.2. C program code
The program code is identical to the previous example, except that it uses a different report XML
description.

#include <stdio.h>
#include <opencreport.h>

int main(int argc, char **argv) {
 opencreport *o = ocrpt_init();
 struct ocrpt_input_connect_parameter conn_params[] = {
 { .param_name = "dbname", .param_value = "ocrpttest" },
 { .param_name = "user", .param_value = "ocrpt" },
 { NULL }
 };
 ocrpt_datasource *ds = ocrpt_datasource_add(o, "pgsql",
 "postgresql", conn_params);
 ocrpt_query *q1 = ocrpt_query_add_sql(ds, "q1", "select * from
 data order by id;");
 ocrpt_query *q2 = ocrpt_query_add_sql(ds, "q2", "select * from
 more_data order by id;");
 ocrpt_query *q3 = ocrpt_query_add_sql(ds, "q3", "select * from
 moar_data order by sk_id;");

 ocrpt_expr *match = ocrpt_expr_parse(o, "q1.id = q2.boss_id",
 NULL);
 ocrpt_query_add_follower_n_to_1(q1, q2, match);

 ocrpt_expr *match2 = ocrpt_expr_parse(o, "q2.id = q3.sk_id",
 NULL);
 ocrpt_query_add_follower_n_to_1(q2, q3, match2);

 if (!ocrpt_parse_xml(o, "example7.xml")) {
 printf("XML parse error\n");
 ocrpt_free(o);
 return 0;
 }

 ocrpt_set_output_format(o, OCRPT_OUTPUT_PDF);
 ocrpt_execute(o);
 ocrpt_spool(o);
 ocrpt_free(o);

 return 0;
}}

13.7.3. PHP program code
Here's the equivalent program code in PHP.

<?php
$o = new OpenCReport();
$conn_params = [
 "dbname" => "ocrpttest",

246

Examples

 "user" => "ocrpt"
];
$ds = $o->datasource_add("pgsql", "postgresql", $conn_params);
$q1 = $ds->query_add("q1", "select * from data order by id;");
$q2 = $ds->query_add("q2", "select * from more_data order by id;");
$q3 = $ds->query_add("q3", "select * from moar_data order by
 sk_id;");

$match1 = $o->expr_parse("q1.id = q2.boss_id");
$q1->add_follower_n_to_1($q2, $match1);

$match2 = $o->expr_parse("q2.id = q3.sk_id");
$q2->add_follower_n_to_1($q3, $match2);

if (!$o->parse_xml("example7.xml")) {
 echo "XML parse error" . PHP_EOL;
 exit(0);
}

$o->execute();
$o->spool();

13.7.4. RLIB compatible PHP program code
Here's the equivalent program code in PHP, using the RLIB compatibility functions. Note that the
RLIB compatible API is more limited as it expects a single field name matching.

<?php
$r = rlib_init();

rlib_add_datasource_postgres($r, "pgsql", "dbname=ocrpttest
 user=ocrpt");
rlib_add_query_as($r, "pgsql", "select * from data order by id;",
 "q1");
rlib_add_query_as($r, "pgsql", "select * from more_data order by
 id;", "q2");
rlib_add_query_as($r, "pgsql", "select * from moar_data order by
 sk_id;", "q3");

rlib_add_resultset_follower_n_to_1($r, "q1", "id", "q2",
 "boss_id");
rlib_add_resultset_follower_n_to_1($r, "q2", "id", "q3", "sk_id");

if (!rlib_add_report($r, "example7.xml")) {
 echo "XML parse error" . PHP_EOL;
 exit(0);
}

rlib_execute($r);
rlib_spool($r);

13.7.5. Report description
The program code uses this file contents from example7.xml. It is different in one detail from the
previous example: the toplevel XML node is <Report> instead of <OpenCReport>. This results
in the RLIB compatibility flag to be enabled automatically. See the Follower match single attribute or
the equivalent calls in the C and PHP API documentation.

247

Examples

<?xml version="1.0"?>
<!DOCTYPE report >
<Report orientation="landscape">
 <Detail>
 <FieldHeaders>
 <Output>
 <Line>
 <literal width="30">Boss name</literal>
 <literal width="1"/>
 <literal width="30">Sidekick name</literal>
 <literal width="1"/>
 <literal width="30">Sidekick's sidekick name</
literal>
 </Line>
 </Output>
 </FieldHeaders>
 <FieldDetails>
 <Output>
 <Line>
 <field value="q1.name" width="30"
 align="left" />
 <literal width="1"/>
 <field value="q2.name" width="30"
 align="left" />
 <literal width="1"/>
 <field value="q3.name" width="30"
 align="left" />
 </Line>
 </Output>
 </FieldDetails>
 </Detail>
</Report>

13.7.6. Report PDF result

Note that compared to RLIB3, OpenCReports likely do not produce the same output. This is due
to the incomplete and faulty implementation of follower queries in RLIB. OpenCReports faithfully
implements LEFT OUTER JOIN with limiting the number of dependent matching rows to 1 that
approximates the RLIB behaviour.

3 https://sourceforge.net/projects/rlib/

248

https://sourceforge.net/projects/rlib/
https://sourceforge.net/projects/rlib/

Chapter 14. GNU Free Documentation
License

 GNU Free Documentation License
 Version 1.3, 3 November 2008

 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software
 Foundation, Inc.
 <https://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or
 noncommercially.
Secondarily, this License preserves for the author and publisher a
 way
to get credit for their work, while not being considered
 responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense.
 It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for
 free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that
 the
software does. But this License is not limited to software
 manuals;
it can be used for any textual work, regardless of subject matter
 or
whether it is published as a printed book. We recommend this
 License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium,
 that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants
 a
world-wide, royalty-free license, unlimited in duration, to use
 that

249

GNU Free Documentation License

work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section
 of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could
 fall
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose
 titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is
 not
allowed to be designated as Invariant. The Document may contain
 zero
Invariant Sections. If the Document does not identify any
 Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are
 listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says
 that
the Document is released under this License. A Front-Cover Text
 may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed
 of
pixels) generic paint programs or (for drawings) some widely
 available
drawing editor, and that is suitable for input to text formatters
 or
for automatic translation to a variety of formats suitable for
 input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to
 thwart

250

GNU Free Documentation License

or discourage subsequent modification by readers is not
 Transparent.
An image format is not Transparent if used for any substantial
 amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format,
 SGML
or XML using a publicly available DTD, and standard-conforming
 simple
HTML, PostScript or PDF designed for human modification. Examples
 of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the
 material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page"
 means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies
 of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document
 whose
title either is precisely XYZ or contains XYZ in parentheses
 following
text that translates XYZ in another language. (Here XYZ stands for
 a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the
 Title"
of such a section when you modify the Document means that it
 remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice
 which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and
 has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either

251

GNU Free Documentation License

commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License
 applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not
 use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may
 accept
compensation in exchange for copies. If you distribute a large
 enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above,
 and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly
 have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose
 the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts
 on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they
 preserve
the title of the Document and satisfy these conditions, can be
 treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto
 adjacent
pages.

