OpenCReports 0.8.14 Manual

Zoltan Boszérményi

OpenCReports 0.8.14 Manual
Zoltan Boszérményi
Copyright © 2019-2025 Zoltan Bdszorményi

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free
Documentation License".

Table of Contents

1. INtroduction N0 CONCEPLSeeerti ittt ettt e e et e ettt e et et e e e ebb e e e eene e eeeees 1
1.1. The predecessor: RLIBccooiiiiiiiiii ettt et 1
L.2. COMCEPLS ...ttt ettt et e e 1

1.2.1. What iS & report geNEIator?eeeeeun et eeeii e et eeti e e e eenens 1
1.2.2. XML based report deSCriplioncoeeveieiiiiieieiiie e 1
1.2.3. Comprehensive APl fOr report Creationoveveeveieveiiinneiiiieeeeei e 1
1.2.4. SHICL EXPIrESSION PAISEYeeeertneeeitiaeeteti e eeeti e e eett e e e eert e e eert e eeennaaeees 1
1.2.5. EXPression OptimiZationeeeeueneeeiiiie e 2
1.2.6. REPOIt VariablEScceeeiciie e 2
1.2.7. REPOIt Breaks ... 2
1.2.8. Extensive and extensible set of fUNCLIONSc..ovviiiiiiiiii e, 2
1.2.9. UTF-8 String handlingc..uieiiiiiiiiiiiiieeii e 2
1.2.10. High precision NUMENC dalatyPeccvuurieieiiieeieeii e 2
1.2.11. Datetime and interval dafatyPeSuuviieriiiiiiiii e 2
1.2.12. Automatic iNPut data CONVEISIONcceuuneeiiiiieeieti e et e et e e e eeens 2
1.2.13. Versdtile field alignment and multi-row fieldscoiiiiiiiiiiiinene, 3
1.2.24. MUIti-COIUMN FEPOMTS ... eeeeei ettt ettt e e et e et eeeena e eeens 3
1.2.15. Miscellaneous layout detailSveeiiiiiiieiiii e 3
1.2.16. Multiple OULPUL TOMMELSceeveieiiii e 3
1.2.17. EXtensiVe set Of UNIT tESIS ...ccvvvuiiiiiiie e 3
1.2.18. Standard LinuX dependenCiesvveveriiieiiii et 3
1.3. OpenCReports planned FEALUINEScoeuuiieiiiii e 4
1.3.1. Graph and chart support in HTML and PDF OUEPULoocevviiiieiiiiieeenn. 4
1.3.2. Visual editor for report XML desCriptionsooeeveviieeiiiinneeieiiiaeeeeiinee. 4

2. Data SOUICES @NU QUENTESiieii et ettt e ettt e et ettt e et e e et et e e et et e e e eebe e eeeebeaeeeees 5

2.1, DEEA SOUICESvueetee ettt ettt ettt ettt e e et et et e e e e e e e e e e ee 5
2.1.1. SQL based data SOUICESc.uueieeeiiieeei et e e e e e e et e e e e e eeenns 5
2.1.2. File based dal@ SOUICEScuuuuieiiiii ettt e 6
2.1.3. Application data based dataSourCecccuuuiiiiriiiieiiiine e 8
2.1.4. Application defined data SOUMCESocevvtiiieiiiiie e 8

A O 1 = 1= S PP 8
221, SQL QUENTES ..ttt ettt ettt ettt et e e aee 8
222 FIlE QUEITES ..o 9
2.2.3. DA QUENTES ...ceeetteeeeeie ettt ettt et e e e et e e eee 9
2.2.4. Relation DEWEEN QUENTEScoiiiiieceei e 9

3. EXPressions in OPENCREPOISuiiiiiieiiiie ettt et e e e e e 11
I3 B [L (oo (8o (o o EO PP PP 11
3.2, CONSLANES ...ttt 11

321 SHNG HEErAlS .. 11
3.2.2. NUMENIC CONSLANES ...eevteeeitieee et e ettt e et e e et e e e e eeees 12
3.2.3. BOOIEAN CONSLANLS ... eeeeetieeeiii et ettt e e e e e e e eeenns 13
3.2.4, DAEiME CONSLANEScevvvieeiiii et 13
3.2.5. CONSLANt EXPIESSIONSeeeertneeeeiteeeeett e e eett e e eeti e e eett e e eent e e eereaeeee 13

3.3. Delayed (precalculated) EXPreSSIONSuuieierriieeiiti ettt e et e e e e e e eeaes 13

o [L= 0 1] L= £SO P TT PP PP UPPPPT 13
AL 1dentifier NAMESiiiii e 14
3.4.2. Query field identifiersc..uuiiiiiii e 14
3.4.3. User defined variableSooeiiiiiiii e 14
3.4.4. Special purpose identifier doMaiNScoeuveieiiiiiieiii e 14

3.5. Operators and fUNCHIONScoeetiieiiii ettt 18
T B = 107 g 0] = (o PP UPP 18
3.5.2. Boolean logic operators with two operandscc.eeeeveviiiieiiiiineeeeiien, 18
3.5.3. Bitwise operators With tWo OperandsSoeveevuuieieiiiiieieiieeeeie e 18
3.5.4. Equality and inequality compariSon OPEratorscceevuuieieeiineeeeniieeeennn 18
3.5.5. Other comMpPariSon OPEIAIOISceereuneieiir et e et et e s 19

OpenCReports 0.8.14 Manual

3.5.6. BItWISE SNITES ..vuuiiiiiii i 19
3.5.7. Addition and SUBLFaCLiONuuiiiiiiieiiii e 19
3.5.8. Multiplication, division and modulo (remainder)c..ccooeevviieiiiieeiineennnn. 19
3.5.9. POWEr-0f OPEIAIONiveiiiiei e e e e e e e 19
3.5.10. Factorial OPEIaLOruveeeeeeieee e e e e e e e e e e e e aen 19
3.5.11. Unary plus and minus, logical and bitwise NOT, prefix increment and
(0 [C o 0= 11 o PP 19
3.5.12. Postfix increment and decrementoovvevuiieveeiinieriiine e 19
3.5.13. Function calls and implicit multiplicationc.cccoiviiiiiiiiicin e, 20
B5.14. PalrenthiBSES .. it 21
3.5.15. A note on token matching, precendence and syntax erorscceeeeeen.. 21
0 (o PP 22
g I g1 o [F o o o PSP 22
4.2, ArithmEtic FUNCHIONS ...vuiiieii e e e e eeees 22
A2 0, @DS() weuieieii e 22
A.2.2. GIV() ceeeeiie et 22
G T - ox (o) (- I) T 22
A.2.4, TMOU() .eerneei e 22
ST 1110 o | 22
A.2.6. NUI() eeeeei et ar e aee 22
A R (= 117 1110 L=) P 23
TV 0 11 1 T 23
e BV |11) 23
4.3, BIitWiSe FUNCHIONS ...eevii e e 23
35 I 1o [PP SPPPIN 23
G B o To (S 23
T T o () 23
= | TP 23
G S T o) PSP 23
G ST (o) TP 23
4.4. Boolean [0giC FUNCLIONScvuiiiii e e e e aeas 23
o T =0T [ISP 23
N 14 o 24
e T o () S 24
4.5, CompariSoN FUNCHIONSu.iiiicii e e e e e e et e e e e aaeees 24
TN = o O UPPPTPPN 24
o =) O SPPPRPPRN 24
5.3, GU() - eeeeeini et 24
Y S = PP 24
IS T | 1 PP 24
Y T <) USRI 24
4.6. Rounding and related fUNCLIONScccuiiiiiiecie e 24
3 o= | PPN 24
7 { [(P 24
G T 1T (PN 25
G A T 4 o 25
T 1 11 To () 25
4.7. Exponential, logarithmic and related fUNCLONSccvviiiiiiiiiieiie e 25
5 T = o T 25
A.7.2. EXPL0O() eeetnieeeiii ettt e e e e e e e a e aaaa 25
7.3, EXP2() o eeeeernee et e et e a e e e aae 25
S 1 o 1 PP 25
ST oo | T 25
G T oo L0 PP 25
R oo 12 PP 25
8 T oo 1/) TP 25
e T o () 25
O = 4) PP 26

OpenCReports 0.8.14 Manual

4.8. TrigoONOMELIC FUNCLIONSiiiiciii e e e e e e 26
N - oo = () P 26
A = 14 26
S T o SN 26
R A oo) P 26
S T v o 1) PR 26
T o= (P 26
T A = o (RSP 26
S T T oSSR 26
S T - 14 PP 26

e S 1o I 10 1 26
e B I o o { (N 26
e T 1 5) 26
e I T [0 Y=) T 27
e B S o o | 27
e N o (0] o= ¢ (N 27
4.9.6. TIGNE() ©vueere e 27
A.9.7. SITEN() ceeeneii e 27
e TV o o=) T 27

4.10. DAEtime fUNCLIONS ... ciieiiieiiii et e et e et e e e 27
4.10.1. chgdatEOF() ...vvvneiiieeii e 27
4.10.2. ChgtiMEOT() «.ovvnieii e e 27
0 T = 1= SN 27
O o = 1=) S 27
0 T = I 27
0 ST [y o 28
0o | = (U RSSN 28
4.10.8. GLOSF() +rvvvrrnnieeeeereeeiiiis s e e e e e e ee et s e e e e e e e e et e e e e e e e e aaa e 28
4.10.9. gELIMEINSECS() +vuivrneiiiieiii e e e e e e e e e e aens 28
0 (O 101 = V- | 28
a0 I O 2T 11 (P 28
0 23 To L PP 28
4.10.13. SEIMEINSECS) +uuevvneiiiieiii e e e e e e e e et e e e e e e e e et e e eaneeeeas 28
O = (o 1Y 28
0 ST (o [S SSUPPPRT 28
0T (o 1 { (U 29
O A= (o 1o (TS 29
O ST 1410 1 U P 29
0 T = (o o | U 29
0O R PP 29
0 Y S 29
4.10.22. WIYO() +evvvrnnieeeeeteeiiiiasseeeeeeaast e s e e e e e eeas b a e e e e e e e e et a e e e e aaarr 29
L0 T Y= 1 PP 29

4.11. Type agnOStiC FUNCHIONSuuiiiii e e e e e e 29
O o o [29
2 o =) O SSPPPPPT 30
0 T) U 30
= o PP 30

4.12. Formatting and conversion fUNCLIONSoviiiiiiiiiie e 30
a2 T {4 10 { (PP 30
2 1111 P 30
B 2 T) P 31
B 7 TP 31

4.13. MisCellan€OUS fUNCLIONSviiiii e e e e s 31
g 30 I o (11 U 1 31
B = 4 o () 31
4.13.3. BVAI() oo eeeieei e et e e e aaan 31
4134, FXPVAI() coeeeeeeeiie et 31

OpenCReports 0.8.14 Manual

35 T 1 1 SR 31
N TS o = = 11111 (S 32

N A T = 1 o () I 32
3 ST 1= o 1 P 32
I TR = 0 PP 32
B (O A= 00 1= 4 ' PP 32
g B 1= T o () P 32
I 35 23 T 1 32
7 30 1 T4 T o (P 32
41314, NUIINQ) e 32
3 ST 4 T 1= (U 32
B L o= YAV TP 32
g B A =2 To 1o) P 32
g B S T 0 117/ 11 03 P 33
4.13.19. rANS AE() ©vvvvnnieeeeeeeeiiiiie e e e e e e a e e aaaaaran 33
I O 1 =0~ - =2 (PSSP 33

5. REPOI Variables ... i 34
5.1. Introduction to report variableSvoiiiiiii e 34
5.2, EXPression Variablesccouiiiiiiic e 34
5.2.1. Variables with iterative eXpreSsionsc.vviviieeiiiiecie e 34

5.2.2. Expression variable eXamplescocouiiiiiiiiiiiec e 34

5.3. Variable types for SImple StatiStiCSuuvvvniiiieeiii e 34
5.3.1. Statistics variable eXampleSccuuiiiiiiiiiiiic e 35

5.4, CUSIOM VANADIESvviieiiiiie e 35
5.5. Precalculated VariableSvviiiiiiicii e 35
B. REPOI DIEaKSvei it e 37
(S T (01N o] g To Ko - - L 37
6.2. Report breaks in OPENCREPOIScvuiiiiiiieei e e e e e e e e et eeaaaee 37
6.3. Resetting a variable on break boundariescc.ccoov i, 37
(B e 1 1 o) P 37
8 o1 1.0 111 o 38
7.1 FOrmatting fUNCHIONScuuniiiii i e e e e e e e aae e 38
A o)1 4 A= 1 o S 38
7.3. Legacy fOrmMat SIINGS ..vuiiee e e e e e e e eaaas 38
7.3.1. Format String for StHNQSuvvvn e e 38
7.3.2. Format string for NUMENC VAlUESc.uieviiiiiiie e 38
7.3.3. Format string for datetime ValUESc.oveviiiiiiii e 39

7.4. New Style fOrmat StIINGScvvuieii e e e e e e 39
7.4.1. New style format string for StriNgScccvvvviiiieiiie e 39
7.4.2. New style format string for numeric data..........c.ccoveviiieiieeiiii e, 39
7.4.3. New style format string for monetary datacoooevviieiiiiiiiin i, 39
7.4.4. New style format string for datetime valuescccoeeviiiiiiiiiiiinc e, 39
7.4.5. New style format String eXamplesSoeiiiieiiiieiie e, 39

7.5. Second generation new style format StNgScoovueviiiieiiiieiiiiccie e 39
7.5.1. 2nd gen new style format string for StringSccoeeviiiiiiiiiciii e, 40
7.5.2. 2nd gen new style format string for numeric datacccoccoeveviiieiinneennn. 40
7.5.3. 2nd gen new style format string for monetary datacccccoveeiiieeennnenne. 40
7.5.4. 2nd gen new style format string for datetime valuescccccoeveeinennnnn. 40
7.5.5. 2nd gen new style format string examplesccocoiiiiiiiiiiinciin e 40

7.6. The swiss army knife of formattingccoeviiiiiiiiii e, 40
8. REPOIT XML AESCIIPLION ...uuiiiiiii e e e e e e e e e et e aan s 41
8.1. XML desCription SITUCLUIEcvvniiiieeii e e e e e e e e e e e eeeen 41
8.1.1. Notes about XML syntax and attributescccoeevviiiiiiiiiiii e, 42

8.2. OPENCREPOIT BlEMENTcivvi i e e e e e e e e e eaa s 42
8.2.1. SIZE UNIt @LITOULE ...t 42
8.2.2. NO query SNOW NODGIA ... ccvvueiiiiiiiiecie e e e e e e e e e e e e e 43
8.2.3. Report height after 18stocvviiiiii e 43
8.2.4. Follower matCh SINGIEuiiieiii e 43

Vi

OpenCReports 0.8.14 Manual

8.2.5. PreCiSion DitSoiiuiiiiiii i 44
8.2.6. ROUNAING MOE ... ceviciiii e e e e 44
B.2.7. LOCAIE it 44
8.2.8. Trandation SEIINGSccvuiiiieiiie e e e 44

8.3, PaNS ..o 44
84, DALASOUITES ... ettt e e e e e e e e e et e e et et 45
8.4.1. MariaDB (MySQL) database CONNECLIONcoeevviviiiieiiiieiii e, 45
8.4.2. PostgreSQL database CONNECHIONevviiiiiiieiiie e e 46
8.4.3. ODBC database CONNECHIONcvvueiiiieiii e ee e e e e e e aens 47
8.4.4. CSV fille dafaSOUICEiiii e e e eeas 47
8.4.5. JSON file dat@SOUICEccvviiiii e e e e e 48
8.4.6. XML fil€ dat@SOUICEccvuiiiiieii e e e 48
8.4.7. Spreadsheet file dataSourCeovvvuieiiiiieiie e 48
8.4.8. AITay AlBSOUICEeeviiiiii e e et e e e e e e e an s 48
8.4.9. CommON dataSOUrCe PrOPEItIEScvvvneeieeeiieeei e e e e e e e e e e e e e eeeen 49

SR 1 = =< 49
8.5.1. SQL queries for SQL dataSOUICESueevvuieiiiieiiiieeiiieeei e e e e e e 49
8.5.2. Queries for file based datasoUrCeSc.uvvviiiieiiii e, 50
8.5.3. Queries for array based dataSOUrCEScoevvvieiie e e e 50
8.5.4. FOIOWEr QUENESuniiii e e 51

8.6, REPOI PAITS vttt 52
8.6.1. Part @triDULESccvviiiiii i 52
8.6.2. Part SUDSECHIONSciiiiiiiii e e 55

87, Pal TOW oottt aaa 55
8.7.1. Part row attribULESiiii i 55

8.8. Part COIUMN ... e e e 56
8.8.1. Part column attribBULEScooviiii i 56

S R T = o0 TP 58
8.9.1. REPOIT AITDULESiieicie e e e 59
8.9.2. REPOIT SUDSECLIONS ... cvveiiiiciii e e e e e 63

ST O I o L= I = oo A 65
8.10.1. Loaded Report attribULEScccvviiii e 66

B.LL. ValADIES ... 66
812, ValADIE ... 66
8.12.1. Variable atribULESu i 66

ST T 2] (== P 72
814, BrEaAK ...ttt aae 72
8.14.1. Break atribULEScevniiiii e 72
8.14.2. Break SUDSECHIONScvvuiiiiieii et e e e e e e e e e e eaens 73
8.14.3. A complete break examplecooeiiiiiiiii i 74

ST ST @ 1F 11 o 11 | P 76
8.15.1. OULPUL GHITDULEScevi e e e e e eens 76
8.15.2. OULPUL SUDSECLIONScvvviciii e e e e e e e e e e e et e eea e eees 76

S0 G T = PP 77
8.16.1. LiN€ AtrTDULESuuieii e 77
8.16.2. LiNE SUDSECHIONScvviiiiii e e e e e e 78

ST I == 1= 101 | 79
8.17.1. Text element altribULESccvuiiiii e 79

8.18. HONZONTAILINEiiti e e e e e e e e e e e et e eaaaeees 85
8.18.1. HorizontalLine attribUtesccuviiiiiieiii e 85

S T T 1 7= [86
8.19.1. IMage @rTDULESeeee i e 86

8.20. IMBOE ENA ...eeiii e e a e 88
8.21. BArCOUE ElEBMENTiii it 88
8.21.1. Barcode element attribULESccviviiiii i 88

2272 ©C0 Fo g o 1= ol Tor- 1] o KOS 90
9. High level Clanguage APl rEfErENCEcuuuiiiieii e 92
S o 1= 1= PP 92

vii

OpenCReports 0.8.14 Manual

9.2. HIGh [EVEl C AP ..o 92
9.2.1. Report handler initializationc.ooveiiiiiiii e 92
9.2.2. Load areport XML desCriptionccccuuiiiiiiiiiiieeiii e e e e 92
9.2.3. Parse report XML description from abuffercooooviiiiiiiiiin, 92
9.2.4. Set report QULPUL FOIMALveei e 93
9.2.5. Get report output format as enum or StHNGovveneiiiiieiieece e 93
9.2.6. Set report OULPUL ParamEtervvieiiiiien e 93
9.2.7. RUN thE FEPOMT ... et e s 94
0.2.8. DUMP FEPOI FESUIL ...ovvuiiiieeii e e e e e aaa s 94
IS B € Tc (= oo == U || S 94
0.2.10. Get repOort CONTENT Y P 1vuivnii it e e aas 94
9.2.11. Report handler destructioncc.oveiiiiiiiiiieie e 94
0.2.12. Get liBrary VEISIONuiiiiieiiie e e e e 95

10. Low level C language APl FEfErENCEc.vviii e 96

101 LOW [EVEL C AP et 96
10.1.1. Numeric behavior related fUuNCLioNScoovvviiiiiiiiiiec e 96
10.1.2. Locale related fUNCLIONSuuiiiiiiiiiiiii e 96
10.1.3. Data source and query related fUNCLIONScocevvveiiiiieiieeii e 97
10.1.4. Expression related fUNCLIONScccvviiiiiiiiie e 105
10.1.5. Column data or expression result related functionsc.cccovvveeennnns. 108
10.1.6. Variable related fUNCLIONSvviiiiiiiiiiii e 111
10.1.7. Break related fUNCLIONSuviiiiiiicccc e 112
10.1.8. Function related fUNCLIONSviviiiieccie e 114
10.1.9. Report part and report related functionscccoevviiiiiieiin i, 115
10.1.10. Layout related fUNCLIONSccvuiiiiicii e e 116
10.1.11. Callback related fUNCLIONSoeviviiiieiiie e 135
10.1.12. Environment related fUNCLiONSccuvvieiiiiiieeiii e 138
10.1.13. File handling related funCtioNScccuviviiiiiiiee e 138
10.1.14. Color related fUNCHIONSuuiiiiiiieece e 139
10.1.15. Paper size related fUNCLIONScooviviiiiii e, 139
10.1.16. Memory handling related functionscccoceieiiiiieiin e, 140
10.1.17. List related fUNCLIONSuuiiiiiiiiiiii e 142
10.1.18. String related fUNCLIONScovviiiiicce e 143

11. Implement a datasource INPUL AFIVEru.iiiuiiii e e e e e 146

11.1. Datasource input driver registration APlcoviiiiiiiiiii e, 146
11.1.1. Register a datasource input drivercoccuiveiiiieiiiieie e 146
11.1.2. Get a datasource iNPUL AriVErooeevieiiiieiie e 146

11.2. Datasource input driver detailScouuiiiiiiiiiii e 146
11.2.1. Datasource input driver interfatecoevvviieiiie e 146

11.3. Helper functions to implement a datasource input drivercccoeevviiieiinnennnnn. 147
11.3.1. Get the parent pointer of a datasourCec.vevvviiiiiiieiiie i eeis 147
11.3.2. Get the name of & daaSOUICEveviiiiieeeiiiiie e 148
11.3.3. Get the input driver pointer of a datasourceccoevvvveiiiieiiineiiieeennnn. 148
11.3.4. Set the private pointer of a datasOoUrCeccuvvevviiiiiieiiii e, 148
11.3.5. Get the private pointer of @ datasourceccveviiiieiiiieeiii e, 148
11.3.6. AllOCEEE @ QUETY SLIUCIUIEcvveeiiiieeeiee e e e e e e e e e e e e e e 148
11.3.7. Get the QUENY NBIMEciviiieii e e e e e e e e e e aens 148
11.3.8. Get the datasource pointer of @ QUETYcovveviiieiiiiiii e, 148
11.3.9. Set the private pointer of @ QUETYuevviiiiiiciie e e 148
11.3.10. Get the private pointer of @ QUENYcevveiiiieiiieeii e e e e 148
11.3.11. Set current row of aquery all NULLccooviiiiiiiiiii e 148
11.3.12. Set acolumn value Of @ QUENYccovniiiiieiii e 149

12. PHP [anguage APl TEfEIrENCEovvn i e e e 150

12.1. The OpenCReports PHP MOAUIEccovniiiiii e, 150

12.2. The OPENCREPOIT ClaSSivviiiiiiieiii e e e e e e e e et e e e e e e aanas 150

12.3. High 1evel PHP AP ..ot 152
12.3.1. CONSITUCTON ...ttt ettt e e e e e e eneens 153
12.3.2. Load areport XML desCriptionccocouviiiiiiriiiieiie e e 153

viii

OpenCReports 0.8.14 Manual

12.4.

12.5.

12.6.

12.7.

12.8.

12.3.3. Set report OULPUL FOrMELvvei e 153
12.3.4. Get report OUtPUL FOrMELoovniiiei e 153
12.3.5. Get report output format NAMEccvuvveiii e 153
12.3.6. Set report OULPUL ParamMELErovuiieiiii e 153
I A {1 B 1T = oo o P 154
12.3.8. DUMP FEPOMt FESUIL .. evvieiii e e e e eeens 154
e R €= (= oo g A (== U | 155
12.3.10. Get report CONTENE LY ...vviieieii it 155
12.3.11. Get library VEISIONc.oueiiiiiiiii e e 155
LOW 1@VEL PHP APl ..ot 155
12.4.1. Numeric behavior related methodscovveiiiiiiiiiii e 155
12.4.2. Locale related Methodscoovvviiiiiiiii e 156
12.4.3. Data source and query related methodsccooevviiiiiiiiiiin e, 156
12.4.4. Expression related Mmethodscocovvieiiiiiiiii e, 157
12.4.5. Layout part related methodsccoceviiiiiiiiiii e 158
12.4.6. Callback related Methodsvveiiiiiieiiiii e 159
12.4.7. Environment related methodscoouviiiiiiiiiiiiii e, 160
12.4.8. Add "m" domain variablecoooeiiiiiiii 160
12.4.9. Result related MEthOOScoevveieiiii e 160
12.4.10. Path related MEthodSccvuiiiiiiiicc e 161
12.4.11. Color related MEthOdSuviiiiiiieiie e 161
The OpenCREPOr\DaLASOUICE ClaSSuuuiiveeiiiieeiiieeeiee e e e e e e e e eanes 161
12.5.1. Free @ dataSOUrCecuuueeiiiiieeeeiiie e e et et e e e et e e e e e ra s 161
12.5.2. Add a query to the dataSOoUrCeccuueviiiiiii e e e e 162
12.5.3. Set datasource eNCOAINGcovvuiiiiiiiie e ee e e e r e e e 162
The OpenCREPOMAQUENY ClaSSuuiiiiieiieeii e e e e e e e e e e 162
12.6.1. Get result for a qUEry'S CUITENE TOWuuevvineiiieeeiieeiieeei e e eeeaeeeanas 162
12.6.2. Start Navigation fOr @ QUENYccvuieiinieiiiieie e e e e 163
12.6.3. Navigate tO the NEXE FOWcevniiiiciie e e e 163
12.6.4. Navigate Use PrevioUS/NEXE FOWocvunieiiieiiieeeieeeee e e e e e e eaaaeeaen 163
12.6.5. Add a query fOllOWEScoouiiiiiiii e 163
12.6.6. Add an N:1 query fOllOWErcovniic e, 163
D A = (= == W |11 o PPN 164
The OpenCReport\QUErYRESUIL ClaSSocvvviiiiiiiiiieec e 164
12.7.1. Get number of columnsfor aquery resultc.cccoviviiiieiiiiciiicci e, 164
12.7.2. Get the nth column name for aquery resultccoeeiiiiiiiiiiineenees 164
12.7.3. Get the nth column result for aquery resultccooevviieiiiiiiiecieeen, 164
The OpenCREPOIMAEXPE ClaSSuvuiiii i ee e e e e e e 164
12.8.1. Free an EXPrESSION ...cvvuuiiii e e e et e e et e e e e e e e e et e e st e e et e aanaeeeen 165
12.8.2. Get the original eXPression SHNG ... e e e 166
12.8.3. Print @an EXPrESSIONvivnciiieeii e e e e e e e e e e e e e e e e aaa s 166
12.8.4. Get the number of expression tree NOAESccvvvvvvieiiiiieiiieeii e, 166
12.8.5. RESOIVE @N EXPrESSION ...cvvuiiiiieiie e ee e e e e e e e e e e e e eeen 166
12.8.6. OptimiZe an EXPreESSIONucviveieeiieeeiieeie e e e e e e e e e e e e st e e e eanaeeaes 166
12.8.7. Evaluate an EXPreSSIONuu.eerueiiieeiieeeie e e ee e e e st e e e e et e e et eeaaaaee 166
12.8.8. Get the result Of an EXPreSSioNoevviiiiiiie e 166
12.8.9. Set expression result to astring valueocooveiiiiiiiii i 166
12.8.10. Set expression result to along valueccovevviiiiiiiciicie e 166
12.8.11. Set expression result to adouble valuecccooeviiiiiiiiiin e, 167
12.8.12. Set expression result to a numeric value from stringcoooveeveennnnnn. 167
12.8.13. Get number of operands Of @ EXPreSSIONeevvviviinieiiiieeiiieeiiieeeineans 167
12.8.14. Get nth operands' result of @ eXPreSSIioNccccuvvevviiieiiieeiiiieriieeeaeens 167
12.8.15. Compare the expression's current and previous resultsc.eeeee. 167
12.8.16. Initialize eXpression resUltSoocvvieiiiiiiii e 167
12.8.17. Get string value of an EXPreSSioNocvuveiiiieiiiieciie e e e e e e 168
12.8.18. Get long value of an EXPreSSIONuuevruieiiiieiiieeiieeeeee e e et e e e eanns 168
12.8.19. Get double value of an EXPreSSIiONocvvvnieiiiieiiiieeiii e e e e eaen 168
12.8.20. Get numeric value of an expression as astringcooeevveeeeiiievineennnennn. 168