If you publish or distribute Opaque copies of the Document
 numbering
more than 100, you must either include a machine-readable
 Transparent
copy along with each Opaque copy, or state in or with each Opaque
 copy
a computer-network location from which the general network-using
public has access to download using public-standard network
 protocols
a complete Transparent copy of the Document, free of added
 material.
If you use the latter option, you must take reasonably prudent
 steps,
when you begin distribution of Opaque copies in quantity, to ensure

252

GNU Free Documentation License

that this Transparent copy will remain thus accessible at the
 stated
location until at least one year after the last time you distribute
 an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of
 the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document
 under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the
 Modified
Version filling the role of the Document, thus licensing
 distribution
and modification of the Modified Version to whoever possesses a
 copy
of it. In addition, you must do these things in the Modified
 Version:

A. Use in the Title Page (and on the covers, if any) a title
 distinct
 from that of the Document, and from those of previous versions
 (which should, if there were any, be listed in the History
 section
 of the Document). You may use the same title as a previous
 version
 if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or
 entities
 responsible for authorship of the modifications in the Modified
 Version, together with at least five of the principal authors of
 the
 Document (all of its principal authors, if it has fewer than
 five),
 unless they release you from this requirement.
C. State on the Title page the name of the publisher of the
 Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
 adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license
 notice
 giving the public permission to use the Modified Version under
 the
 terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant
 Sections
 and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.

253

GNU Free Documentation License

I. Preserve the section Entitled "History", Preserve its Title, and
 add
 to it an item stating at least the title, year, new authors, and
 publisher of the Modified Version as given on the Title Page.
 If
 there is no section Entitled "History" in the Document, create
 one
 stating the title, year, authors, and publisher of the Document
 as
 given on its Title Page, then add an item describing the
 Modified
 Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for
 public access to a Transparent copy of the Document, and
 likewise
 the network locations given in the Document for previous
 versions
 it was based on. These may be placed in the "History" section.
 You may omit a network location for a work that was published at
 least four years before the Document itself, or if the original
 publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications",
 Preserve the Title of the section, and preserve in the section
 all
 the substance and tone of each of the contributor
 acknowledgements
 and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
 unaltered in their text and in their titles. Section numbers
 or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section
 may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled
 "Endorsements"
 or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no
 material
copied from the Document, you may at your option designate some or
 all
of these sections as invariant. To do this, add their titles to
 the
list of Invariant Sections in the Modified Version's license
 notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text
 has
been approved by an organization as the authoritative definition of
 a
standard.

You may add a passage of up to five words as a Front-Cover Text,
 and a

254

GNU Free Documentation License

passage of up to 25 words as a Back-Cover Text, to the end of the
 list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document
 already
includes a cover text for the same cover, previously added by you
 or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on
 explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this
 License
give permission to use their names for publicity for or to assert
 or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under
 this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified,
 and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty
 Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name
 but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique
 number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled
 "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled
 "Acknowledgements",
and any sections Entitled "Dedications". You must delete all
 sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy

255

GNU Free Documentation License

that is included in the collection, provided that you follow the
 rules
of this License for verbatim copying of each of the documents in
 all
other respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert
 a
copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other
 separate
and independent documents or works, in or on a volume of a storage
 or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal
 rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does
 not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half
 of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic
 form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section
 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also
 include
the original English version of this License and the original
 versions
of those notices and disclaimers. In case of a disagreement
 between
the translation and the original version of this License or a
 notice

256

GNU Free Documentation License

or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to
 Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void,
 and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your
 license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright
 holder
fails to notify you of the violation by some reasonable means prior
 to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from
 that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate
 the
licenses of parties who have received copies or rights from you
 under
this License. If your rights have been terminated and not
 permanently
reinstated, receipt of a copy of some or all of the same material
 does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of
 the
GNU Free Documentation License from time to time. Such new
 versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See
https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version
 number.

257

GNU Free Documentation License

If the Document specifies that a particular numbered version of
 this
License "or any later version" applies to it, you have the option
 of
following the terms and conditions either of that specified version
 or
of any later version that has been published (not as a draft) by
 the
Free Software Foundation. If the Document does not specify a
 version
number of this License, you may choose any version ever published
 (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of
 a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server.
 A
"Massive Multiauthor Collaboration" (or "MMC") contained in the
 site
means any set of copyrightable works thus published on the MMC
 site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or
 in
part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this
License, and if all works that were first published under this
 License
somewhere other than this MMC, and subsequently incorporated in
 whole or
in part into the MMC, (1) had no cover texts or invariant sections,
 and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the
 site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

258

GNU Free Documentation License

To use this License in a document you have written, include a copy
 of
the License in the document and put the following copyright and
license notices just after the title page:

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this
 document
 under the terms of the GNU Free Documentation License, Version
 1.3
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover
 Texts,
replace the "with...Texts." line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts
 being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

259

	OpenCReports 0.8.14 Manual
	Table of Contents
	Chapter 1. Introduction and concepts
	1.1. The predecessor: RLIB
	1.2. Concepts
	1.2.1. What is a report generator?
	1.2.2. XML based report description
	1.2.3. Comprehensive API for report creation
	1.2.4. Strict expression parser
	1.2.5. Expression optimization
	1.2.6. Report variables
	1.2.7. Report breaks
	1.2.8. Extensive and extensible set of functions
	1.2.9. UTF-8 string handling
	1.2.10. High precision numeric data type
	1.2.11. Datetime and interval data types
	1.2.12. Automatic input data conversion
	1.2.13. Versatile field alignment and multi-row fields
	1.2.14. Multi-column reports
	1.2.15. Miscellaneous layout details
	1.2.16. Multiple output formats
	1.2.17. Extensive set of unit tests
	1.2.18. Standard Linux dependencies

	1.3. OpenCReports planned features
	1.3.1. Graph and chart support in HTML and PDF output
	1.3.2. Visual editor for report XML descriptions

	Chapter 2. Data sources and queries
	2.1. Data sources
	2.1.1. SQL based data sources
	2.1.1.1. MariaDB/MySQL data source
	2.1.1.2. PostgreSQL data source
	2.1.1.3. ODBC data source
	2.1.1.4. Special note for SQL datasources

	2.1.2. File based data sources
	2.1.2.1. CSV file type
	2.1.2.2. JSON file type
	2.1.2.3. XML file type
	2.1.2.4. Spreadsheet file types

	2.1.3. Application data based datasource
	2.1.4. Application defined data sources

	2.2. Queries
	2.2.1. SQL queries
	2.2.2. File queries
	2.2.3. Data queries
	2.2.4. Relation between queries
	2.2.4.1. Follower queries
	2.2.4.1.1. Regular follower queries
	2.2.4.1.2. N:1 follower queries
	2.2.4.1.3. Note on follower queries

	2.2.4.2. Independent queries

	Chapter 3. Expressions in OpenCReports
	3.1. Introduction
	3.2. Constants
	3.2.1. String literals
	3.2.2. Numeric constants
	3.2.3. Boolean constants
	3.2.4. Datetime constants
	3.2.5. Constant expressions