OpenCReports 0.8.14 Manual

12.8.21. Set nth result of an expressionto astring valueccceeevvieviiieeinnnns 168
12.8.22. Set nth result of an expressiontoalongvaluecccoeeeviiviiniinnen, 168
12.8.23. Set nth result of an expressionto adoublevaluec.cccoeevievinnnnn. 168
12.8.24. Set iterative start flag of an expressionooceeveviiiiiiecin e, 169
12.8.25. Set expression to delayedcovvveiiiiiiiiii 169
12.9. The OpenCREPOMRESUIL CIaSS ... ccvviiiiiieiiieeec e e 169
12.9.1. Free aresult ODJECEcovvniiiii i 169
12.9.2. Copy @result ODJECEcvveciie e 169
12.9.3. Print aresult ODJECEivieii i 170
12.9.4. Get result object VAUB tYPEcvvin i 170
12.9.5. Detect whether result object value iSNULLccoooeviiiiiiiiiiiiciieeeins 170
12.9.6. Detect whether result object value isastringccoovevveiiiiiiiiiineeinee, 170
12.9.7. Detect whether result object valueisanumberccooceiieiiiiiiiinnennnnn. 170
12.9.8. Get string value of aresult ObJECtccvvviiiiiiiiic e, 170
12.9.9. Get numeric value of aresult object asastringcooevvvieviiiiiiiiieiinnenns 170
12.10. The OpenCREPOM\PArt ClaSScccuuiiiiiieiiie e e e e e e eeens 171
12.10.1. Get the NeXt rePort Partoeevuieeie e e e e 173
12.10.2. Create a New report PAIT FOWveeeeieeie et e e 173
12.10.3. Get the first report Part FOWoeeevnieiiiieiiii e e e e e e 173
12.10.4. Add iteration callback for the partccocoveeiiiiiiii i 173
12.10.5. Check whether two parts are identicalcccooeviiiiiiiiiineiieeee, 173
12.10.6. Set or get number of part iterationSc.evevvieeiiiiiiii e, 173
12.10.7. Set or get part FONt NAMEcoeviii e 174
12.10.8. Set or get part fONt SIZEcvveieiiieiie e 174
12.10.9. Set OF gt PAPEr TYPR ..iviieiiiiet it 174
12.10.10. Set or get part Orientationccccuieiiiieiiii e 174
12.10.11. Set or get part tOP MaIGINeevneeie e e e e e e e aens 174
12.10.12. Set or get part bottom Margincccuiveiiiieiiiieeie e e 175
12.10.13. Set or get part [eft Margincooeeviiiiiiii e 175
12.10.14. Set or get part right Margincoeeeeiieiiiie e 175
12.10.15. Set or get part SUPPIESSIONvvvueerieeeinieirieeeataeeateeeteesteesanaeeaneenes 175
12.10.16. Set or get suppression of the page header on the first page 175
12.10.17. Get the part's page headercooeviiiiiiiii i, 176
12.10.18. Set the report object for the part's page headerccovevviiiiiiiinne, 176
12.10.19. Get the part's page fOOtErccvvviiiii i, 176
12.10.20. Set the report object for the part's page footercocovveviiiviiiineiinnenn. 176
12.11. The OpenCREPOIMAROW ClaSSuiiiiieiiiieeiii e ee e e e e e e e e e e e 176
12.11.1. Get the NEXE Part FOWvuiii i e e 177
12.11.2. Create a new part column for the rowccooevviieiiiiiiii e, 177
12.11.3. Get first column of @ part FOWcccceuiieiiiieiiii e e 177
12.11.4. Set or get suppression for the part rowccooeeiieiiiiiiinii e 177
12.11.5. Set or get new page for the part rowccoeeeiiiiiiiiiiii e, 178
12.11.6. Set or get layout type for the part rowcoeeviiiiiiiiiin i 178
12.12. The OpenCREPOrACOIUMN ClESScuuiiiieiie e e e e e e e eens 178
12.12.1. Get NEXE COIUMN ...ttt e eeeaen s 179
12.12.2. Create anew report in the ColUMNooviiiiiiiii i 179
12.12.3. Get first report of apart columncooooiiiiiiiiii e, 179
12.12.4. Set or get part column SUPPIESSIONcovuiviinieiieeeiieeiee e e et e e e eanaes 180
12.12.5. Set or get part column Width ..o, 180
12.12.6. Set or get part column heightcooiiiiiiiiiii e 180
12.12.7. Set or get border wWidthcoooiiiiiiii 180
12.12.8. Set or get border COIOrc.vuiiiiiieii e 181
12.12.9. Set or get number of detail columnSscocoiviiiiiiii e, 181
12.12.10. Set or get column Paddingcovuveviiiiiiiiieie e 181
12.13. The OpenCREPOIT\REPOI ClASScvuiiiiieiie e 181
12.13.1. Get the NEXE FEPOITiiiice e e e 184
12.13.2. Create a new report variablecc.ooeviiiiiiici e, 184
12.13.3. Create a new custom report variablec.cccoveviiiiiieciicie e, 184

OpenCReports 0.8.14 Manual

12.13.4. Get the first variable of areportccoovviiiiiicii e, 185
12.13.5. Parse and expression for the reportccoveeeieiiiii i, 185
12.13.6. Get the error after afailed exXpression parsingcooeevveeeveeviieeennennnn. 185
12.13.7. Resolve variables of the reportcoovvviieiii i, 185
12.13.8. Evaluate variables of the reportcooevviiiiiiiiiii e, 185
12.13.9. Create a new report breakveveeiiii e, 185
12.13.10. Get areport break by itSNaMeccoovviviiiiiii 186
12.13.11. Get thefirst report break ... 186
12.13.12. Resolve breaks of the reportccoeviiiiiiiiiee e, 186
12.13.13. Get the current row number of the main qQUErYccocevvveiiiieiiieeiieee, 186
12.13.14. Add a"report start” callbackcoceviiiiiiiiiii 186
12.13.15. Add a "report done" callbackccoviiiiiiiiii e, 186
12.13.16. Add a"new row" Callbackcooieiiiiiiiiiiiiii e 187
12.13.17. Add an "iteration done" callbackccovveiiiiiiiiiiiii 187
12.13.18. Add a "precalculation done" callbackccoooeviiiiiiiiiii, 187
12.13.19. Check whether two report objectsarethe samecccceveviiieinnnns 187
12.13.20. Set the report's MaiN QUENYccveeeineiiii e e e e e e e e e e e eaes 188
12.13.21. Set the report's main query by Nnamecooeviveiiiieiin i 188
12.13.22. Set or get the report SUPPrESSIONcevveeiirieeeiieeiieeeeieeeiee e e eaaeeaens 188
12.13.23. Set or get number of iterations for the reportcooeeeviviiiieeinenn, 188
12.13.24. Set or get the font name for the reportccoeeviieviiiii e, 188
12.13.25. Set or get the font size for the reportcooeviiiiiiieiin e, 189
12.13.26. Set or get the report heightccooviiiiiii e, 189
12.13.27. Set or get the report's field header priorotycccoeveviiiiiiiiiiineiinen, 189
12.13.28. Get output sections of the reportcccceveviiiiii i, 189
12.14. The OpenCReport\Variable Classc..ceeviiiiiiiiiie e 190
12.14.1. Get the base expression of avariablecccoooviiiiiiiiiii e, 190
12.14.2. Get the ignore expression of avariableccooocoiviiiiiii e, 190
12.14.3. Get the first intermediary expression of avariablecooce. 191
12.14.4. Get the second intermediary expression of avariable 191
12.14.5. Get the result expression of avariableccoceiiiiiiiiiin i 191
12.14.6. Get the variable tyPecvvveii e 191
12.14.7. Get the variable precalculated flagccovvevieiiiiii e, 191
12.14.8. Resolve expressions of avariablecccccceveiiiiiiiiiiieci e, 191
12.14.9. Evaluate expressions of avariableccooveiiiiiiiiiin e, 191
12.14.10. Get the next variable of the same reportcooevviiiiiieiiiieieeees 191
12.15. The OpenCReport\RePOrBreak Classccvvveiiiiiiiiiiiiicciie e, 192
12.15.1. Get NEXE BIrEAK ..vvvviiieeiiiieiie et 192
12.15.2. Add a breakfield to @ breakccoovveviiiiiiiiii 192
12.15.3. Check breakfieldsiiieeiiieiiiiii e e e 192
12.15.4. Reset variables associated with abreakcoooveiiviiiiiiiiiiin, 193
12.15.5. Add a"trigger” callback toabreakccooeviiiiii 193
12.15.6. Get the name Of @ breakoovevviiiiiiiiii e 193
12.15.7. Get output sections of abreakcccoveviiiiiiiiiii 193
12.16. The OpenCREPOIT\OULPUL ClaSScvvviiii e e 193
12.16.1. Set or get suppression of the output SECtionccccvveviiieviiiniiineennnn, 194
12.16.2. Add @ (1EXE) TINE .evviiiiie e 194
12.16.3. Add ahorizontal 1INeccouuiiiiiiiiiiei e 194
12.16.4. Add AN iMAOE ..evniii e e 194
12.16.5. Add @barCodecoouuniiiiiiiiiie e 194
12.16.6. Add an image end markercoooeiiiiiiiiiiii e 195
12.16.7. Get the first oUtput EEMENtccvviiiiici e 195
12.17. The OpenCREPOMLINE ClaSScovviiiii i e 195
12.17.1. Set or get the font name for thelinecoooeeeiiiiii i 196
12.17.2. Set or get the font sizefor the linecovviiii i 196
12.17.3. Set or get the font's bold flag for the linecoooviviiii i, 197
12.17.4. Set or get the font's italic flag for the linecccooooiiiiiiiien e, 197
12.17.5. Set or get [iN€ SUPPIESSIONcvvuiiiiieiiiieiii e e e e e e e e e e eaaes 197

Xi

OpenCReports 0.8.14 Manual

12.17.6. Set or get text color for the lineooeviiiiiii i 197
12.17.7. Set or get background color for thelinecooooviiiiii i 198
12.17.8. Add atext element to the [iNeuveviiiiiiiiii e 198
12.17.9. Add an image element to the linecooe i, 198
12.17.10. Get the first [ine €lementcoovvviiiiiiiiiei e 198
12.18. The OpenCReport\HorizontalLine Classcocvviiiiiiiiii e, 198
12.18.1. Set the line Width ..o, 199
12.18.2. Set or get the line alignmentcooiiiiiiiiii i, 199
12.18.3. Set or get the line indentationcoeviiiiiiii i, 200
12.18.4. Setor get the linelengthcooiii i 200
12.18.5. Set or get the [INE'SfONt SIZEovviiiiiiii i, 200
12.18.6. Set or get the suppression flag for thelinecoocviviiiiiiiii 200
12.18.7. Set or get the liNe COlOruvevvvii e 201
12.19. The OpenCRePOrt\Mage Classccuuiiiiiiiiiie e 201
12.19.1. Set or get thefilename of the imageccoovvviiiii i 202
12.19.2. Set or get the suppression flag for theimageccoooeveviiiiiincne, 202
12.19.3. Set or get the IMAgE tYPE ...vnvvii i 202
12.19.4. Set or get the image Widthcocoi i, 203
12.19.5. Set or get theimage heightcooiiiii i, 203
12.19.6. Set or get theimage alignmentcoooiiiiii i 203
12.19.7. Set or get the image background colorc.cooviiiiiiiiii 203
12.19.8. Set or get the image "text width"cccoiiiiiiiii 204
12.20. The OpenCREPOIMTEXL ClaSScivuiiiii e e 204
12.20.1. Set literal VAIUE .. .covvviieiieii e 206
12.20.2. Set or get eXPreSSiON VAIUEcvvvneiiieci e eee e e e 206
12.20.3. Set or get delayed flag for the field expressionccoeevviiiiiineennn, 206
12.20.4. Set or get the format string for the field expressionccocceveeennn, 207
12.20.5. Set or get the trandlation flag for the field expressioncccccceeveeee. 207
12.20.6. Set or get the field Widthcooooiiiiii e, 207
12.20.7. Set or get the field alignmentccoeiiiiiiiii e 207
12.20.8. Set or get the field text ColOroovviiiiiiiii e, 208
12.20.9. Set or get the field background COIOrcooeviiiiiiiiiiie e 208
12.20.10. Set or get the field foNt NAMEveiiiiii e, 208
12.20.11. Set or get the field fONt SIZEccovviiiiic e, 208
12.20.12. Set or get the field'sbold flagc.oeviiiiiiic e 209
12.20.13. Set or get the field'sitalic flagooeeviiiiiiiiiii e, 209
12.20.14. Set or get the field'S Nkc.ooviiiiiiii e, 209
12.20.15. Set or get the field'smemo flagcocovvviiiiiiiiii e 209
12.20.16. Set or get the field's "hyphenate” flagccooveviiiiiiiiiiiii e, 210
12.20.17. Set or get the field's "wrap at characters' flagcccoeeviiiviiiiinne, 210
12.20.18. Set or get the field's maximum number of [inesccooevviiiiiiniinnnnns 210
12.21. The OpenCREePOrt\BarCOOE ClaSSccuuiiiiiieiiiieiiii e e e e e 210
12.21.1. Set or get the barcode valuecooeiiiiiiin e 211
12.21.2. Set or get the barcode value delayedcoeeviiiiiiiii e, 212
12.21.3. Set or get the barcode SUPPreSSIONccvuiiiiieiii e e 212
12.21.4. Set or get the barcode typeovviiieiii e 212
12.21.5. Set or get the barcode widthccccoiiiiiiiiiii 213
12.21.6. Set or get the barcode heightoooiiiiiiiiii e, 213
12.21.7. Set or get the barcode image line colorccoeveviieiiiiiin i, 213
12.21.8. Set or get the barcode image background colorccccoevviiiieiinnennnnn. 213
12.22. The OpenCReport\OutputElement classccocvviiiiiiiiiiii e, 214
12.23. The OpenCReport\LineElement classccocvviiiiiiiiii e, 214
12.24. RLIB compatibility APlccooiiiiiei e 215
2 S I 1 o = TS W = o o PPN 215
12.24.2. DESLIOY @ TEPOMT 1..ivieiiiei ettt et et e e e e e e e e 215
12.24.3. Get library VEISIONouoiiiiiiiicce e 215
12.24.4. Add a MySQL/MariaDB dataSOUrCeccuuveernieiiiieiiiieeiineesineennnnenns 215
12.24.5. Add aMySQL/MariaDB datasource from an INI groupcccceunneee. 216

Xii

OpenCReports 0.8.14 Manual

12.24.6. Add a PoStgreSQL dataSOUrCEccvueirnieiiieeeiiieeeiieeeiieesieeeneeaaeens 216
12.24.7. Add an ODBC dat@SOUICEccevunieeiiiieeeiiiiieeeeeine e e et e e et e eeenennes 216
12.24.8. Add an array dataSOUICEceeuueiiieeiiie e ee e ee e e e e e e e e e eaneens 217
12.24.9. Add an XML dataSOurCeveeeeuiieiiiiiiieeeiiee e e e e eeain e eeeens 217
12.24.10. Add @ CSV datBSOUICEuuiieeiiiieiiiii e e e et e e 217
122411, A @ QUENY ..eeveieeeeii et et 217
12.24.12. Add aresultset FOlIOWENcoovvviiiiiiiiieec e 218
12.24.13. Add aresultset N:L fOllOWEScuuiiiiiiiiiiiii e 218
12.24.14. Set datasource enNCOINGvevvuieeiiieiiiieeii e e e e e e e 218
12.24.15. Add @report XIMLocieuiiiiiiiiin e 218
12.24.16. Add areport XML from bufferccoceiiiiiiiiiie e, 218
12.24.17. Add @ search pathcoviiiiiii 219
12.24.18. SELIOCAIE ...ueieiiiie e 219
12.24.19. Setup translationocovieiii i 219
12.24.20. Set OULPUL TOMMELocvneeieiee e e 219
12.24.21. Add a custom report fUNCLIONcoeuviiiiieiiiecc e, 219
12.24.22. Set OULPUL €NCOTINGvvvneeiie e e e e e 220
12.24.23. Add a report Parameterco.ueeiuieiii e 220
12.24.24. Set an OULPUL ParaiMELENuvviiiiiieieeree e e et ens 220
12.24.25. Refresh array query CONENESccuuviiiieiiiieeiii e 220
12.24.26. Add an event callbackcoooviiiiiiiiiiiii 220
12.24.27. EXECULE the TEPOMTcevvieiii e e e e e 221
12.24.28. DUMP the report OULPULcovvneiiieeiiee e e e e e e 221
12.24.29. GEL CONENE LY P8 oviieiii e as 221
12.24.30. Set radixX CharaCterovviiiiiiiiei e 221
12.24.31. Compile and evaluate an eXPreSSIiONoecevueeeinieiiiieeiieeeiineeeieeannnns 221
12.24.32. Add graph background regionccoeeveieiiiiiiiiii e 221
12.24.33. Clear graph background regionccooviiiiiiiiiciiie e 222
12.24.34. Set graph MinOr tiCKcvuuiiiic e 222
12.24.35. Set graph minor tick by locationccooeviiiiii i, 222
G e 1 o) = PN 223
13.1. SIMPIe report EXAMPIE .. c.vn e 223
35 I I - - LSRRI 223
13.1.2. C Program COUEcuuueiiieeiii e et et e e e e e e e e e e e e e e e eaaaes 223
13.1.3. PHP Program COUEccuuuiiiieiiiiieei et et e e e e e e et e et e e e e eens 224
13.1.4. RLIB compatible PHP program COdecocovuveiiiiiiiiiieiiieeeieeeeee e, 224
13.1.5. REPOIt dESCIiPLION .. cvvneiiecii e e e e eans 224
13.1.6. REPOIt PDF rESUILiiiiciee e e e 226
13.2. Simple report example with data accessin Codecooevviiiiiiiiiiii e, 226
I T D - - LSRRI 226
13.2.2. C Program COUEcuuueiiieeiie e et e et e e e e e e e e et e e e ean s 226
13.2.3. PHP Program COUEccuuuiiiieeiii et e e e e e e e et e et e e e e eans 227
13.2.4. RLIB compatible PHP program COdecocouuieiiiiieiiiieiiieeeieeee e, 227
13.2.5. REPOIt dESCIIPLION .. cevniiieeei e e e e e eaas 228
13.2.6. REPOIt PDF rESUILiiiii i e e 229
13.3. Coalors, images, horizontal linesand fONtSccocoiiiiiiiiiiiii e, 229
G N I D - - LSRRI 229
13.3.2. C Program COUEcuueiii e e e et e e e e e e e e e e e e e ean s 230
13.3.3. PHP Program COUEcccuuiiiieeiiiieiie e e e e e e e e e e e e e e eens 230
13.3.4. RLIB compatible PHP program COdecocvvuieiiiiieiiiieiiieeeie e e, 231
13.3.5. REPOIt dESCIiPLION .. ovvnciieei e e e e 231
13.3.6. REPOIt PDF rESUILiiiicci e e e 232
13.4. Report variables and breakscooveiiiiiiiiiii 232
I T D - - LSRRI 233
13.4.2. C Program COUEcuuuiiii e e e et e e e e e e e e e e e e e ean s 233
13.4.3. PHP Program COUEccuuuieiieeiiieii et e e e e e e e e et e et e e e e eens 234
13.4.4. RLIB compatible PHP program COdeccocouuieviiiiiiiiieiiieeeieeee e, 234
13.4.5. REPOIt dESCIiPLION .. ovvniiiieii e e e eens 234

Xiii

OpenCReports 0.8.14 Manual

13.4.6. REPOIt PDF rESUILiiiiiciie e e e e 236

13.5. FOIOWEr QUENES . .ovniiii e e e e e e e e e eanees 236
T N B 7 - PSSP 237
13.5.2. C Program COUEcuuuiiii e e et e e e e e e e e e e e e e e e e eaa s 237
13.5.3. PHP Program COUEcc.uuiiiieiiiiieei e e e e e e e e et e e e e e eens 238
13.5.4. RLIB compatible PHP program COdecocouieiiiiiiiiiieiiieeeieeee e, 239
13.5.5. REPOIt dESCIiPLION .. cevuiiieeii e e e eea 239
13.5.6. REPOIt PDF rESUILcvviciii e e e e 240

13.6. N:L fOllOWEN QUENIES . .ovneii e et e e e e e e e e e e aa e 240
I J 50 O B 7 - PSSP 240
13.6.2. C Program COUEcuuueiii et e e e e e e e e e e e e et e e e eaa s 242
13.6.3. PHP Program COUEcc.uuieiiieiiiieiiie e e e e e e e e eans 243
13.6.4. RLIB compatible PHP program COdecocouuieiiiiiiiiiieeieeeieeeeee e, 243
13.6.5. REPOIt dESCIiPLION .. cevuiiieii e r e eens 244
13.6.6. REPOIt PDF reSUILceveciii e e e e e 245

13.7. N:1 follower queries (RLIB compatibility IMits)ccooevviiiiiiiiiiiiiicee, 245
T 250 T B T - PSSP 245
13.7.2. C Program COUEcuuuiiii e e et e e e e e e e e e e e e eaa s 246
13.7.3. PHP Program COUEccuuuiiiieeiii e e e e e e e e e e e e e eens 246
13.7.4. RLIB compatible PHP program COdecocouuieviiiiiiieciiieeeieeei e, 247
13.7.5. REPOIt dESCIiPLION .. cvvniiiiiei e e e e e eans 247
13.7.6. REPOIt PDF rESUILiiiiicie e e e e 248

14. GNU Free Documentation LiCENSEeiviuiiieeiiiis et e e e 249

Xiv

Chapter 1. Introduction and concepts
1.1. The predecessor: RLIB

Theideato write OpenCReports1 started with my getting acqauinted with RLI B2in 2005 and worki ng
with it (and on it) for a very long time, with the original implementors finaly losing interest in
developing RLIB further. This was around 2018. Even the original documentation site for RLIB was
retired. But thanks to the Internet Archive, it may till be read”

To overcome some of the shortcomings seen in RLIB, its ideas were used for a completely new
implementation with high level of compatibility to the original.

RLIB is areport generator library, so is OpenCReports. In this documentation, a lot of references
contain comparisonsto RLIB.

The name OpenCReports came from the fact that it'simplemented in the C programming language in
an open way, and using a free software license.

1.2. Concepts

1.2.1.

1.2.2.

1.2.3.

1.2.4.

What is a report generator?

A report generator uses atabular data source, which contains rows and columns of data. The columns
have labels or names. (An SQL database query is such atabular data source.) It also uses some kind
of description that specifies how to display the data. The input datais transformed into various output
formats, some for human viewing, some for further machine processing. Such output formats may be
PDF, HTML, XML, plain text or CSV.

XML based report description

The XML file format is widely used. It can describe structured data in a hierarchy with names for its
sections or "nodes’.

OpenCReports uses an RLIB-compatible report description with extensions. See Report XML
description and the RLIB documentation*

Comprehensive API for report creation

The Low level C API allows creating a report purely via program code. The High level C API
allowsloading an XML report description that contains all details about the report, including database
access. Mixing the high and low level APIs allows a balance anywhere between the two extremes.
For example, load the report description, which contains the complete layout, and pass database
access details via program code. As a comparison, RLIB's APl and report description allowed
neither extremes: it relied on the report description to provide the layout, with data access and other
supplementary details controlled from programming code.

Strict expression parser

OpenCReports uses a Flex/Bison based expression parser. The expression grammar doesn't allow
incorrect expressions. See the Expressions chapter.

L hitps://github.com/zboszor/OpenCReports

2 https://sourceforge.net/projects/rliby

3 https://web.archive.org/web/20131116192438/http://newrlib.sicom.com/~rlib/index.php/Main_Page
4 https://web.archive.org/web/20131116192438/http://newrlib.sicom.com/~rlib/index.php/Main_Page

https://github.com/zboszor/OpenCReports
https://sourceforge.net/projects/rlib/
https://web.archive.org/web/20131116192438/http://newrlib.sicom.com/~rlib/index.php/Main_Page
https://web.archive.org/web/20131116192438/http://newrlib.sicom.com/~rlib/index.php/Main_Page
https://github.com/zboszor/OpenCReports
https://sourceforge.net/projects/rlib/
https://web.archive.org/web/20131116192438/http://newrlib.sicom.com/~rlib/index.php/Main_Page
https://web.archive.org/web/20131116192438/http://newrlib.sicom.com/~rlib/index.php/Main_Page

Introduction and concepts

1.2.5.

1.2.6.

1.2.7.

1.2.8.

1.2.9.

Expression optimization

OpenCReports does some expression optimization to reduce runtime cost of computing expression
values. For example, ina* 2/ 3 thepart 2/ 3 istwo constantsin adivision. Thisis precomputed into a
single constant as an optimization. Naturally, only mathematically valid optimizations are performed.

Report variables

OpenCReports supports standard report variables for calculating sums, minimum, maximum and
average values or custom defined ones. See Report variables

Report variables can also be used as manual expression optimization. A common subexpression can
be moved to areport variable from multiple expressions, which in turn is computed once, and itsresult
is used in the expressions referencing it.

Report breaks

A report break is aform of data grouping based on value changes. A break (break boundary) occurs
when the value of a watched expression changes from one data row to the next. OpenCReports
supportsreport breaks defined on arbitrary expressions. Report variables can reset their value on break
boundaries. See Report breaks and Breaks.

Extensive and extensible set of functions

OpenCReports has many operators and functions to be used in expressions. See Operators and
functionsin the Expressions chapter.

Custom functions can al so be added to areport by programming code. Custom functions may override
stock functions.

UTF-8 string handling

OpenCReports exclusively uses UTF-8 for strings. Input data must be in UTF-8 and output formats
also use UTF-8. This alows text from different languages appear in the same report, provided that
an applicable font is available.

1.2.10. High precision numeric data type

OpenCReportsusesahigh precision numeric datatype. Thisallows scientific computation or monetary
calculations even with late stage hyperi nflation® prices. See Numeric constants in the Expressions
chapter and the Numeric behavior related functions part in the Low level C API chapter.

1.2.11. Datetime and interval data types

OpenCReports handles both timestamp and time interval data types. The latter allows adding or
subtracting a custom time period to and from timestamp data. See Datetime constants in the
Expressions chapter.

1.2.12. Automatic input data conversion

For maximum portability, databases provide their datain strings. They also indicate the column type.
OpenCReports detects the columns' data type and applies the conversion automatically.

5 https://en.wikipedia.org/wiki/Hyperinflation

https://en.wikipedia.org/wiki/Hyperinflation
https://en.wikipedia.org/wiki/Hyperinflation

Introduction and concepts

1.2.13. Versatile field alignment and multi-row fields

In the report output, fields may have a fixed width in which they are displayed. Somefield values are
longer than the field width. When displaying them in asingle row, fields may beleft-, right- or center-
aligned to show the interesting part of the value or for visual reasons.

Fields longer than the designated width may be wrapped either at word or character boundaries. This
way, they become multi-row fields. Multi-row fields are also called "memo" fields. Such fields may
wrap lines at word boundaries or break words at some character. Multi-row fields have configurable
line number limits. Memo fields can break over to the next column or to the next page. Hyphenation
is done automatically when using character wrapping. Memo fields may aso use justified alignment.

1.2.14. Multi-column reports

OpenCReports supports both single- and multi-column layout in its PDF output format. Other output
formats may only use single-column layout.

1.2.15. Miscellaneous layout details

OpenCReports implements an RLIB compatibility mode for sizing report layout details, which uses
amix of units, mostly based on character widths (making it dependent on the font size used) mixed
with points (1/72th inch) for some report elements.

OpenCReports also has a new, consistent size calculation method where everything is measured in
points (1/72th inch).

OpenCReports supports both fixed and proportional fonts even with using the RLIB compatible size
settings.

1.2.16. Multiple output formats

OpenCReports supports several output formats; PDF, HTML, CSV, TXT, XML and JSON.

1.2.17. Extensive set of unit tests

The unit tests ensure that OpenCReports' features keep working when adding new features or fixes.
Units tests exercise many aspects of the high and low level API, report description handling, runtime
behavior and output generation.

1.2.18. Standard Linux dependencies

OpenCReports uses LibXML2%, utfsproc’, MPFR®, libpaper®, libcsv®®, yajl*t, Cairo'?, Pango®,
librsvg2', gdk-pixbuf22®, PostgreSQL 16, MariaDB’ and unixODBC8,

For running the unit tests, Ghostscript'® and conpar e from Imagemagick? are also needed.

5 https://gitlab.gnome.org/ GNOM E/libxml 2/-/wikis'home
7 https://juliastrings.github.io/utf8proc/

8 https://www.mpfr.org

9 http://packages.gja.debian.org/libp/libpaper.html
10 https://github.com/rgamble/libesv

Y http://lloyd.github.comiyajl/

12 ttps:/iwww.cairographics.org

13 https://pango.gnome.org

14 nttps:/iwiki.gnome.org/Projects/LibRsvg

15 https://gitl ab.gnome.org/ GNOM E/gdk-pixbuf
16 nttps://www.postgresql.org

7 nttps://mariadb.com

18 http:/Avww.unixodbc.org

19 https://www.ghostscript.com

2 https:/fimagemagick.org

https://gitlab.gnome.org/GNOME/libxml2/-/wikis/home
https://juliastrings.github.io/utf8proc/
https://www.mpfr.org
http://packages.qa.debian.org/libp/libpaper.html
https://github.com/rgamble/libcsv
http://lloyd.github.com/yajl/
https://www.cairographics.org
https://pango.gnome.org
https://wiki.gnome.org/Projects/LibRsvg
https://gitlab.gnome.org/GNOME/gdk-pixbuf
https://www.postgresql.org
https://mariadb.com
http://www.unixodbc.org
https://www.ghostscript.com
https://imagemagick.org
https://gitlab.gnome.org/GNOME/libxml2/-/wikis/home
https://juliastrings.github.io/utf8proc/
https://www.mpfr.org
http://packages.qa.debian.org/libp/libpaper.html
https://github.com/rgamble/libcsv
http://lloyd.github.com/yajl/
https://www.cairographics.org
https://pango.gnome.org
https://wiki.gnome.org/Projects/LibRsvg
https://gitlab.gnome.org/GNOME/gdk-pixbuf
https://www.postgresql.org
https://mariadb.com
http://www.unixodbc.org
https://www.ghostscript.com
https://imagemagick.org

Introduction and concepts

xm i nt,xsltproc andf op areused to generate the documentation.

1.3. OpenCReports planned features

1.3.1. Graph and chart support in HTML and PDF
output

Currently Gantt chart and various graph types (like barchart, pie chart and their various subtypes) are
not supported.

1.3.2. Visual editor for report XML descriptions

There are other report generators on the market with nice GUIsto create the report visualy.

Chapter 2. Data sources and queries

2.1. Data sources

OpenCReport separates data access into two entities: a data source driver and a query.
OpenCReports supports diverse data sources:

* SQL based data sources

* File based data sources

» Application data based data source

» Application defined data sources

2.1.1. SQL based data sources

SQL isthe acronym for Standard Query Language. Many database software comply with the standard
to a certain extent. The standard is occasionally revised, and a certain database software version
complies to a specific version of the standard to a certain extent.

In general, database software are designed to store massive amounts of data and retrieve it as fast as
possible. Database software and its data can be accessed through a network connection (even if it's
installed in the same machine) or a faster local connection if both the database server and client are
installed on the same computer.

The SQL based data sources OpenCReports natively supports are:
« MariaDB' and MySQL?
« PostgreSQL>

« Any SQL database server with acompliant ODBC* driver

2.1.1.1. MariaDB/MySQL data source

MariaDB? is a fork of MySQL6 developing in a different direction but still maintaining strong
compatibility with each other. The database client library is compatible with both, therefore
OpenCReports supports both with the same driver.

2.1.1.2. PostgreSQL data source

PostgreSQL7 (in their own words) is The World's Most Advanced Open Source Relational Database.
OpenCReports supports using PostgreSQL.

The PostgreSQL datasource driver in OpenCReports is especially economic with memory by using
aW TH HOLD cur sor & and the PostgreSQL specific FETCH count 9 SQL statement to retrieve

L hitps://mariadb.org/

2 https://www.mysql.com/

3 https://www.postgresql.org/

4 https://learn.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
5 https://mariadb.org/

5 https://www.mysql.com/

7 https://www.postgresql.org/

8 https://www.postgresql .org/docs/current/sql-decl are.htm

9 https://www.postgresql .org/docs/current/sgl-fetch.html

https://mariadb.org/
https://www.mysql.com/
https://www.postgresql.org/
https://learn.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://mariadb.org/
https://www.mysql.com/
https://www.postgresql.org/
https://www.postgresql.org/docs/current/sql-declare.html
https://www.postgresql.org/docs/current/sql-fetch.html
https://mariadb.org/
https://www.mysql.com/
https://www.postgresql.org/
https://learn.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://mariadb.org/
https://www.mysql.com/
https://www.postgresql.org/
https://www.postgresql.org/docs/current/sql-declare.html
https://www.postgresql.org/docs/current/sql-fetch.html

Data sources and queries

a specified number of rows in one round, as opposed to retrieving every row in one round that most
database software supports.

This makes the report run slower for longer query results compared to other databases, but allows
generating the report from extremely large datasets when other databases may fail due to memory
exhaustion.

2.1.1.3. ODBC data source

OpenCReports supports using a generic ODBC connection to any database servers using a compliant
client driver. OpenCReports uses a standard ODBC manager library, so it is able to use any ODBC
DSN (Data Source Name) configured for the system or the user.

2.1.1.4. Special note for SQL datasources

The database client libraries for MariaDB, PostgreSQL and ODBC return al the query rows from the
database server at once by default. As such, it is possible that along query result doesn't fit into the
computer memory.

The report needsto traverse the query result twice to pre-compute "delayed" values (see precal culated
and Precalculated variables), so it needs to be able to rewind the data set once it was read to the end.

Thealternative APl in MariaDB to |oad the rows one by one doesn't allow rewinding, soit's not usable
for the report's purposes.

It is only PostgreSQL that allows using an SQL cursor as a standalone entity, i.e. outside SQL
procedures as defined by the SQL standard. This PostgreSQL extension to the standard allows saving

memory in such away that it allows processing very long query results. Behind the scenes, aW TH
HOLD cursor is used and 1024 rows are loaded in one go from the server.

2.1.2. File based data sources

The file based data sources OpenCReports supports are:
« Comma-separated values™® ak.a. CSV

« eXtensible Markup Language® ak.a. XM

« JavaScript Object Notation*? ak.a. JSON

* spreadsheet formats, like XL S, XLSX and ODS

The XM and J SON file types expect the data presented in a certain structure syntax. The semanticsis
application defined. The expected format for these file types are described below.

2.1.2.1. CSV file type

CSV ("Comma Separated Values') is a simple tabulated file format. Every line must have the same
number of columns, the values are separated by commas. The first line in the file contains the column
names.

Using only the CSV file, the datatype cannot be determined. Because of this, every columnisassumed
tobeastring, regardlessif the valuesthemselvesare quoted or notinthefile. Dataconversion functions
must be used, see for example Section 4.12.4, Section 4.10.16 and Section 4.10.10.

10 https://en.wikipedia.org/wiki/Comma-separated_values
Y nttps://en.wikipedia.org/wiki/ XML
12 nttps://en.wikipedia.org/wiki/JSON

https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/JSON

Data sources and queries

Using either report XML description or programming code, an optional set of type indicators may
be added along with the CSV input file, so the explicit conversion functions may be omitted from
expressions using the data.

2.1.2.2. JSON file type

A JSON fileis expected in this format:

{
"colums": ["col namel”, ...],
"coltypes": ["type", ...],
"rows": [
{ "col nanel": valuel, ... 1},
]
}

The JSON fileis expected to list the column namesin astring array caled col ums.

The column types are optionally listed in the string array called col t ypes. If they are listed, the
col t ypes array must have the same number of strings as the col unrms array. The type names
arest ri ng, nunber or dat et i ne. If the column type array is missing, then all data values are
assumed to be strings and data conversion functions must be used, see for example Section 4.12.4,
Section 4.10.16 and Section 4.10.10.

The datarows are listed in a JSON array called r ows and column data values for each row arein a
JSON collection with data names from the col unms and datatypesfromthecol t ypes arrays.

The sections col unms, col t ypes and r ows may appear in any order.

When the col t ypes part is missing from the JSON input file, then using either report XML
description or programming code, an optional set of typeindicators may be added along with the JSON
input file, so the explicit conversion functions may be omitted from expressions using the data.

2.1.2.3. XML file type

An XML file datasource is expected in this format:

<?xm version="1.0"?>
<dat a>
<r ows>

<r ow>

<col >val ue</ col >

</ row>

</ rows>

<fields>

<field>col uml</field>

</fields>
<col types>
<col >t ypel</col >

</ col types>
</ dat a>

The XML section names <dat a>, <r ows> and <f i el ds> are the same as they werein RLIB for
its XML data source. The order of <r ows> and <f i el ds> is not important. But the order of field
namesin <f i el ds> must match the column value order in each <r ow>.

Data sources and queries

The optional section <coltypes> isnew in OpenCReports. If it's present, then it must list the datatypes
in the same order as section <f i el ds>. Thetypesmay best ri ng, nunber ordat et i ne. If this
section is not present, all values are assumed to be strings and data conversion functions must be used,
see for example Section 4.12.4, Section 4.10.16 and Section 4.10.10.

When the col t ypes part is missing from the XML input file, then using either report XML
description or programming code, an optional set of typeindicators may be added along with the XML
input file, so the explicit conversion functions may be omitted from expressions using the data.

2.1.2.4. Spreadsheet file types

2.1.3.

2.1.4.

OpenCReports also supports various spreadsheet formats as datasources. For that, it relies on the
Python pandas module and the supporting modules for the actual spreadsheet file format. Such
Python modules are x| r d for the older Microsoft XL S format, pyopenx| for the newer Microsoft
XLSX format, and odf py for LibreOffice ODS format. Other modules may also be used to support
other spreadsheet file formats.

Application data based datasource

Applications may also have internal datathat can be used as input for OpenCReports.

OpenCReports supports using two-dimensional C arrays as directly accessible application data. Such
arrays must be declared as

char *array[ROA5] [COLUWNS]

or converted to it if using OpenCReports from a different language. Each element is a pointer to a
zero-terminated C string. The first row contains the names of columns.

Optionally, a set of type indicators may be supplied, similarly to the File based data sources.

Application defined data sources

OpenCReports alows application defined datasource drivers that may even override built-in
datasource drivers.

An application defined data source may be any of the previoudly listed types: SQL, file or data based.

2.2. Queries

2.2.1.

Queries are the actual providers of tabular data. They use specific data source drivers.

Queries have unique names associated with them. This allows using multiple queries that have
identical field (or column) names. See Section 3.4.2

SQL queries

An SQL query uses an SQL data source. An SQL query provides tabular datain rows and columns.
The columns have names. One row of datais made up from individual valuesin columns.

Examples:
SELECT * FROM t abl el;
SELECT col uml1, colum2 FROM t abl el;

For more information, read the specific database server documentation you intend to use.

Data sources and queries

2.2.2.

2.2.3.

2.2.4.

File queries

File queries specify the file name and path on the computer. OpenCReports then loads the file into
memory and processes it to present data on the report.

Data queries

Data queries pass the internal data. OpenCReports processesit to present data on the report.

Relation between queries

Reports may use one or more queries. If areport uses more queries, one of them must be the report's
primary query.

Supplementary queries are either followers of the primary query, or independent queries

2.2.4.1. Follower queries

Supplementary queries may be associated with the primary query as so called follower queries. Any
query may be afollower to the primary query.

There are two kinds of follower queries:
« regular, or basic follower queries, and

» socalled N:1 (N-to-one) followers

2.2.4.1.1. Regular follower queries

A follower query isrun along the primary query and their rowsarelaid out side by side. Thefirst row of
thefollower query isassigned thefirst row of the primary query. The second row of the follower query
is assigned to the second row of the primary query, and so on. The number of rows of the complete
data set is determined by the primary query. If the follower query runs out of rows before the primary,
the columns values will be presented as empty data, i.e. SQL NULLSs.

Thisissimilar tousing LEFT OUTER JO Nand using ROWNUMin Oracle or ther ow_nunber ()
SQL function in PostgreSQL asthe matching val ue between the primary query and thefollower query.

2.2.4.1.2. N:1 follower queries

An N:1 follower query, for all intents and purposes, istheright side query inaLEFT OUTER JO N
query, with the primary query on the left side. Rows of the main query and the follower query are
matched according to a specified boolean expression.

2.2.4.1.3. Note on follower queries

One of the use cases of follower queriesis to use data from different datasources. Nowadays, with
foreign queries standardized in SQL and more database servers implementing it in a performant
manner, its use case is more limited. Still, using data from different file based datasources, or using
from an SQL database server and from a file based datasource at the same time is possible with
OpenCReports.

2.2.4.2. Independent queries

Multiple queries may be declared for areport. If aquery is neither set as a follower for a previously
declared query, nor set as the report's main query, then it is an independent query.

Independent queries will stay on their first row during the report run, so they can be considered
constant.

Data sources and queries

Therefore, column references of independent queries may be used in expressions that would need a
constant value.

10

Chapter 3. Expressions in
OpenCReports

3.1. Introduction

The previous section described Data sources and Queries which provide raw data. Raw data can be
used asis, or can be processed further for the purposes of the report. Thisiswhere expressionscomein.

There are three main data types in OpenCReports. nuneri c, string, and dateti ne.
OpenCReports automatically detects the type of raw data supplied by Queriesfor SQL and somefile
based Data sources, and the application can supply extra data to indicate column data types.

Expressions can use and result in any of these types.

A nuneri c expression's result is a number. It uses high numeric precision. Most functions and
operators deal with numbers.

For historic record, RLIB was designed for the US and for slower computers. It used a fixed point
numeric representation. For the US, with its strong currency and prices expressed in low numbers, this
was an acceptable design decision at the time. But for countries, where currencies are a few orders
of magnitude weaker and conversely, the prices are similarly higher, the fixed point numeric value
range was easily overflown (especialy in report variables that added values), leading to wrong data
in the report output.

Another potential problem with fixed point numeric representation is that converting numbers from
theinput datato thisinternal representation always roundsdown. The numeric error (i.e. the difference
between floating point values and fixed point values) can be demonstrated even with small data sets
that add up percentages.

OpenCReports uses high precision floating point values. Technically, it's 256-bit precision GNU
MPFR numerics by default, and the precision can be modified by the application if needed. This
allows handling very large and very small numbers and directly consuming the SQL nuneri ¢ and
deci mal typesor arbitrary precision, or using bcrmat h numericsin PHP. Thisalso allows scientific
computation or monetary calculations even with late stage hyperi nflation prices.

A string expression's result is arbitrary text. Strings can be concatenated or otherwise processed
by string functions.

A dat et i ne expression may store a date, atime (with or without timezone) or both. Also, it may
store atime interval, eg. 2 nont hs that can be added to or subtracted from another dat et i ne
value.

Thereisafurther datatype: er r or . Errorsusually occur if thereisan error in processing, e.g. when a
function argument does not match its expected parameter datatype. Theer r or typeisaspecial case
of strings: it stores a string literal, the error message. As opposed to the string data type, an er r or
cannot be processed further by passing them as function arguments or operator operands. Instead, the
first error is propagated up from subexpressions to the final result of the expression.

3.2. Constants
3.2.1. String literals

String literals in OpenCReports can be either single or double quoted. Some examples:

L hitps://en.wikipedia.org/wiki/Hyperinflation

11

https://en.wikipedia.org/wiki/Hyperinflation
https://en.wikipedia.org/wiki/Hyperinflation

Expressions in OpenCReports

3.2.2.

"appl e"

"appl e’

"I’ve eaten an apple"
"This an "apple".’

The values of these strings are:

appl e

appl e

|"ve eaten an apple
This an "appl e".

We can see how the other quoting character can be used as part of the string value.

String literals can also use BASIC language style double quoting to embed a single quoting character
used for quoting the string itself:

"appl e
"appl e’ ’ pear’
"appl e’’’ pear’
"apple"""
"appl e"" pear"
"appl e""""pear"

The values of these strings are:

appl e’
appl e’ pear
appl e’ ' pear
appl e"
appl e" pear
appl e" " pear

String literals can aso use C language string continuation if there's at least one whitespace character
(space, TAB or new line) between doubled quoting characters. String continuation can also switch
guoting characters without whitespace between quoting.

"appl e" "pear"
"appl e" ' pear’
"appl e"’ pear’

Thevalue of al these stringsis:

appl epear

Numeric constants

Numeric constants can be integer or fractional numbers with or without the so called e-notation or
scientific notation. Some examples:

1

1.234
le4d

le-4

1. 234e-5

E-notation means that that number preceding the letter "€" or "E" is multiplied by ten to the power
of the number after the letter "€" or "E", the latter being an integer value. The values of the above
examples are:

1

12

Expressions in OpenCReports

3.2.3.

3.2.4.

3.2.5.

1.234
10000

0. 0001

0. 00001234

Numbers greater than 0 and less than 1 can be written with or without the leading zero.

0.123
. 123

Technically, there are no negative numeric constants. Instead, the number and the unary minusoperator

(see Unary operators) are initially handled separately. Then the expression optimizer merges them,
creating the negative numeric constant.

Boolean constants

Boolean constants eval utate to numeric constans 1 and 0. The boolean constants are:

yes
no
true
fal se

Datetime constants

There are no datetime constants per se, athough expressions like st odt (' 1980- 06- 30
16: 00: 00") orinterval (' 2 nont hs') (i.e. function calswith constant argumentsthat result
inadat et i me value) areimplicitly turned into constants by the expression optimizer.

Constant expressions

Constant expressions are ones that only contain constant values (of any type) and operators or
functions.

3.3. Delayed (precalculated) expressions

Reportsinternally go through the data set twice, the second run generates the report output. The data
set does not (must not) change between the two runs. This makes it possible to use so called delayed
or precalculated values. A precal culated expression keeps the value computed for the last row of the
data set during the first run. The second run uses this value.

By default, expressions are not precalculated. Let's call non-precalculated expressions and values
normal.

Expressions need to be explicitly marked as precalculated. Marking expressions as precalculated is
possible via the report XML description, or by the OpenCReports API. See Precalculated value in
XML, Section 10.1.4.19, and Section 12.8.25.

OpenCReports allows mixing normal and precal culated values in the same expression. For example,
if anormal expression references Precalculated variables, the result would be intuitively expected.

3.4. Identifiers

Expressions may reference query column names, environment variables, internal variables and user
defined Report variables. These references are called identifiers. Their values are evaluated during
the report execution.

13

Expressions in OpenCReports

3.4.1.

3.4.2.

3.4.3.

3.4.4.

Identifier names

Identifiersarein theformat donai n. i denti fi er wherethe domain name or the dot are optional.

OpenCReports uses UTF-8 encoding even in identifier names. National or accented characters are
accepted in identifiers.

Valid namesfor domai nandi dent i fi er may start with an underscore or UTF-8 letters and may
contain underscore, UTF-8 |etters and numbers in subsegquent characters.

Query field identifiers

Any valid identifier is by default a query column reference, with or without the domain name.
Examples:

field nane

field nane5s
nmyqueryl.field_nane
oszl op_név

| ekérdezés. oszl op_név

In the above example, oszl op_név means fi el d_nane, and | ekér dezés. oszl op_név
meansquery. fi el d_name in Hungarian. The accented characters are a courtesy of UTF-8.

Query field identifiersin expressions are resolved by matching them against query names (used asthe
domain) and their field names.

If the domain name is specified, a query matching the domain name name must be declared for the
report, either as the primary query, afollower query, or an independent query. That query must have
a column name that matches the identifier name.

If the domain name is not specified, the field name references are matched against al the queries of
the report in the order of their declaration. The first query with a matching column name will be used
for that reference.

For exceptions (and exceptions from under the exceptions!), see below.

User defined variables

Domainv signifiesuser defined report variables, which can be used to shortcut expressions. Example:
v.nmy_variabl e

For details, see Report variables and Variable node.

Special purpose identifier domains

Some domain names carry special meaning for the report.

3.4.4.1. Environment variables

Domain mindicates the domain of environment variables.

The nature of environment variables depends on the languange binding. For example in C, it's the
environment variables in the operating system. In PHP, the identifier name is first matched against
global PHP variables, and if not found, against the operating system environment variables. Example:

m current _date

14

Expressions in OpenCReports

Since such a setting is controlled outside the report, and for the duration of running the report, its
value cannot (or shouldn't) change, environment variable references are optimized into constants at
the beginning of the report execution.

Environment variables can't change during report execution in single threaded applications, but they
canin multi-threaded ones. By optimizing environment variablesinto constantsin expressionsinstead
of querying the environment every time the same expression is evaluated, potential data races (that
may result in inconsistent results) are eliminated.

3.4.4.2. Internal report variables

Domainr indicates the domain of internal report variables.
3.4.4.2.1. Current page number

r.pageno

The current page of the report is maintained by the report layout during the report run. For example, if
an expression is evaluated on page 4 of the report, and happens to reference the current page number
variable, then this variable will have the value 4 in the result.

PDF output supports pagination. Other output formats do not. For them the value of thisvariableis 1.
3.4.4.2.2. Total number of pages

r.tot pages

This variable carries the total number of pagesin the report. Its value is maintained by the report.

Only the PDF output format supports pagination. For output formats not supporting pagination, the
value of thisvariableis 1 throughout the report.

This variable is inherently precalculated. Expressions like this will intuitively produce the expected
result:

printf("Page: % / %", r.pageno, r.totpages)
For example, on the 3rd page of a 5-page report, the value would be;
Page: 3/ 5
3.4.4.2.3. Line number
r.lineno
This variable gives the current row (line) number in the data set.
It can be thought as an alias to the Query row number function which does the same by default.

But functions may be overridden by user defined functions, while this variable will always work as
described.

3.4.4.2.4. Detail count
r.detail cnt

This variable works similarly to the Line number variable and Query row number function, except it
restarts from 1 when afield header is emitted on the report. See Detail node.

With the default behaviour of the field header regarding breaks (see Report field header priority
attribute), i.e. when field header is printed on the top of every page, r . det ai | cnt works as a per
page line count value.

15

Expressions in OpenCReports

When the report field header priority is set to low, the effect may be more emphasized because the
value of thisvariable is reset more often.

3.4.4.2.5. Field value

r.val ue

Data on the report is represented by field description. Along with the data expression, supplementary
expressions are used for metadata that make up the displaying of the value. Such supplementary
expression exist for the foreground and background colors, the formatting of the value, and others.

The supplementary expressions may reference the field value, without having to type out the field
expression multiple times.

Usingr . val ue aso helpsreducing the report runtime because the value expression is not computed
multiple times. Thisisamanual optimization.

Referencing r . val ue isonly possible for supplementary expressions in the same field description.
This variable cannot cross-reference other field descriptions, or anything not in the same scope. For
this purpose, there are user Report variables.

3.4.4.2.6. Report output format value

r.format

This variable returns the current output format name as a string. For example: PDF, HTM_, etc.

3.4.4.2.7. Expression self reference
r.self

This variable references the previous result of the expression. It is used in iterative expressions, like
in user-defined Report variables. It can also be used in any user defined expression.

3.4.4.2.8. Subexpressions of user-defined variables

r. baseexpr
r.ignoreexpr
r.internmedexpr
r.internmed2expr

These variables are references for the four subexpressions that potentially make up a user-defined
custom variable. The expressionsin order are: base expression, the row ignoring expression and two
intermediary expressions.

Actualy, there's a fifth subexpression that exists in every user defined variable, namely the result
expression. It'sreferenceis simply the user variable reference, see User defined variables and Custom
variable attributes.

They are evaluated in this order:
* r. baseexpr

The base expresson must not reference any of the others of r.ignoreexpr,
r.internedexpr,andr.intermed2expr.

* r.ignoreexpr

The data row ignoring expresson must not reference r.internmedexpr and
r.interned2expr, butit canreferencer . baseexpr.

16

Expressions in OpenCReports

e r.internedexpr

The first intermediary expression can referencer . baseexpr andr . i gnor eexpr, but it must
not referencer . i nt er med2expr .

e r.interned2expr

The second intermediary expression can reference any of r . baseexpr, r. i gnor eexpr, and
r.internedexpr.

» The result expression, which has no internal variable name. It can reference dl of r . baseexpr,
r.ignoreexpr,r.intermedexpr andr.interned2expr.

For example, a running average over a data series needs two intermediary expressions. one for the
sum of the vaues, the other for the number of values in the series. The result is the sum of values
divided by the number of values.

Their usage is only valid when declaring a custom user defined variable.

3.4.4.3. Quoted and dot-prefixed identifiers

Both domai n and i denti fi er names may be quoted or ungquoted. Quoting names alow using
semi-reserved and reserved words as identifiers and also allow special charactersin identifier names.
Examples:

query.field_nanmel

query."fiel d_nane2"

query."field with space in the nane"
"query2".field_nane3

"query2"."and"

3.4.4.4. Dot-prefixed identifiers

A dot-prefixed identifier is one where the domain name is not specified, but the identifier name is
prefixed with adot. Examples:

.field_nane
."field_name"

The boolean constants are semi-reserved words. They can be used as identifiers with dot-prefixed
identifier names without a domain name and without quoting:

.yes
. no

.true
.fal se
yes. no

The above unquoted identifiers are equivalent with these quoted ones bel ow:

."yes”
."no"
."true”
."fal se”
"yes"."no"

Operator names are reserved words, e.g. and and or . They cannot be used with dot-prefixed operator
names without quoting, asit would cause an expression syntax error. But they can be used as quoted
identifiers, in case you would want to use such a query hame and column name:

17

Expressions in OpenCReports

. n andn
. "Or"
n andn . n or n

3.4.4.5. Quoted special purpose identifier domains

When identifier domains are quoted, they lose their special meaning and the identifiers become query
field identifiers. Of course, in this case, such aquery name must exist and the query must have afield
name specified in the identifier. Examples:

"m'. current _date
"r".totpages
"v".my_variable

3.5. Operators and functions

3.5.1.