	3.3. Delayed (precalculated) expressions
	3.4. Identifiers
	3.4.1. Identifier names
	3.4.2. Query field identifiers
	3.4.3. User defined variables
	3.4.4. Special purpose identifier domains
	3.4.4.1. Environment variables
	3.4.4.2. Internal report variables
	3.4.4.2.1. Current page number
	3.4.4.2.2. Total number of pages
	3.4.4.2.3. Line number
	3.4.4.2.4. Detail count
	3.4.4.2.5. Field value
	3.4.4.2.6. Report output format value
	3.4.4.2.7. Expression self reference
	3.4.4.2.8. Subexpressions of user-defined variables

	3.4.4.3. Quoted and dot-prefixed identifiers
	3.4.4.4. Dot-prefixed identifiers
	3.4.4.5. Quoted special purpose identifier domains

	3.5. Operators and functions
	3.5.1. Ternary operator
	3.5.2. Boolean logic operators with two operands
	3.5.3. Bitwise operators with two operands
	3.5.4. Equality and inequality comparison operators
	3.5.4.1. Equality and inequality comparison operators on vectors

	3.5.5. Other comparison operators
	3.5.5.1. Other comparison operators on vectors

	3.5.6. Bitwise shifts
	3.5.7. Addition and subtraction
	3.5.8. Multiplication, division and modulo (remainder)
	3.5.9. Power-of operator
	3.5.10. Factorial operator
	3.5.11. Unary plus and minus, logical and bitwise NOT, prefix increment and decrement
	3.5.12. Postfix increment and decrement
	3.5.13. Function calls and implicit multiplication
	3.5.14. Parentheses
	3.5.15. A note on token matching, precendence and syntax errors

	Chapter 4. Functions
	4.1. Introduction
	4.2. Arithmetic functions
	4.2.1. abs()
	4.2.2. div()
	4.2.3. factorial()
	4.2.4. fmod()
	4.2.5. mod()
	4.2.6. mul()
	4.2.7. remainder()
	4.2.8. uminus()
	4.2.9. uplus()

	4.3. Bitwise functions
	4.3.1. and()
	4.3.2. not()
	4.3.3. or()
	4.3.4. shl()
	4.3.5. shr()
	4.3.6. xor()

	4.4. Boolean logic functions
	4.4.1. land()
	4.4.2. lnot()
	4.4.3. lor()

	4.5. Comparison functions
	4.5.1. eq()
	4.5.2. ge()
	4.5.3. gt()
	4.5.4. le()
	4.5.5. lt()
	4.5.6. ne()

	4.6. Rounding and related functions
	4.6.1. ceil()
	4.6.2. floor()
	4.6.3. rint()
	4.6.4. round()
	4.6.5. trunc()

	4.7. Exponential, logarithmic and related functions
	4.7.1. exp()
	4.7.2. exp10()
	4.7.3. exp2()
	4.7.4. ln()
	4.7.5. log()
	4.7.6. log10()
	4.7.7. log2()
	4.7.8. pow()
	4.7.9. sqr()
	4.7.10. sqrt()

	4.8. Trigonometric functions
	4.8.1. acos()
	4.8.2. asin()
	4.8.3. atan()
	4.8.4. cos()
	4.8.5. cot()
	4.8.6. csc()
	4.8.7. sec()
	4.8.8. sin()
	4.8.9. tan()

	4.9. String functions
	4.9.1. concat()
	4.9.2. left()
	4.9.3. lower()
	4.9.4. mid()
	4.9.5. proper()
	4.9.6. right()
	4.9.7. strlen()
	4.9.8. upper()

	4.10. Datetime functions
	4.10.1. chgdateof()
	4.10.2. chgtimeof()
	4.10.3. date()
	4.10.4. dateof()
	4.10.5. day()
	4.10.6. dim()
	4.10.7. dtos()
	4.10.8. dtosf()
	4.10.9. gettimeinsecs()
	4.10.10. interval()
	4.10.11. month()
	4.10.12. now()
	4.10.13. settimeinsecs()
	4.10.14. stdwiy()
	4.10.15. stod()
	4.10.16. stodt()
	4.10.17. stodtsql()
	4.10.18. timeof()
	4.10.19. tstod()
	4.10.20. wiy()
	4.10.21. wiy1()
	4.10.22. wiyo()
	4.10.23. year()

	4.11. Type agnostic functions
	4.11.1. add()
	4.11.2. dec()
	4.11.3. inc()
	4.11.4. sub()

	4.12. Formatting and conversion functions
	4.12.1. format()
	4.12.2. printf()
	4.12.3. str()
	4.12.4. val()

	4.13. Miscellaneous functions
	4.13.1. brrownum()
	4.13.2. error()
	4.13.3. eval()
	4.13.4. fxpval()
	4.13.5. iif()
	4.13.6. isdatetime()
	4.13.7. iserror()
	4.13.8. isnan()
	4.13.9. isnull()
	4.13.10. isnumeric()
	4.13.11. isstring()
	4.13.12. null()
	4.13.13. nulldt()
	4.13.14. nulln()
	4.13.15. nulls()
	4.13.16. prevval()
	4.13.17. random()
	4.13.18. rownum()
	4.13.19. translate()
	4.13.20. translate2()

	Chapter 5. Report variables
	5.1. Introduction to report variables
	5.2. Expression variables
	5.2.1. Variables with iterative expressions
	5.2.2. Expression variable examples

	5.3. Variable types for simple statistics
	5.3.1. Statistics variable examples

	5.4. Custom variables
	5.5. Precalculated variables

	Chapter 6. Report breaks
	6.1. Grouping data
	6.2. Report breaks in OpenCReports
	6.3. Resetting a variable on break boundaries
	6.4. Example

	Chapter 7. Formatting
	7.1. Formatting functions
	7.2. Format strings
	7.3. Legacy format strings
	7.3.1. Format string for strings
	7.3.2. Format string for numeric values
	7.3.3. Format string for datetime values

	7.4. New style format strings
	7.4.1. New style format string for strings
	7.4.2. New style format string for numeric data
	7.4.3. New style format string for monetary data
	7.4.4. New style format string for datetime values
	7.4.5. New style format string examples

	7.5. Second generation new style format strings
	7.5.1. 2nd gen new style format string for strings
	7.5.2. 2nd gen new style format string for numeric data
	7.5.3. 2nd gen new style format string for monetary data
	7.5.4. 2nd gen new style format string for datetime values
	7.5.5. 2nd gen new style format string examples

	7.6. The swiss army knife of formatting

	Chapter 8. Report XML description
	8.1. XML description structure
	8.1.1. Notes about XML syntax and attributes

	8.2. OpenCReport element
	8.2.1. Size unit attribute
	8.2.2. No query show NoData
	8.2.3. Report height after last
	8.2.4. Follower match single
	8.2.5. Precision bits
	8.2.6. Rounding mode
	8.2.7. Locale
	8.2.8. Translation settings