3.5.2.

3.5.3.

3.5.4.

OpenCReports expressions can use severa operatorsand functions. The operator precedenceismostly
as expected from the C programming language. One notable exception isimplicit multiplication. The
precedence classes are as below, in increasing order of precedence.

Note that al of the operators are implemented internally as afunction call to the equivalent function.

Since every function may be overridden by user functions, the operators may work differently than
the documentation.

Ternary operator

The ternary operator works asin the C, PHP and other languages:

expressionl ? expression2 : expression3

It's evaluated as follows: if the value of numeric expr essi onl istrue (i.e. non-zero), then
the result is the expr essi on2, otherwise it's expr essi on3. Type of expressi on2 and
expressi on3 may differ, i.e. the result type will be the type of the underlying expression but it

can result in runtime errors.

Internally, it'simplemented using theiif() function.

Boolean logic operators with two operands

Logic OR can bewrittenas| | oror.Exampleea || b
Logic AND can be written as && or and. Logic AND has precedence over OR. Example:a && b

Internally, they are implemented using the Boolean AND and Boolean OR functions.

Bitwise operators with two operands

The bitwise operatorsin this precedence class and in their increasing order of precedence are: bitwise
OR (]) and bitwise AND (&).

Equality and inequality comparison operators

The equality comparison operator can be written as = or ==.

Theinequality comparison operator can be writtenas<> or ! =.

18

Expressions in OpenCReports

3.5.4.1. Equality and inequality comparison operators on vectors

3.5.5.

Vector equality and inequality comparisons have the same precedence as scalar comparisons. These
are not vectors in the mathematical sense, but a comma separated list of scalars inside brackets
([... 1), withop being any of the equality or inequality comparison operators:

[expal, expa2, ...] op [expbl, expb2, ...]
Such comparisons are expanded into alogic operator form:
(expal op expbl) and (expa2 op expb2) and ...

Please, note that because of the mechanical conversion from the vector form to the expanded logic
operator form, the following two lines have different meaning:

not ([expal, expa2, ...] =] expbl, expb2, ... 1)
[expal, expa2, ...] !'=1] expbl, expb2, ...]

Other comparison operators

Lessthan (<), less-or-equal (<=), greater-than (>) and greater-or-equal (>=).

3.5.5.1. Other comparison operators on vectors

3.5.6.

3.5.7.

3.5.8.

3.5.9.

Vector comparisons using <, >, etc. operators have the same precedence as their scalar counterpart.
These are also expanded into the logic form, see Section 3.5.4.1 above.

Bitwise shifts
Bitwise shift left (a >> b) and bitwise shift right (@ << b).
Addition and subtraction

a + banda - b.

Multiplication, division and modulo (remainder)

a* b,a/ banda %b.

Power-of operator

a ™ b works as a-to-the-power-of-b.

3.5.10. Factorial operator

a! , the'!" sign used as postfix operator.

3.5.11. Unary plus and minus, logical and bitwise NOT,
prefix increment and decrement

Unary plus (+a), unary minus (- a), logical NOT (! a, 'I" used as prefix operator), bitwise NOT (~a),
prefix increment (++a) and prefix decrement (- - a).

3.5.12. Postfix increment and decrement

Postfix increment (a++) and decrement (a- -).

19

Expressions in OpenCReports

3.5.13. Function calls and implicit multiplication

Function calls execute a function on operands: f unct i on(operand[, ...]).A function name
isasingle word known by OpenCReports at the time of parsing, either asabuilt-in function, or auser-
supplied one. The function name cannot have aleading dot or be adomain-qualified identifier.

Implicit multiplication is when two distinct operands are in juxtaposition, in other words they are
written side by side without any whitespace. In this case, there is an implied multiplication between
them that acts with higher precedence than regular multiplication or division. Implicit multiplication
is applicable in these situations:

* A numeric constant juxtaposed with an identifier, the numeric constant is the on the left side.
2X

* A numeric constant juxtaposed with an expression inside parentheses. The constant can be on either
side of the expression.

2(a+h)
(atb)2
» Anidentifier juxtaposed with an expression inside parentheses, the identifier is on the left side of
the expression.
x(a+b)

Thisisonly treated as implicit multiplication if the following conditions are met:
« thex identifier is not afunction name at the time of parsing

« thereisasingle expression inside the parentheses

If any of the conditions below are true, the expression is treated as a function cal:
* x isaknown function name

* thereisno expression inside the parentheses

 aseries of comma delimited expressions is inside the parentheses

The function call validity is checked against the number of operands, with a potential parser error.
If there's an ambiguity between function names and identifiers provided by data sources, it can be
avoided by using dot-prefixed or dot-prefixed and quoted identifiers, or fully qualified identifiers
intheformof query. i dentifier.

* An expression inside parentheses juxtaposed with an identifier on the right side.
(atb)a

» Two expressions inside parentheses juxtaposed with each other.
(a+b) (c+d)

Implicit multiplicationisNOT applicable in these situations, besides the exceptions already explained
above:

* Anidentifier juxtaposed with a numeric constant, the numeric constant is the on the right side.
X2

Since an identifier name may include digits as the second and subsequent characters, the numeric
constant, or at least itsinteger part issimply recognized as part of theidentifier nameitself according
to the token matching. This can also result in syntax errors when not handled with care.

20

Expressions in OpenCReports

» Anidentifier juxtaposed with another identifier.
ab

The reason is the same asin the preceding case: thereis only a single identifier according to token
matching.

3.5.14. Parentheses

Parenthesi zed expressions are always computed first.

3.5.15. A note on token matching, precendence and
syntax errors

Expression parsing works on two levels: token matching and applying grammar. Token matching
breaks up the expression string into tokens in a greedy way: without whitepace delimiters, the longest
possible token is chosen.

This may lead to dight confusion when coupled with implicit multiplication. For example, the
expression 2e- 1e isbrokenupintotwotokens: 2e- 1 juxtaposed with e. Thefirst tokenisinterpreted
as a numeric constant using e-notation (so that it will mean2 * 107(-1)) and the second is the
identifier e, leading to the meaning 0. 2 * e. Thisis unambiguous for the computer, but can be
somewhat confusing to the the user reading or writing expressions. To avoid any confusion, don't use
implicit multiplication and use whitespace and parentheses gratituously.

Expression parsing handles precedence and whitespaces. For example, these below do not mean
exactly the same:

a++ + ++b
a+++++b

Theformer is obvious, but the latter may be alittle surprising: (a++) ++ + b. Thisishow the lexer
or token matching works, i.e. it matches the longest applicable token first.

If a and b are numbers, then the result of both expressionsisa + b + 2, but the way it's arrived
at isdifferent.

However, the ++ (increment) and - - (decrement) operators may be interpreted differently for other
types. For example, if botha and b are of thedat et i ne type, then theresult al so depends on whether
one of them is an interval datetime, and the other (regular) datetime value has valid time or not. To
make the expression unambiguous, whitespace and/or parenthesis should be used.

Another ambiguous example:
a++b

The above may be interpreted asa + +b but since no whitespace is used, the tokenizer is free to
interpret it asa++ b, because ++ islonger than +, so the former is matched first as an operator token.
Thisisasyntax error and expression parsing throws an error for it.

21

Chapter 4. Functions

4.1. Introduction

This section lists the functions supported by OpenCReportsin topics, and alphabetically in their topic.
Most functions below operate in this way, unless noted otherwise:

» numeric and bitwise functions with more than two operands take their first operand and perform
the same operation using the second, third, etc. operands repeatedly.

« if any of the operandsis an error (resulting from runtime processing of a subexpression), then the
result will use the exact error of the first operand that is an error.

« if any of the operandsisNULL (e.g. the datasourceis SQL and thefield valueis SQL NULL) then
the result will also be NULL.

» Boolean logic functions treat their operands with 0 being false and anything else (even fractions
less than 0.5) astrue.

* Bitwise functionstreat their operands as 64-bit numeric values, with rounding if they are fractions.

 String arithmetics operate on UTF-8 encoded strings and count in number of UTF-8 characters
instead of byte length.

4.2. Arithmetic functions

4.2.1.

4.2.2.

4.2.3.

4.2.4.

4.2.5.

4.2.6.

abs()

Absolute value. It takes one numeric operand. Operator | . . . | isashortcut for thisfunction.
div()

Division. It takestwo or more numeric operands. Theway it worksis: take thefirst operand and divide
it by the second and subsequent operands in sequence. Operator / is a shortcut for this function.

factorial()

Factorial function. It takes one numeric operand. The postfix operator ! isthe alias for thisfunction.

fmod()

Theresult to thevalue of x - ny (x and y being its two numeric operands), rounded according to
the report's rounding mode, where n is the integer quotient of x divided by y, n is rounded toward
zero. It takes two numeric operands.

mod ()

Analiasof r emai nder () . It takes two numeric operands. Operator %is a shortcut for this function.

mul()

Multiplication. It takes two or more numeric operands. Operator * is a shortcut for this function.

22

Functions

4.2.7.

4.2.8.

4.2.9.

remainder()

Theresult to thevalue of x - ny (x and y being its two numeric operands), rounded according to
the report's rounding mode, where n isthe integer quotient of x divided by y, n isrounded toward to
the nearest integer. It takes two numeric operands.

uminus()

Unary minus. Changesthe sign of its numeric operand from positive to negative, or viceversa. It takes
one numeric operand. Operator unary - isashortcut of this function.

uplus()

Unary plus. Leavesthe sign of its numeric operand asis. It takes one numeric operand. Operator unary
+ isashortcut of this function.

4.3. Bitwise functions

4.3.1.

4.3.2.

4.3.3.

4.3.4.

4.3.5.

4.3.6.

and()

Bitwise AND. It takes two or more numeric operands. Operator & is a shortcut for this function.

not()

Bitwise NOT. It takes one numeric operand. It returns the bit-by-bit negated value of its operand.
Prefix operator ~ is a shortcut for this function.

or()

Bitwise OR. It takes two or more numeric operands. Operator | is a shortcut for this function.

shi()

Bitwise shift |eft. It takes two numeric operands. Shifts the first operand left with the number of bits
specified by the second operand. The operand << is a shortcut for this function.

shr()

Bitwise shift right. It takes two numeric operands. Shifts the first operand right with the number of
bits specified by the second operand. The operand >> is a shortcut for this function.

xor()

Bitwise exclusive OR. It takes two or more numeric operands.

4.4. Boolean logic functions

4.4.1.

land ()

Boolean logic AND. It takes two or more numeric operands that are treated as boolean logic values.
Thefunctionisexecuted until theresultisfully determined, i.e. it stopsat the first fal se value. Operator
&& isashortcut for this function.

23

Functions

4.4.2.

4.4.3.

Inot()

Boolean logic NOT. It takes one numeric operand. It returns the negated boolean value of its operand.
Prefix operator ! isashortcut for this function.

lor()

Boolean logic OR. It takes two or more numeric operands that are treated as boolean logic values. The
function is executed until the result is fully determined, i.e. it stops at the first true value. Operator
| | isashortcut for thisfunction.

4.5. Comparison functions

4.5.1.

4.5.2.

4.5.3.

4.5.4.

4.5.5.

4.5.6.

eq()

Equal. It takestwo operands of the same type: numeric, string or datetime. Theresult is numeric value
1or 0, if the two operands are equal or non-equal, respectively. The operators = and == are shortcuts
for this function.

ge()

Greater-or-equal. It takes two operands of the same type, which can be either numeric, string or
datetime. The operator >= is a shortcut for this function.

gt()

Greater-than. It takes two operands of the same type, which can be either numeric, string or datetime.
The operator > is a shortcut for this function.

le()

Less-or-equal. It takes two operands of the same type, which can be either numeric, string or datetime.
The operator <= isashortcut for this function.

1t()

Less-than. It takes two operands of the same type, which can be either numeric, string or datetime.
The operator < is a shortcut for this function.

ne()

Not equal. It takes two operands of the same type, which can be either numeric, string or datetime.
The operator ! = and <> are shortcuts for this function.

4.6. Rounding and related functions

4.6.1.

4.6.2.

ceil()

Rounds its operand to the next higher or equal integer. It takes one numeric operand.

floor()

Rounds its operand to the next lower or equal integer. It takes one numeric operand.

24

Functions

4.6.3. rint()

Rounds its operand using the report's rounding mode. It takes one numeric operand.

4.6.4. round()

Rounds its operand to the nearest representable integer, rounding halfway cases away from zero. It
takes one numeric operand.

4.6.5. trunc()

Rounds its operand to the next representable integer toward zero. It takes one numeric operand.

4.7. Exponential, logarithmic and related
functions

4.7.1. exp()

Natural exponential. It takes one numeric operand.

4.7.2. expl0()

Base-10 exponentidl. It takes one numeric operand.

4.7.3. exp2()

Base-2 exponential. It takes one numeric operand.

4.7.4.1n()

Aliasfor | og() .

4.7.5. log()

Natural logarithm. It takes one numeric operand.

4.7.6.10g10()

Base-10 logarithm. It takes one numeric operand.

4.7.7.1og2()

Base-2 logarithm. It takes one numeric operand.

4.7.8. pow()

Thisfunction raisesthefirst operand to the power of its second operand. It takes two numeric operands.
Operator ™ is ashortcut for this function.

4.7.9. sqr()

Square. It takes one numeric operand.

25

Functions

4.7.10. sqrt()

Square root. It takes one numeric operand.

4.8. Trigonometric functions

4.8.1. acos|()

Arc-cosine function. It takes one numeric operand.
4.8.2. asin()

Arc-sine function. It takes one numeric operand.
4.8.3. atan()

Arc-tangent function. It takes one numeric operand.
4.8.4. cos()

Cosine function. It takes one numeric operand.
4.8.5. cot()

Cotangent function. It takes one numeric operand.
4.8.6. csc()

Cosecant function. It takes one numeric operand.
4.8.7. sec()

Secant. It takes one numeric operand.
4.8.8. sin()

Sine. It takes one numeric operand.
4.8.9. tan()

Tangent. It takes one numeric operand.

4.9. String functions
4.9.1. concat()

Concatenate strings. It takes two or more string operands.

4.9.2. left()

Return the leftmost N characters of a string. It takes two operands, the first operand is a string, the
second is the string length, a numeric integer.

26

Functions

4.9.3.

4.9.4.

4.9.5.

4.9.6.

4.9.7.

4.9.8.

lower()

Convert to lowercase. It takes one string operand.

mid()

Return characters from the middle of the string. It takes three operands, the first operand is a string,
the second and third are numeric integer values, start offset and length, respectively. The offset is 1-

based just like in BASIC, with the offset value 0 being identical to 1. Negative offsets count from the
right end of the string, i.e. m d(s, - n, n) isequivaenttori ght (s, n).

proper()

Return the string converted |owecase, except thefirst letter of the first word, which will be uppercase.
This function takes one string operand.

right()

Return the rightmost N characters of a string. It takes two operands, the first operand is a string, the
second is the string length, a numeric integer.

strlen()

Return the number of charactersin the string. It takes one string operand.

upper()

Convert to uppercase. It takes one string operand.

4.10. Datetime functions
4.10.1. chgdateof()

Change the date part of the first operand to the date part of the second operand. It takes two datetime
operands.

4.10.2. chgtimeof()

Change the time part of the first operand to the date part of the second operand. It takes two datetime
operands.

4.10.3. date()

Return the current date. It takes zero operands.

4.10.4. dateof()

Return the date part. It takes one datetime operand.

4.10.5. day()

Return the day of month value as a number. It takes one datetime operand.

27

Functions

4.10.6. dim()

Returns the number of days in the month according to the year and month values of the operand. It
takes one datetime operand.

4.10.7. dtos()

Convert a datetime to string. The date part of the datetime is formatted according to the date format
of the currently set locale. It takes one datetime operand.

4.10.8. dtosf()

Convert a datetime to formatted string. It takes two operands, one datetime and one string. It takes
the second (string) operand as aformat string and formats the datetime value according to the format
string. If the second operand is NULL or empty string, this function behaves like the dtos() function.
Otherwise it behaves like the format() function with the operands reversed.

4.10.9. gettimeinsecs|()

Convert thetime part of the datetime to seconds elapsed from 00:00:00. It takes one datetime operand.

4.10.10. interval()

Convert the parameter(s) to an interval subtype of the datetime type. It takes either one string operand,
or siX humeric operands.

In the first case, the string is parsed for interval values, like 1 year or 2 nont hs, etc., and sets
the specific datetime part values.

In the second case, the six numeric operands are the values for the datetime parts, in the order of years,
months, days, hours, minutes and seconds.

4.10.11. month()

Return the month value of a datetime. It takes one datetime operand.

4.10.12. now()

Return the current timestamp in a datetime value. It takes zero operands.

The "current timestamp" is determined at the beginning of generating the report. Thisfunction returns
the same stable value for the lifetime of the report.

4.10.13. settimeinsecs()

Return a datetime with the time part of a datetime changed to the specified seconds after 00:00:00. It
takes two operands, the first operand is a datetime, the second is a numeric integer.

4.10.14. stdwiy()

Return the 1SO-8601 week number of a datetime as a decimal number, range 01 to 53, where week 1
isthefirst week that has at least 4 days in the new year. It takes one datetime operand.

4.10.15. stod()

Aliasfor st odt ().

28

Functions

4.10.16. stodt()

Convert a string to a datetime value. It takes one string operand.

Thisfunction is smart enough to recognize locale specific and standard | SO-8601 formats. It handles
whole datetime, date-only and time-only values in the string.

4.10.17. stodtsql()

Aliasfor st odt ().

4.10.18. timeof()

Return time part of the datetime operand. It takes one datetime operand.

4.10.19. tstod()

Aliasfor st odt ().

4.10.20. wiy()

Return the week number of the operand as a decimal number, range 00 to 53, starting with the first
Sunday as the first day of week O1. It takes one datetime operand.

4.10.21. wiy1()

Return the week number of the operand as a decimal number, range 00 to 53, starting with the first
Monday as the first day of week 01. It takes one datetime operand.

4.10.22. wiyo()

Thisfunction returnsthe week number of thefirst operand asadecimal number, range 00to 53, starting
with the specified day number asthefirst day. (0 = Sunday, 1 = Monday, 2 = Tuesday, ...) It takestwo
operands, the first is a datetime, the second is a numeric integer.

4.10.23. year()

Return the year value of the operand as a numeric value. It takes one datetime operand.

4.11. Type agnostic functions
4.11.1. add()

Add the operands. It takes two or more operands of different types and returns the sensible result for
cases that make sense. It throws an error for invalid cases. Operator + is a shortcut for this function.

For nuner i ¢ arguments, it's the arithmetic addition.
For st ri ng arguments, it is equivalent to concatenation, i.e. the concat() function.
Certain combinations of dat et i me and numner i ¢ arguments make sense.

« normal dat et i me and nuner i ¢ added together resultsinthedat et i me valueincreased by the
specified number of seconds or days, depending on whether the dat et i me value has valid time
part or not, respectively

29

Functions

 theinterval subtype of dat et i ne and nuner i ¢ added together resultsin the dat et i ne value
increased by the specified number of seconds

» normal dat et i me and theinterval subtype of thedat et i nme added together resultsin the normal
dat et i me valueincreased by the specified time interval

* two intervals added together resultsin the first interval increased by the second interval

4.11.2. dec()

Decrement by one. It takes one numeric or datetime operand. The operator - - is the shortcut for it,
either as prefix or postfix operator.

4.11.3.inc()

Increment by one. It takes one numeric or datetime operand. The operator ++ is the shortcut for it,
either as prefix or postfix operator.

4.11.4. sub()

Subtract the second, etc. operands from the first. It takes two or more operands of different types and
returns the sensible result for cases that make sense. It throws an error for invalid cases. Operator -
isashortcut for this function.

For numer i ¢ arguments, it's simply the arithmetic subtraction.
For st ri ng arguments, it throws an error.
Certain combinations of dat et i me and nuner i ¢ arguments make sense.

e anurmer i c valuesubtracted from anormal dat et i e resultsinthedat et i me value decreased
by the specified number of seconds or days, depending on whether the dat et i me value hasvalid
time part or not, respectively

e anuneri c value subtracted from the interval subtype of dat et i me resultsin the dat et i e
value decreased by the specified number of seconds

» an interval value subtracted from a normal dat et i me value results in the normal dat et i ne
value decreased by the specified time interval

* two intervals subtracted resultsin the first interval decreased by the second interval

4.12. Formatting and conversion functions
4.12.1. format()

It takes two operands, the first operand is of any type, the second operand is a string. This function
formats the first value according to the second operand as aformat string. If the first operand doesn't
match the expected type in the format string, an error is returned.

It an RLIB compatibility function and is a special case of the pri nt f () function. See Formatting
data

4.12.2. printf()

This function takes one or more operands. The first operand is a string and used as the format string.
Subsequent operands have to be of the expected type according to the format string, otherwise an error
isreturned. If everything is correct, it returns the formatted data as a string. See Formatting data.

30

Functions

4.12.3. str()

It takes three numeric operands. Thefirst operand is converted to a string with the length and number
of decimal digits specified by the second and the third operands, respectively.

4.12.4. val()

Numeric value. It takes one numeric or string operand.

If astring value is passed, and it can be converted to a numeric value successfully, then it returns the
converted numeric value.

The value of a numeric operand is passed through asis.

4.13. Miscellaneous functions
4.13.1. brrownum()

Current row number of abreak sinceitslast break boundary. The row number restartsfrom 1 at every
break boundary. It takes one string operand, the name of the break.

4.13.2. error()

Return an artificially generated error. It takes one string operand, the error message. Used by unit tests
but it may be useful in some other cases.

4.13.3. eval()

Parse an expression string. If it'scorrect, it isinserted into the parent expression in place of thefunction
cal. If thereisasyntax error, theerror isre-thrown for the main expression. It takes one string operand.

Thisis a pseudo-function. The grammar detects its use and converts the embedded expression string
into a regular subexpression, like if it was inside parenthesis in the parent expression contents. This
allows the subexpression to be optimized in the parent expression context.

Fox example, theexpression3 * eval (' 1 + 2') isoptimized into the numeric constant 9.

Note, that the grammar transformation only takes place if there is no user defined function with the
same name. In this case, the user defined function is used.

4.13.4. fxpval()

Move the decimal separator to the left by the specified number of digits. It takes two operands. The
first operand may either be a string containing a numeric value, or a numeric. If it's a string, then it
will be converted to numeric first. The second operand is numeric.

Itisan RLIB compatibility function. The function divides the numeric value of the first operand with
10 to the power of the value of the second operand. One use caseisthat if the value of thefirst operand
contains pricesin cents, thenf xpval (dat a, 2) putsthedecimal separator to the correct place.

4.13.5. iif()

Ternary function. It takes three operands of which the first one is numeric, the second and third
operands can be of any type. If the first operand is non-zero (i.e.: "true") then it returns the second
operand, otherwise the third operand. The ternary operator expl ? exp2 : exp3 isashortcut
for this function.

31

Functions

4.13.6. isdatetime()

Returns numeric 1 if the operand is datetime, O otherwise. It takes one operand of any type.

4.13.7. iserror()

Returns numeric 1 if the operand is an error, 0 otherwise. It takes one operand of any type.

4.13.8. isnan()

Returns numeric 1 if the operand is numeric and it represents a NAN value (not-a-number), 0
otherwise. It takes one operand of any type.

4.13.9. isnull()

Returns numeric 1 if the operand isNULL, O otherwise. It takes one operand of any type.

4.13.10. isnumeric()

Returns numeric 1 if the operand is a numeric value, 0 otherwise. It takes one operand of any type.

4.13.11. isstring()

Returns numeric 1 if the operand is a string value, 0 otherwise. It takes one operand of any type.

4.13.12. null()

Generate NULL value using the type of its operand. It takes one operand of any type.

4.13.13. nulldt()

Generate NULL of the datetime type. It takes zero operands.

4.13.14. nulln()

Generate NULL of the numeric type. It takes zero operands.

4.13.15. nulls()

Generate NULL of the string type. It takes zero operands.

4.13.16. prevval()

Return the previous value. It takes one operand of any type.

Theinteresting use case for thisfunction is non-constant expressions. It returns the operand's previous
value, i.e. the value generated for the previous query row. If there is no previous value row, the result
isan error. This function allows showing values carried over from the previous page to be shown in
a header section of the current page.

4.13.17. random()

Generate a pseudo-random numeric value between 0 and 1. It takes zero operands.

32

Functions

4.13.18. rownum()

Return the row number of a query in the report. It takes either zero operands or one string operand. If
zero operands are passed, it returns the current row number of the primary query. If a string operand
is passed, then it returns the current row number of the query with that name. See Queries.

4.13.19. translate()

Trandate the operand. It takes one string operand.

This function returns the translated version of the string operand according to trandlation and locale
settingsusing dget t ext () from Gettext.

4.13.20. translate2()

Tranglate the operands using singular and plural variants and the number of the object in the statement.
It takes three operands. Thefirst two operands are strings, for the singular and plural strings. Thethird
operand is the number that determines which transation form is used.

This function trandates its operands according to the trandation and locale settings using
dnget t ext () from Gettext.

33

Chapter 5. Report variables

5.1. Introduction to report variables

In OpenCReports, there are afew variable types:
 expression variables, practically named aliases for Expressions

 pre-defined numeric operations for simple statistics, like summing, counting, or averaging a data
series, or finding the highest or lowest valuesin a data series

* custom variables where the data type and the operation on the data are user-defined

Variables may be reset at break boundaries. See Report breaks and the Reset on break attribute.

5.2. Expression variables

5.2.1.

5.2.2.

The value of an expression variable is calculated from the expression using current row of data from
the query.

This can be thought of as akind of shortcut. A variable may use along expression. Other expressions
may use the same long expression as a subexpression, i.e. part of themselves. Typing the same long
expression over and over is error-prone. The variable allows typing the expression once, then the
variable can be used in other expressions. This not only saves on typing. The expression value of
the variable is calculated once, and referencing the variable simply uses the already calculated value,
thereby saving report execution time.

Variables with iterative expressions

An expression may be iterative, where the new value is derived from the previous value of itself. See
Expression self reference.

Expression variable examples

Examples cannot be understood without the context in which they are used. Complete variable
examples are in the Variable node section of the Report XML description chapter.

5.3. Variable types for simple statistics

There are pre-defined variable types for performing simple statistic calculations. All of them (except
data series counting) operate on numeric values and use iterative expressions internally.

The pre-defined variables types are as below:
e Summing adata series. The variable typeissum

» Counting a data series. The variable type is count or count al | . The difference between the
two is that plain count does not count NULL data, while count al | does. It's equivalent to
the difference between COUNT(quer y1. fi el d1) and COUNT(*) in SQL. The former doesn't
count NULL (empty) values, the latter does.

» Averaging in a data series. Averaging uses two running expressions behind the scenes. One is the
sumof data, the other isthe count of data. The sum is divided by the count.

Here, two different calculation is possible again, depending on which counting method is used, see
above. NULL data contributes O to the sum, but the count (the denominator in the division) may
differ. The result depends on this detail.

Report variables

For thisreason, aver age and aver ageal | variable types exist.

» Highest and lowest values of a data series. Finding the highest and lowest valuesin adata seriesis
done by the hi ghest andthel owest variabletypes.

NULL values don't contribute to the result of either variable type, soin an all-NULL series, each
variable will giveaNULL result, i.e. empty when displayed.

5.3.1. Statistics variable examples

Examples cannot be understood without the context in which they are used. Complete variable
examples are in the Variable node section of the Report XML description chapter.

5.4. Custom variables

As seen in Expression variables and also in the Complete variable examples, variables are not
mysterious. They can be iterative or non-iterative and their operation can be spelled out. On the
other hand, the pre-defined variables for doing simple statistics may be limiting. Maybe we need an
iteratively calculated value that uses adifferent typethan nurrer i ¢. Thisiswherecust omvariables
may be useful.

For acust omvariable, all details can be freely defined:

 the base type: nuneri c, string or dateti me; nunber is aso accepted as an dlias for
numeri c

* the base expression

e two intermediary expressions that both may use the base expression's result, and the second
intermediary may also use the first one's result

* theresult expression that may use all three expressions' results

See the Custom variable example on how the aver age type variable can be spelled out as a custom
variable.

5.5. Precalculated variables

By default, variables produce results that are valid for the data rows they are derived from. Iterative
variables variable produce results that are valid for the current row and preceding rows.

Usually, we are not interested in the running average, only in the average of the whole data series.
Thisiswhere the precal culated variables comein.
A variable can be set to be precalculated via the Precal cul ate attribute.

Asit was already mentioned for precal culated expressions, the report goes through the data set twice.
At the end of the first run, the value of precalculated variables computed for the last row are kept.
In the second run, the same value is supplied for every data row. The value of such a precalculated
variable can be displayed in a report header, which is shown before any report details to inform the
reader in advance without having to look at the last page.

See Precalculate attribute for an example.

Variables can reference other variables. When certain combinations are encountered, it's necessary
to calculate the variables' values in multiple rounds. For example, when a precalculated variable is
referenced by another precalculated variable that also has its ignore expression set (especialy if the

35

Report variables

ignore expression references that other variable), or its value isreset on abreak boundary, the referred
variabl€e's value needs to be computed first, in order for the referring variable value to be intuitively
correct.

36

Chapter 6. Report breaks
6.1. Grouping data

OpenCReports, being a report generator, works on tabular data: the data consists of ordered (named)
columns and ordered or unordered rows.

It is often necessary to group data by certain properties. Imagine a list of employees of a company,
grouped by their departments, pay grade, or location of employment. A report may show the list of
the employees with visual separation according to any of these properties.

Multiple groupings may be prioritized (nested):
1. by department

2. by pay grade

With the above, in each department, subgrouping would separate employees according to the pay
grade in that department.

For this to work, the rows of data must be fed to the report generator in a certain order. For example,
in SQL the ordering can be done by:

SELECT ...
ORDER BY depart nent, paygr ade, enpl oyee;

This grouping of dataiscalled abreak in areport generator.

6.2. Report breaks in OpenCReports

Expressions can reference data via the column names of a row. Arbitrary expressions may be used
to watch for changes in the value of the expression data breaks. Breaks occurs on the boundary of
changes in the expression value.

Prioritization (nesting) of breaks is done according their order of declaration. See Breaks and Break
node.

Visual separation is optionaly helped with break headers and footers. See BreakHeader and
BreakFooter.

6.3. Resetting a variable on break boundaries

It may also be useful to use aregular or precalculated variable that only considers data rows in break
ranges. For example printing a running average for detail rowsin breaks, or printing the total average
calculated for a break range in the header for that period.

For this purpose, variables may be reset on break boundaries. See examples of such variables in
Reset on break attribute and Precalculate attribute in the Variable node section of the Report XML
description chapter.

6.4. Example

Examples cannot be understood without the context in which they are used. A complete break example
can be found at the end of the Breaks section of the Report XML description chapter.

37

Chapter 7. Formatting

7.1. Formatting functions

Formatting data can be done viathe format() function, the printf function and the Text element format
attribute. After formatting, regardless of the data type that was formatted, the type of the result value
is string. This string can be displayed in the report output or processed further as needed.

7.2. Format strings

OpenCReports supports the same set of format strings as RLIB, with extensions. RLIB and
OpenCReports support:

* legacy format strings for strings, numbers and datetime values
* "new style" format stringswith ! prefix

The legacy and the "new style" format strings can only be used in the format() function and the Text
element format attribute, due to them being RLIB compatible. They can also be used in the printf
function in limited cases, i.e. when formatting a single data value.

OpenCReports also supports a 2nd generation new style format strings with a prefix and a pair of
brackets ({ }) that embed the format strings. The 2nd generation format strings can also be used with
the printf function in a completely unambiguous manner.

7.3. Legacy format strings

7.3.1.

7.3.2.

Legacy format strings are like in C, but not always identical.

Format string for strings

To print astring, the % format string can be used. Examples for using it in the Text element format
attribute can be found in the Format attribute examples.

Example expressions for the format() function:

format (queryl.fieldl, '%')
format (queryl.fieldl, 'Look, there is a % there!')

Example expressions for printf function:

printf('%, 'queryl.fieldl")
printf('Look, there is a % there!', queryl.fieldl)

Supplementary format string flags are supported. See the string flagsin pri ntf(3)l

Format string for numeric values

To print a number, the % format string can be used. As opposed to the C pri nt f format specifier
where % is used for integers, thisis used for printing fractions, too. Examplesfor using it in the Text
element format attribute can be found in the Format attribute examples.

The same format string can be used for the the format() function and the printf function, just like in
the previous examples for strings.

L hitps://man7.org/linux/man-pages/man3/printf.3.htm

38

https://man7.org/linux/man-pages/man3/printf.3.html
https://man7.org/linux/man-pages/man3/printf.3.html

Formatting

7.3.3.

Suppl emzentary format string flags are supported. See the decimal and float/double format flags in
printf(3)

Format string for datetime values

RLIB approximated strftime() when printing a datetime value. OpenCReports uses
strftine().Seethe strftime()3 function description for the complete description of format string

flags.

When a datetime field didn't have an explicit format string, RLIB used the US date format to print
the datetime value. On the other hand, OpenCReports uses the |ocal e specific date format if the report
has alocale set.

7.4. New style format strings

7.4.1.

7.4.2.

7.4.3.

7.4.4.

7.4.5.

RLIB supported "new style" format strings that allowed formatting numeric data as monetary values
and allowed to disambiguate between format strings used for different data types. This was needed
because some format flagsareused inboth pri ntf () ,strfron() andstrfti me().

New style format string for strings

Thisisan extension over RLIB, which didn't have such a notion. In OpenCReports, the new style flag
isprefixed with ! &

New style format string for numeric data

The new style flag isthe legacy flag prefixed with ! #

New style format string for monetary data

Therewasway to format numeric data using the legacy formatting flags. The new styleflagisprefixed
with ! $ and uses the flags of st r f non() . See the strfmon()* function for details.

To print the correct currency name, the locale must be set for the report. Only one locale can be set,
so asingle currency name will be used for every value using monetary formatting.

New style format string for datetime values

The new style flag isthe legacy flags prefixed with ! @ Formatting a datetime value uses strfti me()5.

New style format string examples

Examples for using these in the Text element format attribute can be found in the Format attribute
examples.

7.5. Second generation new style format
strings

Thisformat string style builds upon the original new style format strings, with the addition of brackets
that embed the underlying format strings.

2 https://man7.org/linux/man-pages/man3/printf.3.html

3 https://man7.org/linux/man-pages/man3/strftime.3.htm
4 https://man7.org/linux/man-pages/man3/strfmon.3.htm
5 https://man7.org/linux/man-pages/man3/strftime.3.htm

39

https://man7.org/linux/man-pages/man3/printf.3.html
https://man7.org/linux/man-pages/man3/strftime.3.html
https://man7.org/linux/man-pages/man3/strfmon.3.html
https://man7.org/linux/man-pages/man3/strftime.3.html
https://man7.org/linux/man-pages/man3/printf.3.html
https://man7.org/linux/man-pages/man3/strftime.3.html
https://man7.org/linux/man-pages/man3/strfmon.3.html
https://man7.org/linux/man-pages/man3/strftime.3.html

Formatting

7.5.1. 2nd gen new style format string for strings
The format string format is the legacy format string embedded in! &{ . . . }.
7.5.2. 2nd gen new style format string for numeric data
The format string format is the legacy format string embedded in! #{ . . . }
7.5.3. 2nd gen new style format string for monetary
data
The format string format is the same as the first generation. Instead of just having a prefix, the
strfnon() format stringisembeddedin! ${. ..}
Formatting monetary values uses st r f non() . See strfmon(3)6
To print the correct currency name, the locale must be set for the report. Only one locale can be set,
so asingle currency name will be used for every value using monetary formatting.
7.5.4. 2nd gen new style format string for datetime
values
Theformat string formatisembeddedin! @ . . . } . Formatting adatetimevalueusesstrfti me() .
7.5.5. 2nd gen new style format string examples

Examples for using these in the Text element format attribute can be found in the Format attribute
examples.

7.6. The swiss army knife of formatting

The printf function is the most versatile formatting function in OpenCReports. It does not exist in
RLIB. Using the second generation format strings makes it completely unambiguous.

Theprintf () functionin OpenCReports alows formatting every data type into a common result
string. Example:

printf('You had % % on ! @ %- %m %} '
"and % % on ! @ %r-%n %} in your pocket.',
6, 'apples', stodt('2022-05-01"),
2, 'oranges', stodt('?2022-05-02"))

Theresult is:

You had 6 apples on 2022-05-01 and 2 oranges on 2022-05-02 in your
pocket .

8 https://man7.org/linux/man-pages/man3/strfmon.3.html

40

https://man7.org/linux/man-pages/man3/strfmon.3.html
https://man7.org/linux/man-pages/man3/strfmon.3.html

Chapter 8. Report XML description
8.1. XML description structure

OpenCReports1 usesan RLI Bz-compati ble report description with extensions.

The report XML description, like all XML files start with declaring that it's an XML file and the
optional declaration of the Document Type Definition that the XML file can be checked against. For
an OpenCReports report description, the first two lines are:

<?xm version="1.0"?>
<I DOCTYPE OpenCReport SYSTEM "opencreport.dtd">

The DTD fileopencr eport . dt d can befound in the sources of OpenCReports here®.
After the XML header lines, afully specified report description looks like this:

<OpenCReport >
<Dat asour ces>

</ Dat asour ces>
<Queri es>

</ Queries>
<Part >
<pr>
<pd>
<Report>
</ Report >
</ pd>
</ pr>
</ Part>
</ OpenCReport >

or likethis:

<OpenCReport >
<Dat asour ces>

</ Dat asour ces>
<Queri es>

</ Queries>
<Report>
</ Report >
</ OpenCReport >
The XML sections Datasources and Queries are optiona in the XML description. They can be

substituted by program code using the datasource and query related calls in the Low level C AP,
similarly to RLIB.

L hitps://github.com/zboszor/OpenCReports
2 https://sourceforge.net/projects/rliby
3 https://github.com/zboszor/OpenCReports/bl ob/main/opencreport.dtd

41

https://github.com/zboszor/OpenCReports
https://sourceforge.net/projects/rlib/
https://github.com/zboszor/OpenCReports/blob/main/opencreport.dtd
https://github.com/zboszor/OpenCReports
https://sourceforge.net/projects/rlib/
https://github.com/zboszor/OpenCReports/blob/main/opencreport.dtd

Report XML description

8.1.1.

For RLIB compatibility, a report description may start with either <Part > or <Report > as the
toplevel node. In this case, there's no other way to add datasources and queries, but through program
code, like the Low level C API.

Since XML files are hierarchical with a single toplevel node with child nodes, multiple <Report >
nodes in the same report output were only possible in RLIB with using <Part > as the toplevel
node, with all the nodes having to be spelled out between <Part > and <Report >. With
<OpenCRepor t > being thetoplevel node, multiple <Repor t > child nodes can be used without the
parent <Par t > node.

Notes about XML syntax and attributes

Most (if not all) XML attributesinthereport description fileare handled with the expression parser (see
Expressions), with fallback to literal stringsif the the location of expression wouldn't allow identifier
references at that location.

For example, the datasource name may be declared using either of the three examples below:

<Dat asour ce name="nysource" ... [>
<Dat asour ce nane="'nysource'" ... [>
<Dat asour ce nanme="" ; mysour ce"" ... />

Thefirst formisaregular XML string value. Since expression parsing would find that nysour ce is
an identifier which may be a query column name and this is not avalid place for a query reference,
the non-parsed string value is used.

The second form is a single quoted OpenCReports string constant. The value of the string constant
(i.e.nysour ce)isused.

The third form is a double quoted OpenCReports string constant, but in XML the double quote
character must be substituted with " ; becausethey arereserved for quoting the attribute values.
Thevalue of the string constant (i.e. mysour ce) isused. (This substitution is called "string escaping"
and various other formats besides XML require some kind of substutition for reserved characters.)

To make the XML easier to read, the second form is recommended because it still allows embedding
the single quote character inside a string (see Report XML description) in case e.g. a strong password
contains this. For security-by-obscurity, the third form may be used because it is harder to read. For
all specia characters that should be escaped in XML, see Simplified XML Escapi ng4.

8.2. OpenCReport element

8.2.1.

Thetoplevel <OpenCRepor t > element controls someglobal settingsand servesasthetopmost XML
element for child elements.

Size unit attribute

Thesi ze_uni t attribute specifies report behaviour for size related settings:

<OpenCReport size unit=""rlib" ">
<OpenCReport size unit=""points'">

Defaultisr | i b whichisthelegacy RLIB behavior, where sizing of layout details are a mix of units,
making it harder to design the report layout:

» widthforfi el dandliteral (seeOutput node) arein number of characters. Thisisinfluenced
by the font size set in either Part font size, Report font size or Line font size.

* height for Part column is measured in number of characters influenced by Part font size

4 https://stackoverfl ow.com/a/46637835/290085

42

https://stackoverflow.com/a/46637835/290085
https://stackoverflow.com/a/46637835/290085

Report XML description

8.2.2.

8.2.3.

8.2.4.

« height for Report ismeasured in percentage of Part column and considered to be aminimum value,
so padding is added if the report contents end earlier than the limit

» width of horizontal lines and the optional border width around reports are specified in points
* gaps between columns of multi-column reports is measured in inches

Note that RLIB only expected monospace fonts that have the same width for every character. It also
expected that the character height isidentical to the character width. The latter expectationisfalsefor
many monospace fonts, i.e. their height is usually greater than their width. Also, there are problems
with field widths calculated in number of characters. Widths using a 12 point font (for example, used
for regular text) is not the same as widths using a 20 point font used for text in a header line. Due to
this, width of header and data lines will not align properly and it will show when using background
color for both of them.

With proportional fonts (where the width of characters depend on their image, i.e. an "i" is thinner
than an "m") width of text fields cannot reliably be set in a "number of characters' unit because it's
not an exact value. There is a workaround for this in OpenCReports but it isn't available in RLIB so
it's not backward compatible. See Text element width.

Whensi ze_uni t issettopoi nt s, al sizerelated settingsin the report arein points, ak.a. 1/72th
inch. It's consistent and avoids the above described issues.

No query show NoData

The report uses data from Queries through the report's Query attribute. When a query provides no
data rows, an aternative section called NoData node with static information may be shown instead
if it exists in the report. The report uses the first query declared in Queries if it's not explicitly set
via Query attribute.

RLIB had atrick to disable showing the NoData node. This was enabled by specifying a query name
that does not exist. This option controls the layout behaviour for that case.

<OpenCReport noquery_show nodat a="yes" >
<OpenCReport noquery_show nodat a="no" >

Defaultist r ue (or yes) when <OpenCRepor t > isthetoplevel node, f al se (or no) when either
<Part > or <Report > isthetoplevel node for RLIB compatibility.

Report height after last

A report may specify its height through Report height. Multiple <Repor t > nodes may exist in the
same <pd> section. For more information, see Part column and Report.

Thisoption controlswhether report height isapplied after thelast <Repor t > inthe same <pd> node.

<OpenCReport report_height_after_I| ast="yes">
<OpenCReport report_height_after_I|ast="no">

Defaultisf al se.

Follower match single

Queries may be daisy-chained together as Follower queries in two ways, regular and N:1 followers.
Seethelinksfor details.

When setto f al se, N:1 followers behave fully like LEFT OUTER JO Nin SQL, with duplicating
datafrom the primary query if multiple matching rows exist in followers. When settot r ue, only the
first matching row is used. The latter approximates the RLIB implementation.

43

Report XML description

8.2.5.

8.2.6.

8.2.7.

8.2.8.

<OpenCReport foll ower_match_singl e="yes">
<(penCReport foll ower_match_singl e="no">

Defaultisyes in RLIB compatibility mode, i.e. when either <Par t > or <Repor t > are used as the
toplevel XML node for the report description. Otherwise the default isno.

Precision hits

This controls the precision for numeric computations. For more information, see Expressions
<OpenCReport precision_bits="512">

Default is 256.

Rounding mode

This controls the rounding mode for numeric computations. Possible values are: near est
to mnus_inf,to inf,to _zero,away from zero,orfaithful.

<OpenCReport roundi ng_node="nearest">
<OpenCReport roundi ng_node="to_m nus_inf">
<OpenCReport roundi ng_node="to_inf">
<OpenCReport roundi ng_node="to_zero">
<OpenCReport roundi ng_node="away_from zero">
<OpenCReport roundi ng_node="faithful ">

Defaultisnear est . Note that according to the MPFR documentation, f ai t hf ul isexperimental.

Locale

This controls the language settings, like the decimal separator, weekday names, month names and
similar. This setting is aso used as the language of trandl ation.

<OpenCReport | ocal e="de_ DE">

Default is Clocale which approximates US English.

Translation settings

These two settings control the tranglation.

<OpenCReport
transl ati on_domai n="nydomai n"
translation_directory="/path/to/translation/files">

Trandation is based on GNU Gettext®. A subdirectory tree is expected under the specified
trangdation directory in the form of | ocal e/ LC_MESSACES (e.g.: de_DE/ LC_MESSAGES) with
nmydomai n. no filesin them. These. no files contain translated messages for a given language.

8.3. Paths

Some report description elements reference file. Such elements are <l oad> and <I nage>, see
L oaded report and Image node. By default, these filesmust bein the same directory asthereport XML
description file, or in the current working directory for the application using OpenCReports. To lift
this limitation and to allow organizing files, a search path or multiple search paths may be added. For
files referenced with relative paths, the search paths will be used in their order of declaration. Search

5 https://www.gnu.org/software/gettext/

https://www.gnu.org/software/gettext/
https://www.gnu.org/software/gettext/

Report XML description

paths and the relative file path are concatenated together to form an absolute path. The first successful
absolute file path match will be used in the element referencing thefile.

Search paths are in the following format:

<Pat hs>
<Pat h val ue="/absol ut e/ path" />

</ Pat hs>

8.4. Datasources

8.4.1.

Datasources in OpenCReports are either database connections, or accessors (mini-drivers) for data
filesin certain formats.

Datasource descriptions are in the following format:

<Dat asour ces>
<Dat asour ce nane="nysource" type="..." ... [>
</ Dat asour ces>

A report may have multiple datasources, i.e. the description may list multiple <Dat asour ce> lines.

Datasources must have unique names in a report and their type may be: mari adb (or nysql),
post gresql ,odbc,csv,j son,xm orarray.

MariaDB (MySQL) database connection

A MariaDB database connection may be declared in three ways. Either by using the database host and
port, the database name, user name and password directly:

<Dat asour ce
nanme="rmysour ce" type="mari adb"
host="..." port="..."
dbnane="..." user="..." password="..." />

or adternatively, instead of the host and port, specifying the UNIX Domain Socket file for a local
connection if it's not in the standard location:

<Dat asour ce
nane="nmnmysour ce" type="nari adb"
uni x_socket="..."
dbnane="..." user="..." password="..." />

or moving these details out to an external configuration filein an INI file format:

<Dat asour ce
nanme="rmysour ce" type="mari adb"
optionfile="myconn.cnf" group="nyconn" />

In the last case, the configuration file myconn. cnf would contain something like this:

[myconn]
l'include /etc/ny.cnf

dat abase=nydb
user=myuser
#passwor d=
#host =

#port =

#uni x_socket =

45

Report XML description

8.4.2.

Please notethat the INI group name[nyconn] matchesgr oup="nyconn" intheabove datasource
declaration.

The database name and user name are mandatory. The user password is optional, depending on the
database security authentication setup.

Thedatabase host and port, or the socket filelocation areall optional . Without these, alocal connection
is attempted using the default settings. If the host name is specified but the port isn't, the remote host
is used on the default port (as known by the local MariaDB database client library).

PostgreSQL database connection

A PostgreSQL database connection may be declared in three ways. Either by using the database host
and port, the database name, user name and password directly:

<Dat asour ce
nanme="mysource" type="postgresql"
host="..." port="...
dbname="..." user="...

password="..." />

or aternatively, instead of the host and port, specifying the UNIX Domain Socket file for a local
connection if it's not in the standard location:

<Dat asour ce
nane="mysour ce" type="postgresql"
uni x_socket="..."
dbnane="..." user="...

password="..." />
or using a so called connection string:

<Dat asour ce
nanme="rmysour ce" type="postgresql"
connstr="..." />

For the connection string format, see the PostgreSQL documentation®.

The database name and user name are mandatory. The user password is optional, depending on the
database security authentication setup.

Thedatabase host and port, or the socket filelocation areall optional . Without these, alocal connection
is attempted using the default settings. If the host name is specified but the port isn't, the remote host
is used on the default port (as known by the local PostgreSQL database client library).

There are also two optional parameters that control the behaviour of the PostgreSQL driver in
OpenCReports, rather than being actual connection parameters to a PostgreSQL server. These
parameters may be used with any of the above connection methods.

» The parameter usecur sor may have a boolean value: t r ue, f al se, yes, no, or a numeric
value interpreted as a boolean value: non-zero values meant r ue, zero meansf al se.

Whenusecur sor isenabled, the SQL query will bewrapped in acursor, and theresultisretrieved
in parts. Otherwise, the SQL query is executed as is and the result isretrieved in whole.

The default valueis usualy t r ue but this can be controlled when OpenCReports is built.

* Whenusecur sor isenabled, the parameter f et chsi ze controls the number of rows retrieved
at once. Default value is 1024.

Examples (add the necessary connection parameters from the above):

8 https://www.postgresql.org/docs

46

https://www.postgresql.org/docs
https://www.postgresql.org/docs

Report XML description

8.4.3.

8.4.4.

<Dat asour ce
nane="rmysour ce" type="postgresql"
usecursor ="f al se"

/>

or

<Dat asour ce
nane="mysour ce" type="postgresql" ...
usecursor="true" fetchsize="4096" />

SQL queries added to the same PostgreSQL datasource (connection) will behave the sameway. Either
all of them are executed asis, or al of them will use a cursor.

ODBC database connection

The above described MariaDB and PostgreSQL database connection types are using their respective
client libraries. There is a more generic way, i.e. ODBC. ODBC was invented by Microsoft in the
1990s for Windows. See Microsoft Open Database Connectivity (ODBC)7 In their solution, there'san
abstract client library and individual database drivers adhere to the APIs offered by ODBC toplevel
library. Since then, UNIX and UNIX-like systems also gained their ODBC client libraries in two
different implementations, both of which are supported by OpenCReports: unixODBC? and iODBC®.

An ODBC database setup is done a differently. There are two system-wide configuration files. The
firstoneisodbci nst . i ni that liststhe database driversinstalled into the system. The second oneis
odbc. i ni which referencesthefirst one and lists pre-defined database connections. These database
connections are named. In ODBC speak, these are called Data Source Names or DSNs. The DSNs
specify the low level connection parameters, like the database host and port, and optionally the user
name and password, too.

Thus, an ODBC database connection may be declared in two ways. Thefirst way isby using the DSN
name, and optionally the user name and password:

<Dat asour ce
nanme="rmysour ce" type="odbc"
dbnane="..." user="..." password="..." />

In this case, the dbnane attribute is not the low level database name, but the ODBC abstract DSN
name.

There's also a way to use the so called connection string which contain the same connection
information:

<Dat asour ce
nanme="rmysour ce" type="odbc"
connstr="..." />

For the connection string format, see the public exampleslo.

CSV file datasource

For a generic description of the CSV file format, see CSV file type.
A CSV file datasource is declared very simply:

<Dat asour ce nane="nysource" type="'csv'" [>

7 https://docs.microsoft.com/en-us/sgl/odbc/microsoft-open-database-connectivity-odbc
8 https://www.unixodbc.org

9 https://www.iodbc.org

10 https://www.connectionstrings.com/

47

https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://www.unixodbc.org
https://www.iodbc.org
https://www.connectionstrings.com/
https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://www.unixodbc.org
https://www.iodbc.org
https://www.connectionstrings.com/

Report XML description

8.4.5.

8.4.6.

8.4.7.

8.4.8.

In this case, the actual CSV file is not declared, only that a "query" using a CSV file will be listed
later under <Queri es>.

JSON file datasource

For a generic description of the expected JSON file format, see JSON file type.
Similarly to CSV, the JSON file datasource is also declared very simply:
<Dat asour ce nanme="mysource" type="'json'" />

In this case, the actual JSON fileis not declared, only that a"query" using a JSON file will be listed
later under <Quer i es>.

XML file datasource

Similarly to CSV and JSON, the XML file datasource is also declared very simply:
<Dat asour ce nane="nysource" type="'xm"'" />

In this case, the actual XML fileis not declared, only that a"query" using an XML file will be listed
later under <Quer i es>.

Spreadsheet file datasource

Declaring the spreadsheet based file datasource is also very simple:

<Dat asour ce
name="mnysour ce"
type="'spreadsheet'"
filename=""nyfile.xlsx'" />

or

<Dat asour ce
name="mnmysour ce"
type=""' pandas'"
filename=""nyfile. xlsx"" />

Since the spreadsheet file may contain multiple sheets, the datasource declaration must specify thefile
name, and the query will need to specify the sheet label. An example can be seen under <Quer i es>.

If the sheets that the report uses are in different files, multiple spreadsheet datasources must be
declared, one for each file. If the sheets are in the same file, then the same datasource can be used for
multiple queries, one query for every sheet.

Array datasource

Arrays are global in-memory structures in the application that should be accessible to the
OpenCReports library. For example, when using the C programming language, global non-static
symbols are visible to librariesif the application is compiled with - r dynami c.

Similarly to file based datasources, the array datasource is declared very simply:
<Dat asour ce nanme="mysource" type=""'array'" />

In this case, the actual array is not declared, only that a "query" using an array will be listed later
under <Queri es>.

A C array isdeclared in this format:

48

Report XML description

8.4.9.

const char *array[RO + 1] [COLUWS] = {
{ "colum1l", ... },
{ "valuel", ... },

b

The array is declared as atwo-dimensional array of C strings. Thefirst row of the array isthe column
names, [ROA5 + 1] inthe array declaration accounts for the title row.

All rows have the same number of columns. Column values may be NULL, in which case they will
be treated the same as SQL NULLsin SQL query results.

Optionally, a column types array is declared separately:

#i ncl ude <opencreport.h>

const enum ocrpt_result_type coltypes[COLUWS] = {

N ce

If this array is present, it must have the same number of COLUMNS as the matching

data array. The enum ocrpt_result_type usable in data array type declaration are
OCRPT_RESULT_STRI NG OCRPT_RESULT_NUMBER and OCRPT_RESULT_DATETI ME.

Common datasource properties

8.4.9.1. Encoding

OpenCReports expects strings in UTF-8 encoding. However, some datasources may use a different
encoding. To use and display strings from the datasource, an internal conversion to UTF-8 is needed.
To perform this correctly, the datasource encoding must be set.

<Dat asour ce
name="mysour ce"

encodi ng="1 SO 8859- 2" />

8.5. Queries

8.5.1.