	8.3. Paths
	8.4. Datasources
	8.4.1. MariaDB (MySQL) database connection
	8.4.2. PostgreSQL database connection
	8.4.3. ODBC database connection
	8.4.4. CSV file datasource
	8.4.5. JSON file datasource
	8.4.6. XML file datasource
	8.4.7. Spreadsheet file datasource
	8.4.8. Array datasource
	8.4.9. Common datasource properties
	8.4.9.1. Encoding

	8.5. Queries
	8.5.1. SQL queries for SQL datasources
	8.5.2. Queries for file based datasources
	8.5.3. Queries for array based datasources
	8.5.4. Follower queries
	8.5.4.1. Regular follower queries
	8.5.4.2. N:1 follower queries

	8.6. Report parts
	8.6.1. Part attributes
	8.6.1.1. Font name
	8.6.1.2. Font size
	8.6.1.3. Size unit
	8.6.1.4. No query show NoData attribute
	8.6.1.5. Report height after last attribute
	8.6.1.6. Orientation
	8.6.1.7. Margin settings
	8.6.1.8. Paper type
	8.6.1.9. Iterations
	8.6.1.10. Suppress
	8.6.1.11. Suppress page header on the first page

	8.6.2. Part subsections
	8.6.2.1. Page header
	8.6.2.2. Page footer
	8.6.2.3. Part row

	8.7. Part row
	8.7.1. Part row attributes
	8.7.1.1. Layout
	8.7.1.2. New page
	8.7.1.3. Suppress

	8.8. Part column
	8.8.1. Part column attributes
	8.8.1.1. Width
	8.8.1.2. Height
	8.8.1.3. Border width
	8.8.1.4. Border color
	8.8.1.5. Detail columns
	8.8.1.6. Column padding
	8.8.1.7. Suppress

	8.9. Report
	8.9.1. Report attributes
	8.9.1.1. Font name
	8.9.1.2. Font size
	8.9.1.3. Size unit
	8.9.1.4. No query show NoData attribute
	8.9.1.5. Report height after last attribute
	8.9.1.6. Orientation
	8.9.1.7. Margin settings
	8.9.1.8. Paper type
	8.9.1.9. Height
	8.9.1.9.1. Report height in OpenCReports mode
	8.9.1.9.2. Report height in RLIB compatibility mode

	8.9.1.10. Iterations
	8.9.1.11. Suppress
	8.9.1.12. Suppress page header on the first page
	8.9.1.13. Query
	8.9.1.14. Field header priority
	8.9.1.15. Border width
	8.9.1.16. Border color
	8.9.1.17. Detail columns
	8.9.1.18. Column padding

	8.9.2. Report subsections
	8.9.2.1. Page header
	8.9.2.2. Page footer
	8.9.2.3. Report header
	8.9.2.4. Report footer
	8.9.2.5. Variables
	8.9.2.6. Breaks
	8.9.2.7. Detail
	8.9.2.8. Alternate output for no data

	8.10. Loaded report
	8.10.1. Loaded Report attributes
	8.10.1.1. File name
	8.10.1.2. Query
	8.10.1.3. Iterations

	8.11. Variables
	8.12. Variable
	8.12.1. Variable attributes
	8.12.1.1. Name
	8.12.1.2. Value
	8.12.1.3. Type
	8.12.1.3.1. Complete variable examples

	8.12.1.4. Custom variable attributes
	8.12.1.4.1. Custom variable example

	8.12.1.5. Reset on break
	8.12.1.6. Precalculate (delayed)

	8.13. Breaks
	8.14. Break
	8.14.1. Break attributes
	8.14.1.1. Name
	8.14.1.2. Header on new page
	8.14.1.3. Suppress break header and footer for blank break fields

	8.14.2. Break subsections
	8.14.2.1. BreakHeader
	8.14.2.2. BreakFooter
	8.14.2.3. BreakFields
	8.14.2.3.1. BreakField

	8.14.3. A complete break example

	8.15. Output
	8.15.1. Output attributes
	8.15.1.1. Suppress

	8.15.2. Output subsections
	8.15.2.1. Line
	8.15.2.2. HorizontalLine
	8.15.2.3. Image
	8.15.2.4. Barcode
	8.15.2.5. Image end

	8.16. Line
	8.16.1. Line attributes
	8.16.1.1. Font name
	8.16.1.2. Font size
	8.16.1.3. Bold font
	8.16.1.4. Italic font
	8.16.1.5. Suppress
	8.16.1.6. Text color
	8.16.1.7. Background color

	8.16.2. Line subsections
	8.16.2.1. Text element
	8.16.2.2. Image element
	8.16.2.3. Barcode element

	8.17. Text element
	8.17.1. Text element attributes
	8.17.1.1. Value
	8.17.1.2. Delayed (precalculated) value
	8.17.1.3. Format string
	8.17.1.3.1. Format attribute examples

	8.17.1.4. Width
	8.17.1.5. Alignment
	8.17.1.6. Text color
	8.17.1.7. Background color
	8.17.1.8. Font name
	8.17.1.9. Font size
	8.17.1.10. Bold font
	8.17.1.11. Italic font
	8.17.1.12. Web link
	8.17.1.13. Multi-line (memo) field
	8.17.1.14. Multi-line field hyphenation
	8.17.1.15. Multi-line field wrapping
	8.17.1.16. Multi-line field row limit
	8.17.1.17. Translation
	8.17.1.18. Column number

	8.18. HorizontalLine
	8.18.1. HorizontalLine attributes
	8.18.1.1. Line width
	8.18.1.2. Line alignment
	8.18.1.3. Indentation
	8.18.1.4. Length
	8.18.1.5. Font size
	8.18.1.6. Suppress
	8.18.1.7. Line color

	8.19. Image
	8.19.1. Image attributes
	8.19.1.1. File name
	8.19.1.2. Suppress
	8.19.1.3. Type
	8.19.1.4. Width
	8.19.1.5. Height
	8.19.1.6. Text width
	8.19.1.7. Background color
	8.19.1.8. Alignment

	8.20. Image end
	8.21. Barcode element
	8.21.1. Barcode element attributes
	8.21.1.1. Suppress
	8.21.1.2. Value
	8.21.1.3. Delayed (precalculated) value
	8.21.1.4. Barcode type
	8.21.1.5. Width
	8.21.1.6. Height
	8.21.1.7. Barcode color
	8.21.1.8. Barcode background color

	8.22. Color specification

	Chapter 9. High level C language API reference
	9.1. Header file
	9.2. High level C API
	9.2.1. Report handler initialization
	9.2.2. Load a report XML description
	9.2.3. Parse report XML description from a buffer
	9.2.4. Set report output format
	9.2.5. Get report output format as enum or string
	9.2.6. Set report output parameter
	9.2.7. Run the report
	9.2.8. Dump report result
	9.2.9. Get report result
	9.2.10. Get report content type
	9.2.11. Report handler destruction
	9.2.12. Get library version