Queries in OpenCReports are SQL queries for database connections, or data files files in certain
formats. The queries are declared like this:

<Queri es>
<Query nane="..." ... [>

</ QJerl es>
SQL queries for SQL datasources

SQL queriesfor MariaDB, PostgreSQL and ODBC datasources may be declared two ways, either as
the XML valuefor <Quer y>:

<Query

name="myquery"

dat asour ce="nysour ce" >
SELECT * FROM sone_tabl e

</ Query>

or astheval ue attribute:

49

Report XML description

8.5.2.

8.5.3.

<Query
name="myquery"
dat asour ce="nysour ce"
val ue="SELECT * FROM sone_table" />

Note, that the XML attribute dat asour ce=". . . " must match a previously declared datasource.

The SQL query can be any SELECT statement.

Queries for file based datasources

Queriesfor CSV, XML, JSON and spreadsheet datasources may be declared two ways. Either asthe
XML valuefor <Quer y>:

<Query nane="myquery" datasource="mysource" >xnl data.xnl </ Query>

or astheval ue attribute:

<Query
name="myquery"
dat asour ce="nysour ce
val ue=""'xm data.xm"'" />

Example query for a spreadsheet:

<Query
nane="rmysheet "
dat asour ce="nysour ce
val ue=""' Sheet1'" />

Notes:
e The XML attribute dat asour ce=". . ." must match a previously declared datasource.

* It is recommended that the val ue="..." form is used, since it's not ensured that whitespace
before or after the file nameistrimmed in thefirst variant if the XML is"beautified". Thefile name
that the OpenCReports library receives must be correct in order to use it.

» For CSV, XML and JSON files, theval ue inthe query declaration is the file name. Thisfile must
be in the correct format for the datasource type.

* For spreadsheets, theval ue inthe query declaration is the sheet label.

» The optional type declaration for columns in the XML and JSON file formats, or for
CSV, the complete lack of it can be supplemented with a memory array using the optional
coltypes="..." andcol s="..." attributes. For details, see the Array queries.

Queries for array based datasources

Queries for array datasources may be declared two ways. Either as the XML value for <Quer y>:

<Query
name="mnmyquery"
dat asour ce="nysour ce

col types="'col types""
rows="30"
col s="6"

>array</ Query>

or astheval ue attribute:

50

Report XML description

<Query
name="myquery"
dat asour ce="nysour ce"
val ue=""array""
col types="'col types""
rows="30"
col s="6" />

Notes:
e The XML attribute dat asour ce=". . ." must match a previously declared datasource.
* It is recommended that the val ue="..." form is used, since it's not ensured that whitespace

before or after the symbol name is trimmed in the first variant if the XML is "beautified". The
symbol name that the OpenCReports library receives must be correct in order to use it. The array
name must match the correct global symbol name. Thelibrary discoversthissymbol using the Array
discovery function, by default viadl syn() .

e Similarly to the array symbol name, the col t ypes="..." array name must match the correct
global symbol name. The library discovers this symbol using the Array discovery function, by
default viadl syn{) .

» The vaue for col s must match the second dimension of the data array. It may be omitted if
the Array discovery function is smarter than the default implementation and returns the arrays
dimensions.

e Thevauefor r ows must match the number of datarows in the array, excluding the title row. I.e.
it must be one less than the first dimension of the array. It may be omitted if the Array discovery
function is smarter than the default implementation and returns the arrays dimensions.

Failing to fulfill the above may cause crashes or wrong data to be used in the report.

8.5.4. Follower queries

8.5.4.1. Regular follower queries

A regular follower query isdeclared by adding thef ol | ower _f or="..." attribute. Thevaluefor
foll ower_for="..." isthenamne of apreviousy declared query. Example:
<Query

name="myqueryl"
dat asour ce="nysour cel"
val ue=""' SELECT * FROM tablel'" />

<Query
name="nmnmyquery2"
dat asour ce="nysour ce2"
val ue="' SELECT * FROM t abl el'"
foll ower for="nyqueryl" />

In this example, two queries of two different datasources are used. This is one of the advantages of
using follower queries, i.e. datafrom different databases may be used. Nowadays, with foreign queries
implemented in e.g. PostgreSQL, its use case is more limited.

8.5.4.2. N:1 follower queries

See Section 2.2.4.1.2 for explanation.

The follower matching expression is specified with the fol | ower _expr="..." attribute.
Example:

51

Report XML description

<Query
name="myqueryl"
dat asour ce="nysour cel"
val ue=""' SELECT *

<Query
name="myquery2"
dat asour ce="nysour ce2"
val ue=""' SELECT *
fol |l ower_for="nyqueryl"
fol |l ower_expr="myqueryl.id

8.6. Report parts

FROM tabl el " />

FROM t abl e1" "

= nyquery2.id" />

An OpenCReports XML description may consists of multiple separate reports. Thisisachieved by so
called "report parts'. Such a<Par t > may be under the toplevel <OpenCRepor t > node, in which
case multiple report parts may exist in the same XML. It may also be the toplevel node of the XML.
In the latter case, only asingle <Par t > may be present in the XML description.

<Part >
<pr>
<pd>
<Report>
</ Report >
</ pd>

</ pr>

</ Part>

A report <Par t > may consist multiple reports, arranged in

* rows (<pr>),

» columnsin rows (<pd>), and

* reports (<Repor t >) arranged vertically in acolumn.

The rows and columns in rows do not form a grid as rows are independent of each other. E.g. one
row may contain two columns, the next one may contain three, the next one may contain one. It is

completely freeform.

Thisallows very complex report layouts. One possible application of such acomplex layout is printed

forms.

8.6.1. Part attributes

Note that any attribute setting below may only use constant expressions or an query column reference
from Independent queries. An environment variable (since it can't - or shouldn't - change during
the report execution) is considered constant. See Expressions. This alows external control for the

attributes in question.

8.6.1.1. Font name

The font name attribute specifies the font for the report part's global scope. It can be overridden by
child nodes for their scope. It may be specified in two forms, the first one is the preferred name, the

second isfor RLIB compatibility:

52

Report XML description

<Part font_name="'Arial'">
<Part fontName="'Arial'">

If both forms are specified, f ont _nane isused.

Default font nameisCour i er .

8.6.1.2. Font size

The font size attribute specifies the font size for the report part's global scope. It can be overridden
by child nodes for their scope. It may be specified in two forms, the first one is the preferred name,
the second isfor RLIB compatibility:

<Part font_size="10">
<Part fontSize="10">

If both forms are specified, f ont _si ze isused.

Default font sizeis 12.

8.6.1.3. Size unit

Shortcut for the Size unit attribute in <OQpenCRepor t > when <Par t > isthe toplevel node.

<Part size_unit=""rlib" ">
<Part size_unit="'points' ">

When <QpenCRepor t > isthetoplevel node in the XML, this attribute for <Par t > isignored.

8.6.1.4. No query show NoData attribute

Shortcut for No query show NoData attribute in <OpenCRepor t > when <Par t > is the toplevel
node.

<Part noquery_show nodat a="yes" >
<Part noquery_show nodat a="no">

See default in No query show NoData attribute See also NoData node.

8.6.1.5. Report height after last attribute

Shortcut for Report height after last attributein <OpenCRepor t > when<Par t > isthetoplevel node.

<Part report_height _after | ast="yes">
<Part report_height_after | ast="no">

See default in Report height after last attribute See also NoData node.

8.6.1.6. Orientation

Page orientation for the whole <Par t >.

<Part orientation="'portrait'">
<Part orientation="'landscape'">

Default is portrait orientation.
8.6.1.7. Margin settings
Margin settings for the page for the whole <Par t >. Individual settings exist for the top, bottom,

left and right margins of the page. Every setting exist in two forms: the RLIB compatible
"lowerCamelCase" variant and the all lowercase with underscore. The latter variants are preferred.

53

Report XML description

<Part top_margi n="0.2">
<Part topMargi n="0.2">
<Part bottom margi n="0.2">
<Part bottomvargi n="0.2">
<Part |eft_margin="0.2">
<Part |eftMargin="0.2">
<Part right_margi n="0.2">
<Part right Margi n="0.2">

Whensize unit=""rlib"" isin effect (the default case) the margin unit isinches. The margin
unit is points (1/72th inches) when si ze_uni t ="' poi nts' " isin effect.

Default values for the top, bottom, left and right margins are al 0.2, regardless of the unit.

Notethat ri ght Mar gi n didn't exist in RLIB.
8.6.1.8. Paper type

Paper type (implicitly: page size) for thewhole <Par t >. It existsin two forms: the RLIB compatible
"lowerCamelCase" variant and the all lowercase with underscore. The latter variant is preferred.

<Part paper_type="'A4"">
<Part paper Type=""'A4"">

Default value is the current system paper type that libpaper'! uses. E.g. if the system is set to US
English, the default paper typeisimplicitly | et t er . In most of Europe, the default paper typeis A4

The paper type can be specified in either lower case or upper case, both are accepted.

8.6.1.9. Iterations

The same <Par t > may be executed multiple times.
<Part iterations="3">
Default valueis 1.

Note that a<Par t > and every iteration of it start on a new page. Thisis one way to print multiple
copies of areport and encode it into the output, e.g. in the PDFfile.

8.6.1.10. Suppress

Report parts may be suppressed.
<Part suppress="yes">

Default valueisf al se, i.e. no suppression.

8.6.1.11. Suppress page header on the first page

The <PageHeader > section (see Page header below) for <Par t > may be suppressed on the first
page.

<Part suppressPageHeader Fi r st Page="yes" >

Default valueisno.

Note that this suppression applies only to the first page of the complete result (e.g. PDF) and not to
the first page of an iteration, which may fall on alater page of the result.

Y http://packages.qa.debian.org/libp/libpaper.html

http://packages.qa.debian.org/libp/libpaper.html
http://packages.qa.debian.org/libp/libpaper.html

Report XML description

8.6.2.

Part subsections

As described at the beginning of this section (see Report parts), a<Par t > may contain one or more
report rows (<pr >) which in turn may contain one or more columns (<pr >). See Part row and Part
column. Apart from these, global page headers and footers may also be used for report parts.

8.6.2.1. Page header

This is the description of the page header. It contains an Output node. The expressions in it cannot
reference query columns. See also Report page header.

<Part >
<PageHeader >
<Qut put >
</ Cut put >
</ PageHeader >
</ Part>

8.6.2.2. Page footer

This is the description of the page footer. It contains an Output node. The expressions in it cannot
reference query columns. See also Report page footer.

<Part >
<PageFoot er >
<Qut put >
</ Qut put >
</ PageFoot er >
</ Part>

8.6.2.3. Part row

See Part row.

<Part >
<pr>
<pd>

</ pd>
</ pr>
</ Part>

8.7. Part row

8.7.1.

A part row (<pr >) may contain one or more Part columns (<pd>) which are layed out side by side
horizontally. The longest running column will control the height of the row. The next row will be
continuous from that vertical page position.

Part row attributes

Note that any attribute setting below may only use constant expressions or an query column reference
from Independent queries. An environment variable (since it can't - or shouldn't - change during
the report execution) is considered constant. See Expressions. This alows external control for the
attributes in question.

55

Report XML description

8.7.1.1. Layout

Thel ayout attribute exists only for RLIB compatibility, it's ignored. It accepts two values. f | ow
andfi xed.

<pr layout="'flow ">
<pr layout="'fixed ">

8.7.1.2. New page

The newpage attribute controls whether the part row starts from the point where the previousrow in
the same part ended, or it should start on a new page.

<pr newpage="yes">

Default valueisno

8.7.1.3. Suppress
Report rows may be suppressed.
<pr suppress="yes">

Default valueisf al se, i.e. no suppression.

8.8. Part column

A part column (<pd>) may contain one or more Reports (<Repor t >) which are layed out vertically
in this column continuously.

Such areport may beinlined:

<Part >
<pr>
<pd>
<Report>
</ Report >
</ pd>
</ pr>
</ Part>

A report may also be loaded from a separate file. For details, see Loaded report.

<Part >
<pr>
<pd>
<load ... />
</ pd>
</ pr>
</ Part >

8.8.1. Part column attributes

Note that any attribute setting below may only use constant expressions or an query column reference
from Independent queries. An environment variable (since it can't - or shouldn't - change during
the report execution) is considered constant. See Expressions. This alows external control for the
attributes in question.

56

Report XML description

8.8.1.1. Width

Width of the part column. Optional.
<pd wi dt h="60">

When Size unit attribute is set to r | i b (the default), the column width is measured in characters,
which is controlled by Part font size. Note, that the font width and height may differ, depending on
the font face controlled by Part font name. Width is computed from the font width.

When Size unit attribute is set to poi nt s, width is measured in points.

Columns without explicitly specified width are dynamically sized according to Paper type, Margin
settings and other columns in the same Part row that do have explicitly set width.

Columnsthat exceed the total page width (according to Paper type and Margin settings) will be shown
partialy, or won't be shown at all.

8.8.1.2. Height

Height of the part column.
<pd hei ght="120">

When Size unit attribute isset to r | i b (the default), the column height is measured in characters,
which is controlled by Part font size. Note, that the font width and height may differ, depending on
the font face controlled by Part font name. Column height is computed from the font height.

When Size unit attribute is set to poi nt s, height is measured in points.

Report detailsin this part column are layed out up to the specified height. See Report height for further
explanation.

Note, that OpenCReports allows fixed height columns to break over page boundaries. This is a
deviation from RLIB.

8.8.1.3. Border width

Border width around the part column. It is measured in points.
<pd border wi dt h="2">

When set, a rectangle around the part column will be drawn. The width of outline of the rectangle
is measured in points.

This is a deviation from RLIB where the width of the outline was a fixed 0.1 points and an inner
margin (al of top, bottom, left and right) inside the column border was used.

If the column breaks over a page boundary, the border will be drawn the column parts on every page.

8.8.1.4. Border color

When bor der _wi dt h isset, thiscolor is used to draw the border rectangle.
<pd border_col or=""Dblue' ">
See Color specification.

8.8.1.5. Detail columns

Inner <Repor t >sarelayed out in one or more columns.

57

Report XML description

<pd detail _colums="3">

Default valueis 1.

8.8.1.6. Column padding

When det ai | _col umms is set to higher than 1, inner padding between the detail columns may be
specified.

<pd col um_pad="0.2">
Default value is 0, i.e. no padding.

The unit of padding isinchesif Size unit attributeissettor | i b (default), points otherwise.

8.8.1.7. Suppress

Report columns may be suppressed.
<pd suppress="yes">

Default valueisf al se, i.e. no suppression.

8.9. Report

This section may occur in awider context or standalone in an OpenCReports XML report description
file

Example XML skeleton structure with <OpenCRepor t > asthe toplevel node:

<OpenCReport >
<Part>
<pr>
<pd>
<Report>
</ Report >
</ pd>
</ pr>
</ Part>
</ OpenCReport >

Example XML skeleton structure with <Par t > asthe toplevel node:
<Part >
<pr>

<pd>
<Report>

</ Report >
</ pd>
</ pr>
</ Part>
Example XML skeleton structure with a standalone <Repor t > node:

<Report>

</ Report >

58

Report XML description

8.9.1.

When <Report > is the toplevel node, parent nodes for <Par t >, <pr > and <pd> are implicitly
created. Subsections and many attributes specific to these parent nodes can be used as shortcuts in
the <Repor t > node.

Report attributes

Note that any attribute setting below may only use constant expressions or an query column reference
from Independent queries. An environment variable (since it can't - or shouldn't - change during
the report execution) is considered constant. See Expressions. This alows external control for the
attributes in question.

8.9.1.1. Font name

The font name attribute specifies the font for the report's scope. It can be overridden by child nodes
for their scope. It may be specified in two forms, the first one is the preferred name, the second is
for RLIB compatibility:

<Report font_nane="'Arial'">
<Report fontNane="'Arial'">

If both forms are specified, f ont _nane isused.

Default font name is what's set for Part font name, or Cour i er if both are unset.

8.9.1.2. Font size

Thefont size attribute specifiesthe font size for the report's scope. It can be overridden by child nodes
for their scope. It may be specified in two forms, the first one is the preferred name, the second is
for RLIB compatibility:

<Report font_size="10">
<Report fontSize="10">

If both forms are specified, f ont _si ze isused.

Default font name is what's set for Part font size, or 12 if both are unset.

8.9.1.3. Size unit

Shortcut for the Size unit attributein <OpenCRepor t > when <Repor t > isthe toplevel node.

<Report size unit=""rlib" ">
<Report size unit="'points'">

When <OpenCRepor t >or <Par t > isthetoplevel nodeinthereport XML description, thisattribute
for <Report > isignored.

8.9.1.4. No query show NoData attribute

Shortcut for No query show NoData attribute in <QpenCRepor t > when <Repor t > isthe toplevel
node.

<Report noquery_show nodat a="yes">
<Report noquery_show nodat a="no>

See default in No query show NoData attribute See also NoData node.

8.9.1.5. Report height after last attribute

Shortcut for Report height after last attributein <OpenCRepor t > when<Par t > isthetoplevel node.

59

Report XML description

<Report report_height_after_I|ast="yes">
<Report report_height_after_Il ast="no">

See default in Report height after last attribute See also NoData node.

8.9.1.6. Orientation

Shortcut for Part page orientation for the implicitly created parent <Par t > node when <Repor t >
is standalone.

<Report orientation=
<Report orientation=

portrait'">
| andscape' ">

Default is portrait orientation.

This setting for <Repor t > isignored when there isa parent <Par t > node in the XML description.

8.9.1.7. Margin settings

Shortcuts for Margin settings for the implicitly created parent <Par t > node. Individual settings exist
for the top, bottom, left and right margins of the page. Every setting exist in two forms: the RLIB
compatible "lowerCamelCase" variant and the all lowercase with underscore. The lowecase-with-
underscore variants are the preferred ones.

<Report top_nargi n="0.2">
<Report topMargi n="0.2">
<Report bottom nargi n="0.2">
<Report bottonargi n="0.2">
<Report left_margi n="0.2">
<Report |eftMargin="0.2">
<Report right _margi n="0.2">
<Report right Margi n="0.2">

Whensize unit=""rlib"" isineffect (the default case) the margin unit isinches. The margin
unit is points (1/72th inches) when si ze_uni t ="' poi nts' " isin effect.

Default values for the top, bottom, left and right margins are al 0.2, regardless of the unit.
Notethat ri ght Mar gi n didn't existin RLIB.

These settings for <Report > are ignored when there is a parent <Part > node in the XML
description.

8.9.1.8. Paper type

Shortcut for Paper type for the implicitly created parent <Par t > node. It exists in two forms: the
RLIB compatible "lowerCamelCase" variant and the all lowercase with underscore. The lowecase-
with-underscore variant is preferred.

<Part paper_type=""'A4"">
<Part paper Type="'A4"">

Default value is the current system paper type that libpaper'? uses. E.g. if the system is set to US
English, the default paper typeisimplicitly | et t er . In most of Europe, the default paper type is A4

The paper type can be specified in either lower case or upper case, both are accepted.

This setting for <Repor t > isignored when there isa parent <Par t > node in the XML description.

12 http://packages.qa.debian.org/libp/libpaper.html

60

http://packages.qa.debian.org/libp/libpaper.html
http://packages.qa.debian.org/libp/libpaper.html

Report XML description

8.9.1.9. Height

Height of the report.
<Report height="120">

This setting is interpreted differently depending on whether the report XML description uses
<OpenCRepor t > asthetoplevel node, or it uses either <Par t > or <Report >.

8.9.1.9.1. Report height in OpenCReports mode

When Size unit attributeissettor | i b (the default), the report height is measured in characters, which
is controlled by Report font size. Note, that the font width and height may differ, depending on the
font face controlled by Report font name. Report height is computed from the font height.

When Size unit attribute is set to poi nt s, height is measured in points.

Report details are layed out up to the specified height. If the report would run longer than the specified
height, it gets truncated. When the report fits in the specified height, the next report starts with the
remaining height added as padding beforeit.

If the <Report > isthe last one in the <pd> node, then the report may or may not be padded with
the remaining height, depending on the Report height after last attribute.

If height is unset for the parent <pd> node, it is expanded with this vertical padding.

In case height is set for both the parent <pd> node and the<Repor t > nodesinit, the height valuefor
<pd> isapplied first. It would limit the displayed rows in whichever <Repor t > node is terminated
by it. Subsequent <Repor t > nodes would no be displayed in that <pd> node.

Note, that OpenCReportsallowsfixed-height reportsto break over page boundaries. Thisisadeviation
from RLIB.

8.9.1.9.2. Report height in RLIB compatibility mode

When parsing XML descriptions from RLIB, i.e. when either <Par t > or <Report > isused asthe
toplevel node, compatibility mode is turned on for interpreting this setting.

In this mode, the report height is interpreted as a percentage of the height set in Part column height
attribute. In this case, the report height setting isahint, to useit as minimumheight. If the<Report >
isrendered on the same page from start to end, and is shorter than the height of the parent <pd> node,
thenagap isadded tothe<Repor t >. If thereare multiple <Repor t > nodesin the same <pd> node,
thiswill separate them visualy.

Note, that this behaviour is not available when using the programming API to create areport. It'sonly
for RLIB compatibility which relied only on the report XML description file.

8.9.1.10. Iterations

The same <Repor t > may be executed multiple times.
<Report iterations="3">

Default valueis 1.

8.9.1.11. Suppress

Reports may be suppressed.
<Report suppress="yes">

Default valueisf al se, i.e. no suppression.

61

Report XML description

8.9.1.12. Suppress page header on the first page

Shortcut for Suppress page header on the first page in the implicitly created parent <Par t > node
when <Repor t > isthe toplevel node.

<Report suppressPageHeader Fi r st Page="yes" >
Default valueisno.

This setting for <Repor t > isignored when there isa parent <Par t > node in the XML description.

8.9.1.13. Query

Set the primary query name for <Repor t > from the list of Queries.
<Report query="queryl">
Default value is unset, i.e. use the first query from the list of Queries.

Column references of the report's primary query and its follower queries may be used in Expressions
of Output hode sectionsina<Repor t > node: Report page header, Report page footer, Report header,
Report footer, <Fi el dHeader s> and <Fi el dDet ai | s> in Detail node, and also in Break nodes
and Variable nodes.

When aquery isempty (i.e. it doesn't have data rows) then the NoData node will be shown.

When the query name is set to a non-existing query, then the appearance of the NoData node is
controlled by No query show NoData attribute.

8.9.1.14. Field header priority

Set thefield header priority for the report versus break (header and footer) priority. This setting selects
which report detail is encompassing the other.

<Report field_header_priority=""1ow ">
<Report field_header_priority=""high ">

Default valueishi gh. In this mode, the field header is printed on the top of every page of the report
and break headers and footers are encompassed by it. The default is chosen for RLIB compatibility.

When this setting is | ow, field headers are handled with lower priority compared to break headers
and footers. In this mode, abreak header isfollowed by the field header, then datarows (field details),
followed by the break footer. This brings the field header closer to the field details.

8.9.1.15. Border width

Thisisashortcut for Part column border width for theimplicitly created <pd> nodewhen <Repor t >
is standalone. It is measured in points.

<Report border_wi dt h="2">

When set, arectangle around the part column (in this case, around the single report in the part column)
will be drawn. The width of outline of the rectangle is measured in points.

This is a deviation from RLIB where the width of the outline was a fixed 0.1 points and an inner
margin (all of top, bottom, left and right) inside the column border was used. Also, this shortcut didn't
exist in RLIB, the <pd> node had to be present.

If the report (column) breaks over a page boundary, the border will be drawn the column parts on
every page.

This setting for <Repor t > isignored when there is a parent <pd> node.

62

Report XML description

8.9.1.16. Border color

Thisisashortcut for Part column border color for theimplicitly created <pd> nodewhen <Repor t >
is standalone. When bor der _wi dt h isset, this color is used to draw the border rectangle.

<Report border_col or=""Dblue' ">

See Color specification.

8.9.1.17. Detail columns

Shortcut for Detail columns in the implicitly created parent <pd> when <Par ent > is the toplevel
node.

<Report detail _col ums="3">
Default valueis 1.

This setting for <Par ent > is ignored when there is a parent <pd> node in the report XML
description.

8.9.1.18. Column padding

Shortcut for Column padding in the implicitly created parent <pd> node when <Par ent > is the
toplevel node.

<Report col um_pad="0.2">
Default valueis 0, i.e. no padding.

The unit of padding isinchesif Size unit attributeissettor | i b (default), points otherwise.
8.9.2. Report subsections
8.9.2.1. Page header

This may be seen as a shortcut for Page header in the implicitly created <Part > node when
<Repor t > isstandalone. Except that report query column references are also allowed in expressions
instead of only constants and column references of Independent queries. It contains an Output node.

<Report >
<PageHeader >
<Qut put >
</ Qut put >
</ PageHeader >
</ Part >

Thissubsectionfor <Repor t > isignored when thereisapage header section defined for the<Par t >
node, either inthe <Par t > node itself or in aprevious child <Repor t > node for the same <Par t >.
A warning isissued in this case.

8.9.2.2. Page footer

This may be seen as a shortcut for Page footer in the implicitly created <Part > node when
<Repor t > isstandalone. Except that report query column references are also allowed in expressions
instead of only constants and column references of Independent queries. It contains an Output node.

<Report>
<PageFoot er >

63

Report XML description

<Qut put >
</ Qut put >
</ PageFoot er >
</ Part>

Thissubsection for <Repor t > isignored when thereis a page footer section defined for the<Par t >
node, either inthe <Par t > node itself or in aprevious child <Repor t > node for the same<Par t >.
A warning isissued in this case.

8.9.2.3. Report header

This is the description of the report header that is print at the beginning of the report. It contains an
Output node.

<Report>
<Report Header >
<Qut put >
</ Qut put >
</ Report Header >
</ Part>

8.9.2.4. Report footer

Thisisthe description of the report footer that is printed at the end of the report. It contains an Output
node.

<Report>
<Report Foot er >
<Qut put >

</ Qut put >
</ Report Foot er >
</ Part >

8.9.2.5. Variables

This section describes the Variables in the report.

<Report>
<Vari abl es>
<Variable ... />

</ Vari abl es>
</ Part >

8.9.2.6. Breaks

This section describes the Breaks in the report.

<Report>
<Br eaks>
<Break ... >
</ Br eak>
</ Br eaks>
</ Part >

Report XML description

8.9.2.7. Detail

This section describes the tabular details of the report. There are two subsections in this node, both
contain an Output node.

<Report >
<Det ai | >
<Fi el dHeader s>
<Qut put >
</ Qut put >

</ Fi el dHeader s>
<Fi el dDet ai | s>

<Qut put >
</ Qut put >
</ Fi el dDet ai | s>
</Detail >

</ Part>
<Fi el dHeader s> isused to describe the header for data rows.

<Fi el dDet ai | s> isused to show data that is derived from the current data row produced by the
report query.

8.9.2.8. Alternate output for no data

This section describes the aternate output of the report when the query has no data rows, or there is
no such query name defined that's set in Report query name. It contains an Output node.

This section may be declared in two ways. One way isto spell out the <Al t er nat e> node:

<Report>
<Al t er nat e>
<NoDat a>
<Qut put >
</ Qut put >
</ NoDat a>

</ Al t er nat e>
</ Part >

The other way is without the <Al t er nat e> node:
<Report>
<NoDat a>
<Qut put >
</ Qut put >
</ NoDat a>
</ Part>

When the Report query name does not exist in in the global list of Queries and the No query show
NoData attribute is set, then the <NoDat a> section is not displayed.

8.10. Loaded report

Itislikeaninline Report it isloaded from a different file.