	Chapter 10. Low level C language API reference
	10.1. Low level C API
	10.1.1. Numeric behavior related functions
	10.1.1.1. Set numeric precision
	10.1.1.2. Get numeric precision
	10.1.1.3. Set rounding mode

	10.1.2. Locale related functions
	10.1.2.1. Set up translation
	10.1.2.2. Set up translation (delayed variant)
	10.1.2.3. Set report locale
	10.1.2.4. Set report locale (delayed variant)
	10.1.2.5. Print monetary data in the report locale

	10.1.3. Data source and query related functions
	10.1.3.1. Add a datasource
	10.1.3.1.1. MariaDB connection parameters
	10.1.3.1.2. PostgreSQL connection parameters
	10.1.3.1.3. ODBC connection parameters
	10.1.3.1.4. Spreadsheet connection parameters

	10.1.3.2. Find a datasource
	10.1.3.3. Set the encoding of a datasource
	10.1.3.4. Free a datasource
	10.1.3.5. Add a direct data based query
	10.1.3.6. Add a symbolic data based query
	10.1.3.7. Add a file based query
	10.1.3.8. Add an SQL statement based query
	10.1.3.9. Test whether a datasource is direct data based
	10.1.3.10. Test whether a datasource is direct data based
	10.1.3.11. Test whether a datasource is file based
	10.1.3.12. Test whether a datasource is SQL based
	10.1.3.13. Find a query
	10.1.3.14. Get the current data row from a query
	10.1.3.15. Get column name
	10.1.3.16. Get column data
	10.1.3.17. Add a follower query
	10.1.3.18. Add an N:1 follower query
	10.1.3.19. Refresh query contents
	10.1.3.20. Free a query
	10.1.3.21. Start the main query
	10.1.3.22. Navigate to the next query row
	10.1.3.23. Navigate use previous/next row
	10.1.3.24. API specific data discovery function

	10.1.4. Expression related functions
	10.1.4.1. Parse an expression string
	10.1.4.2. Parse an expression string and bind it to a report
	10.1.4.3. Free an expression parse tree
	10.1.4.4. Get the original expression string
	10.1.4.5. Resolve expression references
	10.1.4.6. Optimize an expression
	10.1.4.7. Evaluate an expression
	10.1.4.8. Get expression result without evaluation
	10.1.4.9. Print an expression tree
	10.1.4.10. Print an expression tree with subexpressions and their results
	10.1.4.11. Count the number of expression nodes
	10.1.4.12. Initialize expression result type
	10.1.4.13. Set an error string as expression result
	10.1.4.14. Set start value flag for an iterative expression
	10.1.4.15. Get current value of an expression in base type
	10.1.4.16. Set current value of an expression in a base type
	10.1.4.17. Set nth value of an expression in a base type
	10.1.4.18. Compare the current of an expression with its previous value
	10.1.4.19. Set delayed flag of an expression
	10.1.4.20. Set field expression reference for an expression

	10.1.5. Column data or expression result related functions
	10.1.5.1. Create an expression result
	10.1.5.2. Get expression result type
	10.1.5.3. Copy an expression result
	10.1.5.4. Print an expression result
	10.1.5.5. Free an expression result
	10.1.5.6. Detect whether a column result is NULL
	10.1.5.7. Detect whether a column result is numeric
	10.1.5.8. Get the numeric value of a column result
	10.1.5.9. Detect whether a column result is string
	10.1.5.10. Get the string value of a column result
	10.1.5.11. Detect whether a column result is datetime
	10.1.5.12. Get the datetime value of a column result
	10.1.5.13. Detect whether a datetime column result is interval
	10.1.5.14. Detect whether a datetime column result has valid date
	10.1.5.15. Detect whether a datetime column result has valid time

	10.1.6. Variable related functions
	10.1.6.1. Create a basic variable
	10.1.6.2. Create a custom variable
	10.1.6.3. Get the variable type
	10.1.6.4. Get subexpressions of a variable
	10.1.6.5. Get precalculate flag for a variable
	10.1.6.6. Resolve a variable
	10.1.6.7. Evaluate a variable
	10.1.6.8. Iterate over variables of a report

	10.1.7. Break related functions
	10.1.7.1. Create a break
	10.1.7.2. Set attribute flag expressions for a break
	10.1.7.3. Get break using its name
	10.1.7.4. Get the name of a break
	10.1.7.5. Add a watched expression to a break
	10.1.7.6. Iterate over breaks of a report
	10.1.7.7. Resolve and optimize break fields
	10.1.7.8. Check whether the break triggers
	10.1.7.9. Check whether break field values are blank
	10.1.7.10. Reset variables for the break

	10.1.8. Function related functions
	10.1.8.1. Add a user defined function
	10.1.8.2. Find a named function
	10.1.8.3. Get number of operands for an expression (function)
	10.1.8.4. Get current value of a function operand

	10.1.9. Report part and report related functions
	10.1.9.1. Create a report part
	10.1.9.2. Create a row in a report part
	10.1.9.3. Create a column in report part row
	10.1.9.4. Create a new report in a part column
	10.1.9.5. Report part related iterators
	10.1.9.6. Set the main query for a report
	10.1.9.7. Get the current row number of the main query
	10.1.9.8. Resolve all report variables
	10.1.9.9. Evaluate all report variables
	10.1.9.10. Resolve all report breaks
	10.1.9.11. Resolve all report expressions
	10.1.9.12. Evaluate all report expressions

	10.1.10. Layout related functions
	10.1.10.1. Global layout options
	10.1.10.1.1. Set or get "size unit" option
	10.1.10.1.2. Set or get "no query show NoData" option
	10.1.10.1.3. Set or get "report height after last" option
	10.1.10.1.4. Set "follower match single" option
	10.1.10.1.5. Set or get "follower match single" option directly

	10.1.10.2. Report part options
	10.1.10.2.1. Set or get part iterations
	10.1.10.2.2. Set or get part font name
	10.1.10.2.3. Set or get part font size
	10.1.10.2.4. Set or get part paper type
	10.1.10.2.5. Set or get part paper's orientation
	10.1.10.2.6. Set or get part margins
	10.1.10.2.7. Set or get part suppression
	10.1.10.2.8. Set or get part's page header suppressed on the first page

	10.1.10.3. Part row options
	10.1.10.3.1. Set or get part row suppression
	10.1.10.3.2. Set or get part row new page
	10.1.10.3.3. Set or get part row layout mode

	10.1.10.4. Part column options
	10.1.10.4.1. Set or get part column suppression
	10.1.10.4.2. Set or get part column width
	10.1.10.4.3. Set or get part column height
	10.1.10.4.4. Set or get part column border width
	10.1.10.4.5. Set or get part column border color
	10.1.10.4.6. Set or get part column's number of detail columns
	10.1.10.4.7. Set or get part column's detail column padding

	10.1.10.5. Report options
	10.1.10.5.1. Set or get report suppression
	10.1.10.5.2. Set or get report iterations
	10.1.10.5.3. Set or get report font name
	10.1.10.5.4. Set or get report font size
	10.1.10.5.5. Set or get report height
	10.1.10.5.6. Set or get report's field header priority

	10.1.10.6. Get part layout sections
	10.1.10.7. Set report for part layout sections
	10.1.10.8. Get report layout sections
	10.1.10.8.1. Miscellaneous report layout and line element functions

	10.1.10.9. Get break layout sections
	10.1.10.10. Set output section global settings
	10.1.10.10.1. Set or get output section suppression

	10.1.10.11. Add a text line to an output section
	10.1.10.12. Text line settings
	10.1.10.12.1. Set or get line font name
	10.1.10.12.2. Set line font size
	10.1.10.12.3. Set or get line bold value
	10.1.10.12.4. Set or get line italic value
	10.1.10.12.5. Set or get line suppression
	10.1.10.12.6. Set or get line text color
	10.1.10.12.7. Set or get line background color

	10.1.10.13. Add a text element to a text line
	10.1.10.14. Text element settings
	10.1.10.14.1. Set text element literal value
	10.1.10.14.2. Set or get text element value
	10.1.10.14.3. Set or get text element value's delayed property
	10.1.10.14.4. Set or get text element format string
	10.1.10.14.5. Set or get text element translation
	10.1.10.14.6. Set or get text element field width
	10.1.10.14.7. Set or get text element alignment
	10.1.10.14.8. Set or get text element text color
	10.1.10.14.9. Set or get text element background color
	10.1.10.14.10. Set or get text element font name
	10.1.10.14.11. Set or get text element font size
	10.1.10.14.12. Set or get text element bold value
	10.1.10.14.13. Set or get text element italic value
	10.1.10.14.14. Set or get text element link URL
	10.1.10.14.15. Set or get text element multiline property
	10.1.10.14.16. Set or get text element "hyphenate" property
	10.1.10.14.17. Set or get text element "wrap at characters" property
	10.1.10.14.18. Set or get text element maximum lines

	10.1.10.15. Add a horizontal line to an output section
	10.1.10.16. Horizontal line settings
	10.1.10.16.1. Set or get horizontal line size (width)
	10.1.10.16.2. Set or get horizontal line alignment
	10.1.10.16.3. Set or get horizontal line indentation
	10.1.10.16.4. Set or get horizontal line length
	10.1.10.16.5. Set or get horizontal line font size
	10.1.10.16.6. Set or get horizontal line suppression
	10.1.10.16.7. Set or get horizontal line color

	10.1.10.17. Add a barcode to an output section
	10.1.10.18. Add a barcode to a text line
	10.1.10.19. Barcode settings
	10.1.10.19.1. Set or get barcode value
	10.1.10.19.2. Set or get barcode value delayed
	10.1.10.19.3. Set or get barcode suppression
	10.1.10.19.4. Set or get barcode type
	10.1.10.19.5. Set or get barcode width
	10.1.10.19.6. Set or get barcode width
	10.1.10.19.7. Set or get barcode line color
	10.1.10.19.8. Set or get barcode background color

	10.1.10.20. Add an image to an output section
	10.1.10.21. Add an image to a text line
	10.1.10.22. Image settings
	10.1.10.22.1. Set or get image value
	10.1.10.22.2. Set or get image suppression
	10.1.10.22.3. Set or get image type
	10.1.10.22.4. Set or get image width
	10.1.10.22.5. Set or get image height
	10.1.10.22.6. Set or get image alignment
	10.1.10.22.7. Set or get image background color
	10.1.10.22.8. Set or get image field width

	10.1.10.23. Add an image end marker to an output section

	10.1.11. Callback related functions
	10.1.11.1. Add a "part added" callback
	10.1.11.2. Add a "report added" callback
	10.1.11.3. Add an "all precalculations done" callback
	10.1.11.4. Add a "part iteration" callback
	10.1.11.5. Add a "report started" callback
	10.1.11.6. Add a "report done" callback
	10.1.11.7. Add a "new row" callback
	10.1.11.8. Add a "report iteration done" callback
	10.1.11.9. Add a "report precalculation done" callback
	10.1.11.10. Add a "break triggers" callback

	10.1.12. Environment related functions
	10.1.12.1. Indirect function to get an environment variable
	10.1.12.2. Set the environment query function
	10.1.12.3. C API environment query function
	10.1.12.4. Add an "m" domain variable

	10.1.13. File handling related functions
	10.1.13.1. Return a canonical file path
	10.1.13.2. Add search path
	10.1.13.3. Add search path (delayed variant)
	10.1.13.4. Resolve search paths
	10.1.13.5. Find a file

	10.1.14. Color related functions
	10.1.14.1. Find a color by its name

	10.1.15. Paper size related functions
	10.1.15.1. Get the system default paper
	10.1.15.2. Get the paper specified by name
	10.1.15.3. Set the global paper
	10.1.15.4. Set global paper specified by name
	10.1.15.5. Get currently set global paper
	10.1.15.6. Iterate over paper sizes

	10.1.16. Memory handling related functions
	10.1.16.1. Indirect function pointers
	10.1.16.2. Allocate memory
	10.1.16.3. Reallocate memory
	10.1.16.4. Reallocate array of memory
	10.1.16.5. Free memory
	10.1.16.6. Duplicate C string
	10.1.16.7. Duplicate C string up to the specified length
	10.1.16.8. Free a C string
	10.1.16.9. Set indirect allocation functions

	10.1.17. List related functions
	10.1.17.1. Get the list length
	10.1.17.2. Make a list from one element
	10.1.17.3. Make a list from multiple elements
	10.1.17.4. Get the last element of a list
	10.1.17.5. Get the nth element of a list
	10.1.17.6. Append a new element to a list
	10.1.17.7. Append to list using the last element
	10.1.17.8. Prepend a new element to a list
	10.1.17.9. Remove a data element from a list
	10.1.17.10. Remove a data element from a list and update the last link
	10.1.17.11. Get next link in the list
	10.1.17.12. Get the data element from a list
	10.1.17.13. Free a list
	10.1.17.14. Free a list and its data elements

	10.1.18. String related functions
	10.1.18.1. Create a new string
	10.1.18.2. Create a new string with specified allocated length
	10.1.18.3. Create a string from a formatted string with maximum length
	10.1.18.4. Create a string from a formatted string
	10.1.18.5. Resize a string
	10.1.18.6. Free a string
	10.1.18.7. Append a C string of the specified length to a string
	10.1.18.8. Append a binary string of the specified length to a string
	10.1.18.9. Append a C string of unspecified length to a string
	10.1.18.10. Append a byte to a string
	10.1.18.11. Append a formatted string to a string

	Chapter 11. Implement a datasource input driver
	11.1. Datasource input driver registration API
	11.1.1. Register a datasource input driver
	11.1.2. Get a datasource input driver

	11.2. Datasource input driver details
	11.2.1. Datasource input driver interface

	11.3. Helper functions to implement a datasource input driver
	11.3.1. Get the parent pointer of a datasource
	11.3.2. Get the name of a datasource
	11.3.3. Get the input driver pointer of a datasource
	11.3.4. Set the private pointer of a datasource
	11.3.5. Get the private pointer of a datasource
	11.3.6. Allocate a query structure
	11.3.7. Get the query name
	11.3.8. Get the datasource pointer of a query
	11.3.9. Set the private pointer of a query
	11.3.10. Get the private pointer of a query
	11.3.11. Set current row of a query all NULL
	11.3.12. Set a column value of a query