65

Report XML description

8.10.1. Loaded Report attributes
8.10.1.1. File name

<l oad nanme="reportl.xm" />

8.10.1.2. Query

This attribute overrides the Query attribute of <Repor t >. This way, the report in the separate file
can be reused for a different data set.

<l oad query="queryl" />
8.10.1.3. Iterations

This attribute overrides the Report iterations attribute of <Report >.

<load iterations="5" />

8.11. Variables

Thisisthe parent node for individual <Var i abl e> nodes that describe each variable.

<Vari abl es>
<Variable ... />

</ Vari abl es>

8.12. Variable

This node describes one <Var i abl e> node. It has no children nodes, only attributes.

<Variable ... />
8.12.1. Variable attributes
8.12.1.1. Name

The name of the variable. It must be unique in the list of variables for the parent <Repor t > node.

<Vari abl e nane="var1" />

8.12.1.2. Value

The "value" of the variable, or rather, the expression from which the value is computed. Variables
values are computed for every data row produced by the report query. The expression may therefore
reference field names of queries that are declared in the XML description or in programming code.

<Variabl e value="ql.fieldl + 2 * g2.field2" />

8.12.1.3. Type

The type of the variable. Several variable types exist:

<Vari abl e value="ql.field" type="expression"/>

66

Report XML description

<Vari abl e value="ql.field" type="count"/>
<Vari abl e value="ql.field" type="countall"/>

<Vari abl e value="ql.field" type="sunm'/>

<Vari abl e value="ql.field" type="average"/>
<Vari abl e value="ql.field" type="averageall"/>

<Vari abl e value="ql.field" type="highest"/>
<Vari abl e value="ql.field" type="Iowest"/>

<Vari abl e type="custom' ... />

Default typeis expr essi on. Thisis just a shortcut for the computed value of the expression that
saves both typing (in other expressions referencing this variable) and time to generate the report. This
can be considered a manual optimization.

The count and count al | variable types count the number of expression results for the data set.
The former leaves out NULL values, the latter includes them. Thisis equivalent to COUNT(f i el d)
and COUNT(*) inSQL.

The sumvariable type sums the non-NULL values of the expression results for the data set.

The aver age and aver ageal | variable types are combinations of sumand either count or
count al I . They take the value computed for each data row, add them together, and divide by the
number of values. The result of aver age and aver ageal | may differ if thereis NULL datain
the result set.

The hi ghest and| owest variable types return the highest and the lowest values for the data set,
respectively.

All of the above pre-defined variables types work on numeric data.

The cust omvariable type alow arbitrary user variables if the predefined types are not enough, for
example, when the base type needs to be something else then a number. See below.

8.12.1.3.1. Complete variable examples
Here's a complete example of an expression variable:

<Report>
<Vari abl es>
<Vari abl e
name="var 1"
val ue="queryl.fieldl + query2.field2"
type="expression" />
</ Vari abl es>

<Det ai | >
<Fi el dHeader s>
<literal value=""M variable " />
</ Fi el dHeader s>

<Fi el dDet ai | s>
<field value="v.var1l" />
</ Fi el dDet ai | s>
</Detail >
</ Report >

67

Report XML description

Note, that in this simple example, there is no differenceif the variable isused inthe <f i el d> or the
queryl.fieldl + query2.fiel d2 expression. The efficiency of not computing the variable
again for the same data row can be observed when the variable is used multiple times and the report
processes a huge data set.

Here's a complete example of using avariable:

<Report >
<Vari abl es>
<Vari abl e
name="var 1"
val ue="r.self + queryl.fieldl + query2.field2"
t ype="expression" />
</ Vari abl es>

<Det ai |l >
<Fi el dHeader s>
<literal value="'M/ variable " />
</ Fi el dHeader s>

<Fi el dDet ai | s>
<field value="v.varl" />
</ Fi el dDet ai | s>
</Detail >
</ Report >

Thetrick istousether . sel f internal variable.

Please note, that the above example will not work asis, because for the first row, thereis no previous
row. But thereisatrick to avoid such problems, namely using the Ternary operator (or its equivalent,
theiif() function) and ther ownun{) to perform only safe computations. (Notethat theval ue=. . .
part below isasingleline)

<Vari abl e>

val ue="rownum() == 1 ?
queryl.fieldl + query2.field2
r.self + queryl.fieldl + query2.field2"

</ Vari abl e>

This example shows the correct operation of an iterative expression. For the first row, set a known
good value. For every subsequent rows, the previous row value may be used for deriving the new
value from.

The above spelled out example can aso be written asa sunming variable:

<Report>
<Vari abl es>
<Vari abl e
nanme="var 1"
val ue="queryl.fieldl + query2.field2"
type="sum' />
</ Vari abl es>

<Det ai | >
<Fi el dHeader s>
<literal value=""M variable " />
</ Fi el dHeader s>

68

Report XML description

<Fi el dDet ai | s>
<field value="v.varl" />
</ Fi el dDet ai | s>
</Detail >
</ Report >

Here are two examples of the count and count al | variable types:

<Report>
<Vari abl es>
<Vari abl e
name="var 1"
val ue="queryl. fiel dl"
type="count” />
<Vari abl e
name="var 2"
val ue="queryl. fiel dl"
type="countal I " />
</ Vari abl es>
</ Report >

Here are two examples of using theaver age and aver ageal | variable types:

<Report>
<Vari abl es>
<Vari abl e
nanme="var 1"
val ue="queryl.fiel dl"
type="average" />
<Vari abl e
nanme="var 2"
val ue="queryl.fiel dl"
type="averageal | " />
</ Vari abl es>
</ Report >

Here are two examples of using hi ghest and| owest variabletypes:

<Report>
<Vari abl es>
<Vari abl e
nane="var 1"
val ue="queryl.fiel dl"
type="hi ghest" />
<Vari abl e

nanme="var 2"
val ue="queryl.fiel dl"
type="I| onest" />
</ Vari abl es>
</ Report >

8.12.1.4. Custom variable attributes

Theseattributesbelow defineacustom variable. A base expression, up totwointermediary expressions
and one result expression may be defined, together with the expression type.

69

Report XML description

<Vari abl e
baseexpr="..
i nt er medexpr="..
i ntermed2expr="..."
resul texpr="..."
basetype="..."
type="custont/>

baseexpr,i nt er medexpr,i nt er med2expr andr esul t expr are Expressions.
Iterative or recursive variables can use Expression self reference.
Possible values for baset ype arenunber,stri ng ordat eti ne.

It's the user's responsibility to use expressions valid for the base type. Failing that, the result value
will be an appropriate error message.

Note that the baseexpr attributeisan diasfor val ue.
8.12.1.4.1. Custom variable example

For example, the aver age variable works this way behind the scenes as written below.

<Report>
<Vari abl es>
<Vari abl e
name="aver agevar 1"
t ype="cust ont
baset ype="number "
baseexpr="queryl.fiel d1"
i ntermedexpr="(rownum() ==1 ? 0 : r.self) +
(isnull(r.baseexpr) ?
0 : r.baseexpr)"
i nterned2expr="r.self +
(isnull(r.baseexpr) 2 0 : 1)"
resul texpr="r.intermedexpr / r.interned2expr”
/>
</ Vari abl es>
</ Report >

8.12.1.5. Reset on break

A variable may be reset on break boundariesto the base expression value, e.g. 0 for count and other
pre-defined variable types. See Break node and Report breaks.

<Vari abl e reset onbreak="breakl" />
Default is unset, i.e. no reset on a break.
Here's an example to use avariable that's value is reset on a break boundary:

<Report>
<Br eaks>
<Br eak name="breakl" ... >

<Br eaksHeader >

<Qut put >
<field value="v.varl" />

</ Qut put >

</ Br eaksHeader >

<Br eaksFi el ds>

70

Report XML description

<Br eaksFi el d val ue="queryl.field2" />
</ Br eaksFi el ds>
</ Br eak>
</ Br eaks>

<Vari abl es>
<Vari abl e
nanme="var 1"
val ue="queryl.fiel dl1"
type="aver age"
precal cul at e="yes"
reset onbreak=""breakl'" />
</ Vari abl es>

</ Report >

8.12.1.6. Precalculate (delayed)

A variable may work two ways. The first way is to generate an immediate value that is valid for the
current row. See Expressions. An expression may reference the value computed for previousdatarow,
see Expression self reference.

The other way is Precalculated variables. The attribute is accepted under two names:

<Vari abl e precal cul ate="yes" />
<Vari abl e del ayed="yes" />

Defaultisno.

A precalculated variable may al so usethe Reset on break attribute. |n this case, the precal culated value
is computed for each break range separately.

Precalculated variables may be used to show totals in e.g. Report header, in <Fi el dHeader s> in
Detail node, in BreakHeader and in Report page header, among other places.

Here's an example of a precalculated variable:

<Report >
<Vari abl es>
<Vari abl e
name="var 1"
val ue="queryl.fiel d1"
type="aver age"
precal cul at e="yes" />
</ Vari abl es>

<Report Header >
<Qut put >
<field value="v.varl1">
</ Qut put >
</ Report Header >
</ Report >

To reved the internals of a variable that's value is reset on break boundaries, here is the equivalent
using acust omvariable. The value returned by the Break row number function automatically resets
at every break boundary, so it can be used as below.

<Vari abl es>

71

Report XML description

<Vari abl e
name="var 1"
t ype="cust ont
baseexpr="queryl.fiel d1"
i nt er medexpr="(brrownun(' breakl') == 1 ? 0 : r.self) +
(isnull(r.baseexpr) ?
0 : r.baseexpr)™
i nterned2expr="r.self +
(isnull(r.baseexpr) ?2 0 : 1)"
resul texpr="r.intermedexpr / r.interned2expr”
/>
</ Vari abl es>

8.13. Breaks

Thisisthe parent node for individual <Br eak> nodes that describe each break. See Report breaks

<Br eaks>
<Break ... />

</ Bréél&
8.14. Break

This node describes one <Br eak>.

<Break ... >
<Br eakHeader >
<Qut put >
</ Qut put >

</ Br eakHeader >
<Br eakFoot er >
<Qut put >

</ Qut put >

</ Br eakFoot er >

<Br eakFi el ds>
<BreakField />

</ Br eakFi el ds>
</ Br eak>

The order in which Br eak nodes are listed matters for two reasons.

The primary reason isthat break fields are hierarchical. The break fieldslisted earlier are higher inthe
hierarchy. If abreak field earlier inthelist triggers, all subsequent break fields also trigger implicitly.

The second reason is a consequence of the previous one; emitting the BreakHeaders occur in the order
of the list. For logical reasons, BreakFooters are in reverse order.

8.14.1. Break attributes
8.14.1.1. Name

The name of the break. It must be unique in the list of breaks for the parent <Repor t > node.

72

Report XML description

<Br eak nane="breakl" />

8.14.1.2. Header on new page

After abreak boundary, the header starts on anew page. Accepted in two variants:

<Br eak header newpage="yes" />
<Br eak newpage="yes" [>

Thenewpage="yes" variant is parsed but ignored in RLIB.

8.14.1.3. Suppress break header and footer for blank break fields

Suppress break header and footer in case any of the break fields' values are either NULL or an empty
string, if the break field is of the string type.

<Break suppressbl ank="yes" />
8.14.2. Break subsections
8.14.2.1. BreakHeader

The break header is printed before the new data row if it causes a break, i.e. the values in the set of
break fields changed from one row to the next. It contains an Output node child node.

<Br eakHeader >
<Qut put >

</ Qut put >
</ Br eakHeader >

8.14.2.2. BreakFooter

The break header is printed after the previous data row if it causes a break, i.e. the values in the set
of break fields changed from one row to the next. Also before the first row in the data set. It contains
an Output node child node.

<Br eakHeader >
<Qut put >

</ Qut put >
</ Br eakHeader >

8.14.2.3. BreakFields

The break fields node contains one or more BreakField children nodes.

<Br eakFi el ds>
<BreakField ... />

</ Br eakFi el ds>
8.14.2.3.1. BreakField

The break field node only has one attribute and contains no child nodes.

<Br eakFi el d val ue="..."/>

73

Report XML description

The sole attribute in <Br eakFi el d> is <val ue> where the expression watched for changes is
declared. See Expressions.

There must be at least one <Br eakFi el d> node listed. When more than one break fields are listed,
then all of them are watched for value changes. If any of them changes, a break boundary occurs for
the break.

8.14.3. A complete break example

This XML part below shows a complete example of nested breaks based on the real life example
mentioned in Section 6.1.

<Report>
<Br eaks>
<Br eak>

<Br eakHeader >
<Qut put >
<Li ne>
<field val ue="queryl. departnent"” />
</ Li ne>
</ Qut put >
</ Br eakHeader >

<Br eakFoot er >
<Qut put >
<Li ne>
<literal >End of </literal >
<field val ue="queryl. departnent"” />
</ Li ne>
</ Qut put >
</ Br eakFoot er >

<Br eakFi el ds>
<Br eakFi el d val ue="queryl. departnment" />
</ Br eakFi el ds>

</ Br eak>
<Br eak>

<Br eakHeader >
<Qut put >
<Li ne>
<literal w dth="30" />
<field val ue="queryl. paygrade" />
</ Li ne>
</ Qut put >
</ Br eakHeader >

<Br eakFoot er >
<Qut put >
<Li ne>
<literal w dth="30" />
<literal >End of </literal >
<field val ue="queryl. paygrade" />

74

Report XML description

</ Li ne>
</ Qut put >
</ Br eakFoot er >

<Br eakFi el ds>
<Br eakFi el d val ue="queryl. paygrade" />
</ BreakFi el ds>

</ Br eak>
</ Br eaks>
<Det ai | >

<Fi el dHeader s>
<Qut put >
<Li ne>
<literal w dth="60" />
<literal >Enpl oyee nane</literal >
</ Li ne>
</ Qut put >
</ Fi el dHeader s>

<Fi el dDet ai | s>
<Qut put >
<Li ne>
<literal w dth="60" />
<field val ue="queryl. enpl oyee" />

</ Li ne>
</ Qut put >
</ Fi el dDet ai | s>
<Detail >
</ Report >

Assuming that Size unit attribute is set to poi nt s, the indentation would be 30 and 60 points for
certain elements (see the empty <l i t er al >s) and the result would look like this:

1

2.

Before the first row on every page, the contents of <Fi el dHeader s> is printed.

Before the first row, the contents of <Br eakHeader > is printed for every break declared in the
<Repor t > inthe order of their declaration.

The contents of <Fi el dDet ai | s> isprinted for the current row. Repeat until avalue changeis
observed between adjacent rows for a break's expression. In this case, the employees are printed
in one block that are in the current paygrade category and working at the current department.

When a value change happened between adjacent rows for a break's expression, then this break
and every break declared after it triggers. For every triggering breaks, their <Br eakFoot er > is
printed in the reverse order of their declaration. Thisis done using the previousrow, so if any data
used from the row or derived from it (e.g. avariable) and is to be displayed in the footer, it will
be valid for the break range that just ended.

Before the new row, the contents of <Br eakHeader > is printed for every break that just
triggered. For example, the department'snameisnot printed if only the paygrade category changed
in the same department from the one row to the next.

Repeat from step 3 until there are no more data rows.

75

Report XML description

8.15. Output

The <CQut put > node is used by many previously mentioned sections. This is the generic node that
describes how details are displayed in reports.

8.15.1. Output attributes

Note that Expressions in attribute settings below depend on the parent node context. Some may only
use constant expressions or query column references from Independent queries. <Qut put > nodesin
<Repor t > context may also use report query column references.

8.15.1.1. Suppress

Output nodes may be suppressed as awhole.
<Qut put suppress="yes">

Default valueisf al se, i.e. no suppression.
8.15.2. Output subsections
8.15.2.1. Line

A line containing text elements of varying widths. See Line node.

<Qut put >
<Li ne>

</ Li ne>
</ Cut put

8.15.2.2. HorizontalLine

A horizontal line. See HorizontalLine node.

<Qut put >
<Hori zontal Line ... />
</ Qut put

8.15.2.3. Image

Animage. See Image node.

<Qut put >
<Ilmage ... />
</ Qut put

8.15.2.4. Barcode
A barcode. See Barcode node.
<Qut put >

<Barcode ... />
</ Qut put

8.15.2.5. Image end

Terminator for a previous image or barcode node. See ImageEnd node.

76

Report XML description

8.16.

<Qut put >
<l mageEnd/ >
</ Qut put

Line
A line containing text elements of varying widths.

<CQut put >
<Li ne>
</ Li ne>
</ Cut put

8.16.1. Line attributes

Note that Expressions in attribute settings below depend on the parent node context. Some may
only use constant expressions or query column references from Independent queries. Child nodes of
<Qut put > nodesin <Repor t > context may also use report query column references.

8.16.1.1. Font name

The font name attribute specifies the font for the line's scope. It can be overridden by child nodes for
their scope. It may be specified in two forms, the first one is the preferred name, the second is for
RLIB compatibility:

<Li ne font_name="'Arial"'">
<Li ne font Name="'Arial'">

If both forms are specified, f ont _narme isused.

Default font nameiswhat's set (in decreasing priority) in Report font name or Part font name. If none
of themisset, it'sCouri er.

8.16.1.2. Font size

The font size attribute specifies the font size for the line's scope. It can be overridden by child nodes
for their scope. It may be specified in two forms, the first one is the preferred name, the second is
for RLIB compatibility:

<Li ne font_size="10">
<Li ne fontSi ze="10">

If both forms are specified, f ont _si ze isused.

Default font name is what's set (in decreasing priority) in Report font size or Part font size. If none
of themisset, it's12.

8.16.1.3. Bold font

Whether the line e ements use bold font.
<Li ne bol d="yes">

Defaultisf al se.

8.16.1.4. Italic font

Whether the line elements useitalic font. It is accepted in two forms:

77

Report XML description

<Line italic="yes">
<Line italics="yes">

Default isf al se.

8.16.1.5. Suppress

Text linesmay be suppressed. If the parent <Qut put > nodeisin<Fi el dDet ai | s>, theexpression
may be derived from a query field.

<Li ne suppress="yes">

Default valueisf al se, i.e. no suppression.

8.16.1.6. Text color

This color is used to render text. It's accepted with both American and British spelling.

<Line col or=""'Dblue'">
<Li ne col our=""'Dbl ue' ">

Default isbl ack. See Color specification.

8.16.1.7. Background color

This color isused to render the background rectangle under the text. It's accepted with both American
and British spelling.

<Li ne bgcol or=""'bl ue' ">
<Li ne bgcol our=""bl ue' ">

Default iswhi t e. See Color specification.
8.16.2. Line subsections
8.16.2.1. Text element

See the Text element node. Two variants are accepted.

<Li ne>
<field value="expression..." ... [>
</ Li ne>

and

<Li ne>
<literal ... >Literal text</literal >
</ Li ne>

8.16.2.2. Image element

An <| mage> isaccepted as aline element. See the Image node.

<Li ne>
<I mage val ue="expression..." ... [>
</ Li ne>

8.16.2.3. Barcode element

A <Bar code> isaccepted as aline element. See the Barcode node.

78

Report XML description

<Li ne>
<Bar code val ue="expression..." ... [>
</ Li ne>

8.17. Text element

Two variants are accepted.
<Li ne>

<field val ue="expression..." ... [>
</ Li ne>
and
<Li ne>

<literal ... >Literal text</literal>
</ Li ne>

Neither fi el d norliteral havechild nodes, only attributes or XML values.

The two variants are interchangeable, see Text element value below.

8.17.1. Text element attributes

Note that Expressions in attribute settings below depend on the parent node context. Some may
only use constant expressions or query column references from Independent queries. Child nodes of
<Qut put > nodesin <Repor t > context may also use report query column references.

8.17.1.1. Value

The value of the text element. It's accepted in two ways: in the val ue attribute or asthe XML value
forthefiel dandliteral nodes.

<Li ne>
<field value=""'This text'" />
<field>This text</field>
<literal value=""'This text'" />
<literal >This text</literal >

</ Li ne>

Thevalue is parsed as an expression from the val ue attribute. See Expressions.

On the other hand, the value is taken as a literal string from the XML value in the second and fourth
examples above.

8.17.1.2. Delayed (precalculated) value

This setting indicates whether the value is "delayed" or "precalculated”, i.e. the value for the last
row in the data set is used for every row. It is equivalent to referencing an Expression variable with
precal cul at e="yes" andwithoutr eset onbr eak.

<field del ayed="yes" />
<field precal cul ate="yes" />

Defaultisf al se.

This setting is only applicable for line elements in the Output node node in <Repor t > context.

79

Report XML description

Note that in OpenCReports, an expression may mix references to precalculated variables with non-
precal culated variables and query field references. The result will use the precalculated value only for
the precalculated variables. Other references will use values derived from the current row in the data
set. Thisisan extension over RLIB.

8.17.1.3. Format string

The format string is one way to format the field val ue to be displayed in the generated output.
The format string is expected to be a string so quoting around it is needed.
See Formatting data for details.
8.17.1.3.1. Format attribute examples
Format avalue asastring, first asis, second with adding a surrounding text:
<field value="queryl.fieldl" format=""9%"" >

<field val ue="queryl.fieldl"
format="'Look, there is a % there!'" >

Here's the same with the "new syle" formatting flag:

<field value="queryl.fieldl" format=""1&%"" />

<field val ue="queryl.fieldl"
format ="' Look, there is a !&#s there!'" >

Also, with the 2nd generation new style formatting flag:

<field val ue="queryl.fieldl"
format=""1&%}"'" ... />

Here's an example to truncate a string to 6 characters using format string flags in legacy and both new
style formatting flags:

<field value="queryl.fieldl"
format=""9%6.6s"" ... [>

<field value="queryl.fieldl"
format=""'1&96.6s"" ... />

<field value="queryl.fieldl"
format=""'1&{%6.6s}'" ... />

Format a numeric value with three decimal places, first asis, second with adding a surrounding text:

<field value="queryl.fieldl"
format="'%3d " >

<field value="queryl.fieldl"
format=""'You have % 3d apples.'" >

Convert anumber from a string and the value with two decimal places:

<field val ue="val (queryl.fieldl)"
format=""%2d" " />

Here are the same examples using the "new style" formatting flags:

80

Report XML description

<field val ue="queryl.fieldl"
format=""'1#%3d" " >

<field val ue="queryl.fieldl"
format ="' You have !#% 3d apples.'" >

<field val ue="val (queryl.fieldl)"
format=""1#%2d"" />

Here are the same examples using the 2nd generation new style formatting flags:

<field val ue="queryl.fieldl"
format=""'1#{% 3d}'" >

<field val ue="queryl.fieldl"
format ="' You have !#{% 3d} apples.'" >

<field val ue="val (queryl.fieldl)"
format=""1#%2d" />

Format a numeric value with monetary details either using the first or the second generation format
strings:

<field val ue="queryl.fieldl"
format=""1%$%*#150n"" />

<field val ue="queryl.fieldl"
format=""1${%*#150n}"' " />

Format a datetime value, first with the preferred datetime format for the locale, then only the year,
month and day using the YYYY-MM-DD format:

<field value="queryl.fieldl"
formt=""1@c"" />

<field value="queryl.fieldl"
format=""1@- %% " ... />

Here's the same using the second generation format strings:

<field value="queryl.fieldl"

formt=""1&%}'" ... />
<field value="queryl.fieldl"
format=""1@%W-%no%}' " ... />
8.17.1.4. Width

The field width.
<field value="3" format="'%2d'" w dth="6" />

Default is unset, i.e. the field width is implicitly set to the rendered width (in points) of the field's
formatted value as text, using the font name and font size of thefield.

When the field is the last one in the <Li ne>, then its width will be the remaining page or column
width.

If set, the width's unit depends on the Size unit attribute.

81

Report XML description

When the Size unit attributeissettor | i b, the field width is measured in number of characters.

The character width is queried from the font set by Line font name and Line font size, Report font
name and Report font size, or Part font name and Part font size in decreasing order of precedence.

Text element font name and Text element font size do not influence the field width calcul ation.

Thisalows using uniquely set font name and size for individual text elements, including proportional
fonts, using the RLIB compatible field width settings.

When using different font names or font sizesfor different text elementsinthe same<Li ne>, thetext
elements are aligned vertically so all text elements are rendered on the same typographic baseline.

8.17.1.5. Alignment

It specifies the alignment for the text element. It works in accordance with the Text element width,
i.e. thefield's formatted value (as text) is aligned inside the specified field width.

<field value="3" format=""%2d""
wi dt h="6" align=""'center'" />

The alignment valuesmay bel eft ,ri ght,center orjustified.

Justified alignment is like left alignment, but for Multi-line (memo) fields, al lines but the last are
justified. Thisis best used with the default word wrapping. In this case, the spacing between wordsis
enlarged. j usti fi ed and| ef t behave the samefor single-linefields.

Defaultis| ef t .

OpenCReports decoupled the data from displaying it. For example, with the PDF output, the text
element is not truncated to the element width. Instead, pixel perfect alignment is used together with
masking the parts of the value with a bounding box. Thisis an improvement over RLIB where data
was truncated (in every output formats) because it was designed for using only monospace fonts.

8.17.1.6. Text color

This color is used to render text. It's accepted with both American and British spelling.

<Line col or=""'Dbl ue'">
<Li ne col our=""' Dbl ue' ">

Default iswhat's set for Line node, otherwise bl ack. See Color specification.

8.17.1.7. Background color

This color is used to render the background rectangle under the text. It's accepted with both American
and British spelling.

<Li ne bgcol or=""bl ue' ">
<Li ne bgcol our=""bl ue' ">

Default iswhat's set for Line node, otherwise whi t e. See Color specification.

8.17.1.8. Font name

Thefont name attribute specifiesthefont for the text element's scope. It may be specified intwo forms,
the first oneisthe preferred name, the second is for RLIB compatibility:

<Part font_nanme="'Arial'">

82

Report XML description

<Part fontName="'Arial"'">
If both forms are specified, f ont _narme isused.

Default font name is what's set (in decreasing priority) in Line font name, Report font name or Part
font name. If none of them is set, it'sCouri er .

8.17.1.9. Font size

The font size attribute specifies the font size for the text element's scope. It may be specified in two
forms, the first one isthe preferred name, the second isfor RLIB compatibility:

<Part font_size="10">
<Part fontSize="10">

If both forms are specified, f ont _si ze isused.

Default font name is what's set (in decreasing priority) in Line font size, Report font size or Part font
size. If none of them is set, it's12.

8.17.1.10. Bold font

Whether the text el ement uses bold font. It overrides the Line bold attribute for this text element.
<field bol d="yes" />

Default iswhat's set for Line bold attribute. f al se if both are unset.
8.17.1.11. Italic font

Whether the text element uses italic font. It overrides the Line italic attribute for this text element. It
is accepted in two forms:

<field italic="yes" />
<field italics="yes" />

Default iswhat's set for Lineitalic attribute. f al se if both are unset.
8.17.1.12. Web link

This attribute adds a weblink to the text element. E.g. clicking on this text element in the generated
PDF will open abrowser with the website.

<field value=""'This is ny website'"
link=""https://github.confzboszor/ QpenCReports'" />

Default is no weblink.

8.17.1.13. Multi-line (memo) field

This attribute allows breaking long text fields to multiple lines according to the Text element width.

<field value="'This is a long text...""
wi dt h="12" nenp="yes" />

Default isf al se, i.e. thefield isrendered on asingle line.

Every line of the text element (regardless if it's a memo field or not) is aligned according to Text
element alignment.

83

Report XML description

8.17.1.14. Multi-line field hyphenation

Thisattribute allowswrapping multi-linetext somewherein the middle of thewordswith hyphenation.
The text rendering library may need extra supporting libraries so the hyphenation in the report locale

is correct.