	Chapter 12. PHP language API reference
	12.1. The OpenCReports PHP module
	12.2. The OpenCReport class
	12.3. High level PHP API
	12.3.1. Constructor
	12.3.2. Load a report XML description
	12.3.3. Set report output format
	12.3.4. Get report output format
	12.3.5. Get report output format name
	12.3.6. Set report output parameter
	12.3.7. Run the report
	12.3.8. Dump report result
	12.3.9. Get report result
	12.3.10. Get report content type
	12.3.11. Get library version

	12.4. Low level PHP API
	12.4.1. Numeric behavior related methods
	12.4.1.1. Set numeric precision
	12.4.1.2. Get numeric precision
	12.4.1.3. Set rounding mode

	12.4.2. Locale related methods
	12.4.2.1. Set up translation
	12.4.2.2. Set report locale

	12.4.3. Data source and query related methods
	12.4.3.1. Add a datasource
	12.4.3.2. Get a named datasource
	12.4.3.3. Get a named query
	12.4.3.4. Refresh the internal representation of array queries

	12.4.4. Expression related methods
	12.4.4.1. Parse an expression
	12.4.4.2. Add a custom report function

	12.4.5. Layout part related methods
	12.4.5.1. Add a new report (layout) part
	12.4.5.2. Get first (layout) part
	12.4.5.3. Set paper type
	12.4.5.4. Set or get size unit
	12.4.5.5. Set or get "no query show NoData" property
	12.4.5.6. Set or get "report height after last" property
	12.4.5.7. Set or get "follower match single" property

	12.4.6. Callback related methods
	12.4.7. Environment related methods
	12.4.8. Add "m" domain variable
	12.4.9. Result related methods
	12.4.10. Path related methods
	12.4.10.1. Add a search path
	12.4.10.2. Canonicalize path
	12.4.10.3. Find a file

	12.4.11. Color related methods

	12.5. The OpenCReport\Datasource class
	12.5.1. Free a datasource
	12.5.2. Add a query to the datasource
	12.5.3. Set datasource encoding

	12.6. The OpenCReport\Query class
	12.6.1. Get result for a query's current row
	12.6.2. Start navigation for a query
	12.6.3. Navigate to the next row
	12.6.4. Navigate use previous/next row
	12.6.5. Add a query follower
	12.6.6. Add an N:1 query follower
	12.6.7. Free a query

	12.7. The OpenCReport\QueryResult class
	12.7.1. Get number of columns for a query result
	12.7.2. Get the nth column name for a query result
	12.7.3. Get the nth column result for a query result

	12.8. The OpenCReport\Expr class
	12.8.1. Free an expression
	12.8.2. Get the original expression string
	12.8.3. Print an expression
	12.8.4. Get the number of expression tree nodes
	12.8.5. Resolve an expression
	12.8.6. Optimize an expression
	12.8.7. Evaluate an expression
	12.8.8. Get the result of an expression
	12.8.9. Set expression result to a string value
	12.8.10. Set expression result to a long value
	12.8.11. Set expression result to a double value
	12.8.12. Set expression result to a numeric value from string
	12.8.13. Get number of operands of a expression
	12.8.14. Get nth operands' result of a expression
	12.8.15. Compare the expression's current and previous results
	12.8.16. Initialize expression results
	12.8.17. Get string value of an expression
	12.8.18. Get long value of an expression
	12.8.19. Get double value of an expression
	12.8.20. Get numeric value of an expression as a string
	12.8.21. Set nth result of an expression to a string value
	12.8.22. Set nth result of an expression to a long value
	12.8.23. Set nth result of an expression to a double value
	12.8.24. Set iterative start flag of an expression
	12.8.25. Set expression to delayed

	12.9. The OpenCReport\Result class
	12.9.1. Free a result object
	12.9.2. Copy a result object
	12.9.3. Print a result object
	12.9.4. Get result object value type
	12.9.5. Detect whether result object value is NULL
	12.9.6. Detect whether result object value is a string
	12.9.7. Detect whether result object value is a number
	12.9.8. Get string value of a result object
	12.9.9. Get numeric value of a result object as a string

	12.10. The OpenCReport\Part class
	12.10.1. Get the next report part
	12.10.2. Create a new report part row
	12.10.3. Get the first report part row
	12.10.4. Add iteration callback for the part
	12.10.5. Check whether two parts are identical
	12.10.6. Set or get number of part iterations
	12.10.7. Set or get part font name
	12.10.8. Set or get part font size
	12.10.9. Set or get paper type
	12.10.10. Set or get part orientation
	12.10.11. Set or get part top margin
	12.10.12. Set or get part bottom margin
	12.10.13. Set or get part left margin
	12.10.14. Set or get part right margin
	12.10.15. Set or get part suppression
	12.10.16. Set or get suppression of the page header on the first page
	12.10.17. Get the part's page header
	12.10.18. Set the report object for the part's page header
	12.10.19. Get the part's page footer
	12.10.20. Set the report object for the part's page footer

	12.11. The OpenCReport\Row class
	12.11.1. Get the next part row
	12.11.2. Create a new part column for the row
	12.11.3. Get first column of a part row
	12.11.4. Set or get suppression for the part row
	12.11.5. Set or get new page for the part row
	12.11.6. Set or get layout type for the part row

	12.12. The OpenCReport\Column class
	12.12.1. Get next column
	12.12.2. Create a new report in the column
	12.12.3. Get first report of a part column
	12.12.4. Set or get part column suppression
	12.12.5. Set or get part column width
	12.12.6. Set or get part column height
	12.12.7. Set or get border width
	12.12.8. Set or get border color
	12.12.9. Set or get number of detail columns
	12.12.10. Set or get column padding

	12.13. The OpenCReport\Report class
	12.13.1. Get the next report
	12.13.2. Create a new report variable
	12.13.3. Create a new custom report variable
	12.13.4. Get the first variable of a report
	12.13.5. Parse and expression for the report
	12.13.6. Get the error after a failed expression parsing
	12.13.7. Resolve variables of the report
	12.13.8. Evaluate variables of the report
	12.13.9. Create a new report break
	12.13.10. Get a report break by its name
	12.13.11. Get the first report break
	12.13.12. Resolve breaks of the report
	12.13.13. Get the current row number of the main query
	12.13.14. Add a "report start" callback
	12.13.15. Add a "report done" callback
	12.13.16. Add a "new row" callback
	12.13.17. Add an "iteration done" callback
	12.13.18. Add a "precalculation done" callback
	12.13.19. Check whether two report objects are the same
	12.13.20. Set the report's main query
	12.13.21. Set the report's main query by name
	12.13.22. Set or get the report suppression
	12.13.23. Set or get number of iterations for the report
	12.13.24. Set or get the font name for the report
	12.13.25. Set or get the font size for the report
	12.13.26. Set or get the report height
	12.13.27. Set or get the report's field header prioroty
	12.13.28. Get output sections of the report

	12.14. The OpenCReport\Variable class
	12.14.1. Get the base expression of a variable
	12.14.2. Get the ignore expression of a variable
	12.14.3. Get the first intermediary expression of a variable
	12.14.4. Get the second intermediary expression of a variable
	12.14.5. Get the result expression of a variable
	12.14.6. Get the variable type
	12.14.7. Get the variable precalculated flag
	12.14.8. Resolve expressions of a variable
	12.14.9. Evaluate expressions of a variable
	12.14.10. Get the next variable of the same report

	12.15. The OpenCReport\ReportBreak class
	12.15.1. Get next break
	12.15.2. Add a breakfield to a break
	12.15.3. Check breakfields
	12.15.4. Reset variables associated with a break
	12.15.5. Add a "trigger" callback to a break
	12.15.6. Get the name of a break
	12.15.7. Get output sections of a break

	12.16. The OpenCReport\Output class
	12.16.1. Set or get suppression of the output section
	12.16.2. Add a (text) line
	12.16.3. Add a horizontal line
	12.16.4. Add an image
	12.16.5. Add a barcode
	12.16.6. Add an image end marker
	12.16.7. Get the first output element

	12.17. The OpenCReport\Line class
	12.17.1. Set or get the font name for the line
	12.17.2. Set or get the font size for the line
	12.17.3. Set or get the font's bold flag for the line
	12.17.4. Set or get the font's italic flag for the line
	12.17.5. Set or get line suppression
	12.17.6. Set or get text color for the line
	12.17.7. Set or get background color for the line
	12.17.8. Add a text element to the line
	12.17.9. Add an image element to the line
	12.17.10. Get the first line element

	12.18. The OpenCReport\HorizontalLine class
	12.18.1. Set the line width
	12.18.2. Set or get the line alignment
	12.18.3. Set or get the line indentation
	12.18.4. Set or get the line length
	12.18.5. Set or get the line's font size
	12.18.6. Set or get the suppression flag for the line
	12.18.7. Set or get the line color

	12.19. The OpenCReport\Image class
	12.19.1. Set or get the file name of the image
	12.19.2. Set or get the suppression flag for the image
	12.19.3. Set or get the image type
	12.19.4. Set or get the image width
	12.19.5. Set or get the image height
	12.19.6. Set or get the image alignment
	12.19.7. Set or get the image background color
	12.19.8. Set or get the image "text width"

	12.20. The OpenCReport\Text class
	12.20.1. Set literal value
	12.20.2. Set or get expression value
	12.20.3. Set or get delayed flag for the field expression
	12.20.4. Set or get the format string for the field expression
	12.20.5. Set or get the translation flag for the field expression
	12.20.6. Set or get the field width
	12.20.7. Set or get the field alignment
	12.20.8. Set or get the field text color
	12.20.9. Set or get the field background color
	12.20.10. Set or get the field font name
	12.20.11. Set or get the field font size
	12.20.12. Set or get the field's bold flag
	12.20.13. Set or get the field's italic flag
	12.20.14. Set or get the field's link
	12.20.15. Set or get the field's memo flag
	12.20.16. Set or get the field's "hyphenate" flag
	12.20.17. Set or get the field's "wrap at characters" flag
	12.20.18. Set or get the field's maximum number of lines

	12.21. The OpenCReport\Barcode class
	12.21.1. Set or get the barcode value
	12.21.2. Set or get the barcode value delayed
	12.21.3. Set or get the barcode suppression
	12.21.4. Set or get the barcode type
	12.21.5. Set or get the barcode width
	12.21.6. Set or get the barcode height
	12.21.7. Set or get the barcode image line color
	12.21.8. Set or get the barcode image background color

	12.22. The OpenCReport\OutputElement class
	12.23. The OpenCReport\LineElement class
	12.24. RLIB compatibility API
	12.24.1. Initialize a report
	12.24.2. Destroy a report
	12.24.3. Get library version
	12.24.4. Add a MySQL/MariaDB datasource
	12.24.5. Add a MySQL/MariaDB datasource from an INI group
	12.24.6. Add a PostgreSQL datasource
	12.24.7. Add an ODBC datasource
	12.24.8. Add an array datasource
	12.24.9. Add an XML datasource
	12.24.10. Add a CSV datasource
	12.24.11. Add a query
	12.24.12. Add a resultset follower
	12.24.13. Add a resultset N:1 follower
	12.24.14. Set datasource encoding
	12.24.15. Add a report XML
	12.24.16. Add a report XML from buffer
	12.24.17. Add a search path
	12.24.18. Set locale
	12.24.19. Setup translation
	12.24.20. Set output format
	12.24.21. Add a custom report function
	12.24.22. Set output encoding
	12.24.23. Add a report parameter
	12.24.24. Set an output parameter
	12.24.25. Refresh array query contents
	12.24.26. Add an event callback
	12.24.27. Execute the report
	12.24.28. Dump the report output
	12.24.29. Get content type
	12.24.30. Set radix character
	12.24.31. Compile and evaluate an expression
	12.24.32. Add graph background region
	12.24.33. Clear graph background region
	12.24.34. Set graph minor tick
	12.24.35. Set graph minor tick by location

	Chapter 13. Examples
	13.1. Simple report example
	13.1.1. Data
	13.1.2. C program code
	13.1.3. PHP program code
	13.1.4. RLIB compatible PHP program code
	13.1.5. Report description
	13.1.6. Report PDF result

	13.2. Simple report example with data access in code
	13.2.1. Data
	13.2.2. C program code
	13.2.3. PHP program code
	13.2.4. RLIB compatible PHP program code
	13.2.5. Report description
	13.2.6. Report PDF result

	13.3. Colors, images, horizontal lines and fonts
	13.3.1. Data
	13.3.2. C program code
	13.3.3. PHP program code
	13.3.4. RLIB compatible PHP program code
	13.3.5. Report description
	13.3.6. Report PDF result

	13.4. Report variables and breaks
	13.4.1. Data
	13.4.2. C program code
	13.4.3. PHP program code
	13.4.4. RLIB compatible PHP program code
	13.4.5. Report description
	13.4.6. Report PDF result

	13.5. Follower queries
	13.5.1. Data
	13.5.2. C program code
	13.5.3. PHP program code
	13.5.4. RLIB compatible PHP program code
	13.5.5. Report description
	13.5.6. Report PDF result

	13.6. N:1 follower queries
	13.6.1. Data
	13.6.2. C program code
	13.6.3. PHP program code
	13.6.4. RLIB compatible PHP program code
	13.6.5. Report description
	13.6.6. Report PDF result

	13.7. N:1 follower queries (RLIB compatibility limits)
	13.7.1. Data
	13.7.2. C program code
	13.7.3. PHP program code
	13.7.4. RLIB compatible PHP program code
	13.7.5. Report description
	13.7.6. Report PDF result

	Chapter 14. GNU Free Documentation License