<field value=""This is a long text...""
wi dt h="12" nenp="yes" meno_hyphenat e="no" />

Defaultist r ue, i.e. thefield is hyphenated. When character wrapping is used, this setting is not used.

In OpenCReports, character wrapping adds hyphenation. Thisis an improvement over RLIB.

8.17.1.15. Multi-line field wrapping

This attribute allows wrapping multi-line text at characters as opposed to words.

<field value=""This is a long text...""
wi dt h="12" neno="yes" meno_w ap_chars="yes" />

Defaultisf al se, i.e. thefield iswrapped at word boundaries.

In OpenCReports, character wrapping adds hyphenation. Thisis an improvement over RLIB.

8.17.1.16. Multi-line field row limit

This attribute allows limiting multi-line text with a maximum row number.

<field value=""This is a long text...""
wi dt h="12" nmeno="yes" nmeno_nax_I|ines="20" />

Default is no limit.

8.17.1.17. Translation

This attribute allows the text element to be translated to a specified language or locale. See Locale.

<field value=""This is a field™"
transl ate="yes" />

The expression result for t r ans| at e must be numeric (boolean).

For tranglations to work, the translation settings and the language (locale) must be correctly set up.

OpenCReports will attempt to trandate both the format string (if specified) and the text element's
value. For example, if the format string has atrandated variant in the trand ations, then this formatted

result will be trandlated:

<field val ue="q. appl es"
format=""'You have % apples."'"
transl ate="yes" />

Default isno.

An dternative way is to use the trandlation functions directly in the field expression. See trandate()

and trandate2(). When using them, thet r ansl at e="yes" attributeis not needed.

8.17.1.18. Column number

This attribute is accepted for RLIB compatibility, but it's unused.

84

Report XML description

<field value=""This is a long text...""
col ="3" />

8.18. HorizontalLine

A horizontally drawn line.
<Qut put >

<Hori zontal Line ... />
</ Qut put

8.18.1. HorizontalLine attributes

Note that Expressions in attribute settings below depend on the parent node context. Some may
only use constant expressions or query column references from Independent queries. Child nodes of
<Qut put > nodesin <Repor t > context may a so use report query column references.

8.18.1.1. Line width

The line width is measured in points, regardless of the Size unit attribute.
<Hori zont al Li ne size="3" />

Defaultis1. O

8.18.1.2. Line alignment

The possible alignment values are | ef t, ri ght and cent er. Default is| ef t alignment. The
alignment isonly applied if thelinelength is shorter than the designated page or column width without
the margins.

<Hori zont al Li ne align=""center""
[engt h="200" />

Defaultis1. 0

8.18.1.3. Indentation

Extraindentation for the line. It is measured in points, regardless of the Size unit attribute.
<Hori zont al Li ne i ndent="15" />

Defaultis0. O

8.18.1.4. Length

The line length.
<Hori zont al Li ne | engt h="150" />

The line length unit depends on the Size unit attribute. When settor | i b, it is measured in number
of characters. The is influenced by HorizontalLine font size, Report font size and Part font size in
decreasing order, which in turn is influenced by Report font name and Part font name in decreasing
order.

When Size unit attribute is set to poi nt s, theline length is measured in points.

Default isunset, i.e. the line is drawn across the page width.

85

Report XML description

8.18.1.5. Font size

An extra knob to influence line length computation. See HorizontalLine length. It is accepted in two
forms, f ont _si ze isthe preferred one, the other is accepted for RLIB compatibility:

<Hori zontal Line font_size="14" />
<Hori zontal Li ne fontSi ze="14" />

Default is unset, i.e. only Report font size and Part font size would contribute to the horizontal line
width computation.

8.18.1.6. Suppress

Horizontal lines may be suppressed. If the parent <Qut put > node is in <Fi el dDet ai | s>, the
expression may be derived from aquery field.

<Hori zont al Li ne suppress="yes" />

Default valueisf al se, i.e. no suppression.

8.18.1.7. Line color

This color is used to render text. It's accepted with both American and British spelling. For RLIB
compatibility, it isalso accepted asbgcol or , with both American and British spelling.

<Hori zontal Line color=""blue'" />
<Hori zont al Li ne col our=""blue'" />
<Hori zont al Li ne bgcol or=""blue'" />
<Hori zont al Li ne bgcol our=""blue'" />

Default isbl ack. See Color specification.

8.19. Image

Animage to draw on the page, either on its own, which controls indentation for subseguent elements:

<CQut put >
<lmage ... />
</ Cut put

or asaline element:

<Qut put >
<Line ... >
<lmage ... />
<Li ne/ >
</ Qut put

After a valid (standalone) image specification, subsequent Line nodes and HorizontalLine nodes
are indented by the image width in the same <Qut put > node, or until an <l rageEnd> node is
encountered in that <Qut put > node.

8.19.1. Image attributes

Note that Expressions in attribute settings below depend on the parent node context. Some may
only use constant expressions or query column references from Independent queries. Child nodes of
<Qut put > nodesin <Repor t > context may also use report query column references.

86

Report XML description

8.19.1.1. File name

The file name of the image.
<Image val ue=""'filenanme.jpg " />

Default is unset. It makesthe | mage not shown.

8.19.1.2. Suppress

Theimage may be suppressed.

<l mage val ue="'filename.jpg "
suppress="yes" />

Default isf al se, i.e. no suppression.

8.19.1.3. Type

Accepted for RLIB compatibility.

<l mage val ue="'fil enane.jpg
type:lll j pgI n />

Default is unset, i.e. autodetect.

Various image formats are supported with autodetection via gdk- pi xbuf . SVG (Scalable Vector
Graphics) issupported vial i br svg.

8.19.1.4. Width

Image width, measured in points regardless of the Size unit attribute.

<l mage val ue="'filenane.jpg "
wi dt h="100" />

Default is unset. The image would not be shown, unless both width and height are set.

When the image is used as a line element, this setting is ignored. Instead, the image is automatically
scaled according to the line height.

8.19.1.5. Height

Image height, measured in points regardless of the Size unit attribute.

<l mage value="'filenane.jpg" "
hei ght =" 100" />

Default is unset. The image would not be shown, unless both width and height are set.

When the image is used as a line element, this setting is ignored. Instead, the image is automatically
scaled according to the line height.

8.19.1.6. Text width

When the image is used as a line element, this is the width in which the image is shown. Its unit is
subject tothe Size unit attribute, by default it'smeasured in text character width for the parent <Li ne>.
This setting is only used when theimage is aline element. Two variants are accepted:

<l mage val ue="'filenane.jpg" "

87

Report XML description

text_wdth="8" />

<l mage val ue="'filenane.jpg" "
text Wdth="8" />

Default is 0. Asaresult, theimage would be 0 points wide, i.e. not shown.

This setting isignored when the image is used as an output subsection.

8.19.1.7. Background color

Image background color. When the image is a line element, then the width in which it's shown may
be wider than the scaled image width. Or possibly, the imageis vector graphics (SVG) and thereisno
background defined in the image file. Or the image file contains transparency (i.e. PNG). The color
background will be shown around the image or where there are transparent pixels.

<l mage val ue="'fil enane.jpg" "
bgcolor=""red " />

Default is unset, i.e. white.

8.19.1.8. Alignment

8.20.

8.21.

Image alignment. When the image is aline element, then the width in which it's shown may be wider
than the scaled imagewidth. Theimagethen may bealigned.| ef t ,ri ght andcent er areaccepted.

<l mage val ue="'fil enane.jpg" "
align=""'center'" />

Default is left alignment.

This setting isignored when the image is used as an output subsection.

Image end

Terminator for a previous image. This node doesn't have any attributes or child nodes. Its purpose is
to reset indentation caused by a previous Image node or Barcode node.

<Qut put >
<I mageEnd/ >
</ Qut put

Barcode element

Thisline or output element renders a barcode in various formats.

<Li ne>
<Bar code val ue="expression..." ... />
</ Li ne>

The Bar code does not have child nodes, only attributes.

8.21.1. Barcode element attributes

Note that Expressions in attribute settings below depend on the parent node context. Some may
only use constant expressions or query column references from Independent queries. Child nodes of
<Qut put > nodesin <Repor t > context may also use report query column references.

88

Report XML description

8.21.1.1. Suppress

<Bar code> elementsin <Qut put > may be suppressed.

<Li ne>
<Bar code suppress="yes" ... [>
</ Li ne>

Default valueisf al se, i.e. no suppression.

The expression for suppr ess must be aconstant expression. An environment variable (sinceit can't
- or shouldn't - change during the report execution) is considered constant. See Expressions.

8.21.1.2. Value

The string value to be encoded as barcode.

<Li ne>
<Bar code val ue="'1234567890128"'" />
</ Li ne>

Thevalue is parsed as an expression from the val ue attribute. See Expressions.

8.21.1.3. Delayed (precalculated) value

This setting indicates whether the value is "precalculated", i.e. the value for the last row in the data
set isused, or it would be the actual value for the current row in the data set.

<Bar code del ayed="yes" />
<Bar code precal cul ate="yes" />

Default isf al se.

This setting is only applicable for line elements in the Output node node in <Report Header >,
<Report Foot er >, <Fi el dheader s> <Fi el dDet ai | s>, since they are the ones under the
<Repor t > scope with aquery.

8.21.1.4. Barcode type

The format string is used to format the val ue to be displayed in the generated output. For example,
to print a number with two decimal places:

<Bar code val ue="'123456789012' " type="'ean-13'" />

Thetype may be optional, in which caseit's autodetected and the barcode is rendered in the format that
firstallowstheval ue string to berendered. Possibletypes (inthe order of autodetection) are: upc- a,
ean- 13, upc- e, ean-8,i sbn, code39, code39ext,codel28b, codel28c, or codel28.
If t ype isspecified, the val ue isrendered in that barcode type if the string is valid for the type. If
theval ue isinvalid for the specified t ype, or autodetection fails, because theval ue isinvalid for
any of the above listed types, the barcode is not rendered.

8.21.1.5. Width
The field width.
<Barcode value=""..."'"" width="6" />

Default isunset, i.e. the field width isimplicitly set to the rendered width (in points) of the barcode's
inherent encoding width.

89

Report XML description

If set, the barcode is scaled to the specified width. Its unit depends on the Size unit attribute.

When thefield isthe last onein the <Li ne> and itswidth is unset, then depending on the remaining
width of the line, the barcode is either rendered asis, or it's scaled to the remaining width.

When the Size unit attributeissettor | i b, the field width is measured in number of characters that
isset for the<Li ne>.

8.21.1.6. Height

Thefield height.
<Barcode value=""'..."" height="6" />

Default isunset, i.e. the barcode height isimplicitly controlled by the text in the line or the font height
set for the line.

If set, and it's larger than the text in the line, the barcode height controls the line height, with empty
space added before and after thetext elementsvertically. is scaled to the specified width. It's measured
inpoi nt s, i.e. 4/72th of aninch.

When thefield isthe last onein the <Li ne> and itswidth is unset, then depending on the remaining
width of the line, the barcode is either rendered asis (if the remaining width is larger), or it's scaled
down to the remaining width.

8.21.1.7. Barcode color

This color is used to render the barcode's bars. It's accepted with both American and British spelling.

<Bar code col or=""'bl ue' ">
<Bar code col our="" bl ue' ">

Default iswhat's set for Line node, otherwise bl ack. See Color specification.

8.21.1.8. Barcode background color

8.22.

This color is used to render the background (the "gaps") in the barcode. It's accepted with both
American and British spelling.

<Bar code bgcol or=""' bl ue' ">
<Bar code bgcol our=""bl ue' ">

Default iswhat's set for Line node, otherwise whi t e. See Color specification.

Color specification

Colors may be specified by HTML notation. This contains six hexadecimal digits, representing RGB
(red, green, blue) values between 0 and 255 for each color component, prefixed by the # character.

<Li ne bgcolor=""#ffffo0"'" ... >
<Hori zontal Li ne col or=""#ffooff"'" ... >

Colors may also be specified by hexadecimal notation. This contains six hexadecimal digits,
representing RGB (red, green, blue) values between 0 and 255 for each color component, prefixed
by Ox.

<Li ne bgcolor=""0xffffo0'" ... >
<Hori zont al Li ne col or=""0Oxffooff"'" ... >

90

Report XML description

Color names may also be specified by name. The following color names are supported for RLIB
compatibility. Color names are matched in a case-insensitive way.

M Black M Green BobKratz
Silver Lime Everton

W Gray M olive

[white Yellow

Bl Maroon H Navy

M Red M Blue

N Purple M Teal

B Fuchsia Aqua

91

Chapter 9. High level C language API
reference

9.1. Header file

For using OpenCReports, this single header must be used:
#i ncl ude <opencreport.h>

The header can be used from C and C++ source code.

9.2. High level C API

Example code using the high level C API where everything concerning the report (including the data
source) is described in the report XML :

#i ncl ude <opencreport. h>

int main(void) {
opencreport *o = ocrpt_init();

if (locrpt_parse_xm (o, "report.xm")) {
printf("XM parse error\n");
ocrpt_free(o);
return 1;

}

ocrpt _set _output _format (o, OCRPT_QOUTPUT_ PDF);
ocr pt _execute(0);

ocr pt _spool (0);

ocrpt _free(o);

return O;

}

The above code will load r epor t . xm , set the output format to PDF, runs the report and prints its
output on st dout .

9.2.1. Report handler initialization

opencreport *
ocrpt_init(void);

9.2.2. Load areport XML description

Thisfunction loadsthe specified XML fileinto thereport handler. It returnst r ue for success, f al se
for failure.

bool
ocr pt _parse_xm (opencreport *o,
const char *fil ename);

9.2.3. Parse report XML description from a buffer

This function parses the buffer as if it contained XML contents and loads the details into the report
handler. It returnst r ue for success, f al se for failure.

92

High level C language API reference

9.2.4.

9.2.5.

9.2.6.

bool

ocrpt _parse_xm _from buffer(opencreport *o,
const char *buffer,
size_t size);

Set report output format

enum ocrpt_format _type {
OCRPT_OQOUTPUT_PDF = 1,
OCRPT_OQUTPUT_HTM.,
OCRPT_QUTPUT_TXT,
OCRPT_QUTPUT_CSV,
OCRPT_QUTPUT_XM_,
OCRPT_QOUTPUT_JSON,
OCRPT_OQUTPUT_LAST

1

typedef enum ocrpt_format _type ocrpt_fornmat_type;

voi d
ocrpt _set _out put _f or mat (opencreport *o,
ocrpt_format _type format);

Get report output format as enum or string

ocrpt_format _type
ocrpt _get out put _fornmat (opencreport *0);

const char *
ocrpt _get output fornmat_nane(ocrpt _fornat_type format);

Set report output parameter

Set output parameters for the report.

voi d

ocr pt _set _out put _par anmet er (opencreport *o,
const char *param
const char *val ue);

Possible parameters for the HTML output driver:
e docunent _r oot setsthe document root for trimming path prefix from image paths.

» net a extendsthedefault <net a char set =" ut f - 8" >. The passed-in string value may contain
the whole <meta ... >, in which case the inner parameters are used only. The char set
specification isignored. Only therest is used.

* suppr ess_head suppresses the default <head> ... </ head> section. Possible values are
yes, true, on or any positive non-zero number. Anything else disables it. Be aware, that the
default section contains importand CSS stylesheet settings that are needed for the correct layout.

Possible parameters for the CSV output driver:

« csv_fil enane setsthefilenamefor Cont ent - Di sposi ti onintheHTTPmetadatareturned
by ocrpt _get _content _type().

e csv_as_text setsthe MIME type for Cont ent - Type in the HTTP metadata returned by
ocrpt _get _content type() totext/ pl ai n when enabled. By default it'st ext/ csv.

93

High level C language API reference

9.2.7.

9.2.8.

9.2.9.

Possible values to enable it are yes, t r ue, on or any positive non-zero number. Anything else
disablesit.

o csv_delimter (asoadiased ascsv_del i met er according to the historical typo in RLIB)
setsthe CSV field delimiter to the first character of the string. By default it's a comma.

* no_quot es will create a CSV output with values unquoted. Possible valuesto enable it areyes,
true, on or any positive non-zero number. Anything else disables it. It takes precedence over
only_quote_strings

* only_quote_strings will createaCSV output with only string values quoted. Possible values
toenableit areyes, t r ue, on or any positive non-zero number. Anything else disablesiit.

Note that some languages (e.g. German, Swedish and Hungarian) use comma as the decimal separator
instead of the decimal dot. For these languages, either set csv_del i mi t er to something else, or
don't enable either no_quot es oronl y_quot e_stri ngs.

Possible parameters for the XML output driver:

« xm _rlib_conpat setstheflagto create an RLIB compatible XML output. Possible values to
enableit areyes, t r ue, on or any positive non-zero number. Anything else disablesiit.

When enabled, the toplevel element will be <r | i b> and <Report >s inside <pd> won't be
embedded inar eport element.

Run the report

Thisfunction executesthereport, constructstheresultin memory. It returnst r ue for success, f al se
for failure. Itisafailureif the output format is unset.

bool
ocr pt _execut e(opencreport *0);

Dump report result

Dump the report output on the program'’s standard output channel.

voi d
ocr pt _spool (opencreport *o0);

Get report result

Get the report output. The application then can saveit as afile.

const char *
ocr pt _get out put (opencreport *o, size t *length);

9.2.10. Get report content type

Get the report content type for web publishing. The content type depends on the output type the report
was executed with. It returnsan array of ocr pt _stri ng * pointersfor potentially multiple HTTP
header lines. The last pointer in the array iSNULL.

const ocrpt_string **
ocrpt _get_content _type(opencreport *o);

9.2.11. Report handler destruction

Calling thisfunction frees up the report handler structure and everything created for it, even the details
that were created by the low level API.

94

High level C language API reference

voi d
ocrpt _free(opencreport *o);

9.2.12. Get library version

This function reports the OpenCReports library version.

const char *
ocrpt _version(void);

95

Chapter 10. Low level C language API
reference

10.1. Low level C API

The low level API extends the High level C API to either fine-tune the report behaviour, or to cresate
areport purely from program code.

10.1.1. Numeric behavior related functions

10.1.1.1. Set nuneric precision

The default is 256 bits of floating point precision. The expression string must evaluate to a numeric
value, theinteger part will be used to set the number of precision bits for numeric calculations.

voi d

ocrpt _set_nuneric_precision_bits(opencreport *o,
const char *expr_string);

10.1.1.2. Get nuneric precision

The report XML description may set the numeric precision. This function allows the application to
query it.

mpfr_prec_t
ocrpt _get_nuneri c_precision_bits(opencreport *o0);

10.1.1.3. Set rounding mode

The expression string must evaluate to a string value. Possible values are: nearest,
to mnus_inf, to inf, to zero, anay fromzero and faithful. The default is
near est .

voi d

ocr pt _set _roundi ng_node(opencreport *o,
const char *expr_string);

10.1.2. Locale related functions

10.1.2.1. Set up translation

Setting up the trangation needs two parameters: the so called trandation domain and the toplevel
directory for the trandations. It relies on GNU Gettext.

voi d

ocr pt _bi ndt ext dormai n(opencreport *o,
const char *domai nnane,
const char *dirnane);

10.1.2.2. Set up translation (delayed variant)

Setting up the trandation needs two parameters. the so called translation domain and the toplevel
directory for the trandations. It relies on GNU Gettext. This function allows setting the trandation

96

Low level Clanguage API reference

from a supplemental query. The passed in expressions strings must evaluate to string values, with
potential fallbacks to plain strings in case of parse errors or if the expressions may be interpreted as
guery columns but no such column names exist in any query.

voi d

ocr pt _bi ndt ext donmai n_from expr (opencreport *o,
const char *domai n_expr,
const char *dir_expr);

10.1.2.3. Set report locale

Setting the locale for the report does not affect the main program or other threads. A locale setting
includes the language and the country. The UTF-8 suffix is necessary. E.g.: en_GB. UTF- 8 or
de_DE. UTF- 8

voi d
ocrpt _set | ocal e(opencreport *o,
const char *locale);

10.1.2.4. Set report locale (delayed variant)

This function allows setting the locale from a supplementary query of the report. It is used by the
report XML parser code and it's a lower priority setting than the previous function: the application
executing the report may need to be run a different locale. The expression string must evaluate to a
string value that's avalid locale string.

voi d
ocrpt _set | ocal e_from expr (opencreport *o,
const char *expr_string);

10.1.2.5. Print monetary data in the report locale

A customized monetary printing function wasimplemented for the purposes of the report which MPFR
doesn't provide. It is used in OpenCReports both internally and by unit tests.

ssize_t

ocr pt _npfr_strfnon(opencreport *o,
char *s, size_t maxsize,
const char *format, ...);

10.1.3. Data source and query related functions

Thefollowing enumand st r uct types are used by OpenCReports for datasources and queries.

enum ocrpt _result_type {
OCRPT_RESULT_ERROR,
OCRPT_RESULT_STRI NG,
OCRPT_RESULT_NUMBER,
OCRPT_RESULT_DATETI ME

}s

struct ocrpt_datasource;
typedef struct ocrpt_datasource ocrpt_datasource;

struct ocrpt_query;
t ypedef struct ocrpt_query ocrpt_query;

struct ocrpt_query_result;

97

Low level Clanguage API reference

typedef struct ocrpt_query result ocrpt_query result;

For more details, see Data sources and queries. Multiple queries may use the same data source.

10.1.3.1. Add a datasource

Add a datasource of the specific type to the report handler with the associated source_name, using
optional connection parameters.

ocr pt _datasource *
ocr pt _dat asour ce_add(opencreport *o,

const char *source_naneg,

const char *type,

const ocrpt_i nput _connect _par anet er
*conn_par ans) ;

The pointer to connection parameters can be NULL for ar ray, csv, j son, and xm datasource
types.

10.1.3.1.1. MariaDB connection parameters
There are two methods to connect to aMariaDB (or MySQL) database.

The first method uses a MariaDB (MySQL) specific configuration i ni file and the gr oup namein
it. Thegr oup parameter ismandatory as the main database configuration may also have such agroup
section, in which case the separate opt i onf i | e isnot needed.

ocr pt _i nput _connect _paraneter conn_paranms[] = {

{ .param.nane = "group", .paramvalue ="..." },
{ .paramnane = "optionfile", .paramvalue ="..." },
{ .paramnanme = NULL }

b

The second method spellsout individual connection parameters. Thisallowslocal and remote database
connections. The dbname parameter is mandatory, others are optional.

ocr pt _i nput _connect _paraneter conn_parans[] = {

{ .paramname = "dbnanme", .paramvalue ="..." },

{ .paramname = "host", .paramvalue ="..." },

{ .paramnane = "port", .paramvalue ="..." },

{ .param.nane = "uni x_socket", .paramvalue ="..." },
{ .paramname = "user", .paramvalue ="..." },

{ .param.nane = "password", .paramvalue ="..." },

{ .paramname = NULL }

b

These connection parameters can be used as XML node attributes, see MariaDB database connection.
10.1.3.1.2. PostgreSQL connection parameters

There are three methods to connect to a PostgreSQL database.

Thefirst method uses the PostgreSQL specific connection string. It isthe only setting and as such, it's
mandatory. Its content isalmost freeform, with optional elements. See PostgreSQL connection stri ngl.

ocrpt _i nput _connect _paraneter conn_parans[] = {
{ .paramname = "connstr", .paramvalue ="..." },
{ .paramname = NULL }

s

L hitps://www. postgresgl.org/docs/current/libpg-connect. html#L | BPQ-CONNSTRING

98

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

Low level Clanguage API reference

The second method spells out individual connection parameters. This allows local database
connections on anamed socket. Theuni x_socket and dbnane parameters are mandatory, others
are optional.

ocrpt _input_connect _paraneter conn_parans[] = {

{ .paramnane = "uni x_socket", .paramvalue ="..." },
{ .paramname = "dbnane", .paramvalue ="..." },

{ .paramname = "user", .paramvalue ="..." },

{ .paramnane = "password", .paramvalue ="..." },

{ .paramname = NULL }

b

The third method also spells out individual connection parameters. This allows remote database
connection using the host and port parameters. Only the dbname parameter is mandatory, others
are optional.

ocrpt i nput_connect _paraneter conn_parans[] = {

{ .paramnane = "dbnane", .paramvalue ="..." },

{ .paramnane = "host", .paramvalue ="..." },

{ .paramnane = "port", .paramvalue ="..." },

{ .paramnane = "user", .paramvalue ="..." },

{ .paramnane = "password", .paramvalue ="..." },
{ .paramnane = NULL }

}s

There are aso two optional parameters that control the behaviour of the PostgreSQL driver in
OpenCReports, rather than being actual connection parameters to a PostgreSQL server. These
parameters may be used with any of the above connection methods.

» The parameter usecur sor may have a boolean value: t r ue, f al se, yes, no, or a numeric
value interpreted as a boolean value: non-zero values meant r ue, zero meansf al se.

Whenusecur sor isenabled, the SQL query will bewrapped in acursor, and theresult isretrieved
in parts. Otherwise, the SQL query is executed as is and the result isretrieved in whole.

The default valueis usually t r ue but this can be controlled when OpenCReportsis built.

* Whenusecur sor isenabled, the parameter f et chsi ze controls the number of rows retrieved
at once. Default value is 1024.

Using a cursor as aregular SQL query is a PostgreSQL extension. Other SQL databases only allow
it in stored procedures. But this allows a trade-off: queries that return alarge number of rows may be
processed without the risk of running out of memory, with marginally lower performance.

SQL queries added to the same PostgreSQL datasource (connection) will behave the sameway. Either
all of them are executed asis, or al of them will use a cursor.

These connection parameters can be used as XML node attributes, see PostgreSQL database
connection.

10.1.3.1.3. ODBC connection parameters
There are two methods to connect to an ODBC database.
The first method uses the ODBC specific connection string. It is the only setting, and as such, it's

mandatory. Its content is defined by the ODBC knowledge base with optional elements. See Microsoft
Open Database Connectivity? and Connection string examples >.

2 https://docs.microsoft.com/en-us/sgl/odbc/microsoft-open-database-connectivity-odbc
3 https://www.connectionstrings.com/

99

https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://www.connectionstrings.com/
https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://www.connectionstrings.com/

Low level Clanguage API reference

ocr pt _i nput _connect _paraneter conn_paranms[] = {
{ .paramnane = "connstr", .paramvalue ="..." },
{ .paramnanme = NULL }

b

The second method spells out some individual connection parameters. It requires that an ODBC data
source (DSN) is aready configured. Whether the database connectionsislocal or remote depends on
the pre-configured DSN. The dbnarne parameters is mandatory, others are optional.

ocr pt _i nput _connect _paraneter conn_parans[] = {

{ .paramnane = "dbnane", .paramvalue ="..." },

{ .paramnane = "user", .paramvalue ="..." },

{ .paramnane = "password", .paramvalue ="..." },
{ .paramname = NULL }

i

These connection parameters can be used as XML node attributes, see ODBC database connection.
10.1.3.1.4. Spreadsheet connection parameters

Thereis only one connection parameter for spreadsheet based datasources, the file name.

ocrpt i nput_connect _paraneter conn_parans[] = {
{ .param nane “filenanme", .paramvalue ="..." },
{ .param nane NULL }

1
This parameter can be used as an XML node attribute, see Spreadsheet file type.

10.1.3.2. Find a datasource

Find the data source using its name. It returns NULL if the named data source is not found.

ocr pt _dat asource *
ocr pt _dat asour ce_get (opencreport *o,
const char *source_nane);

10.1.3.3. Set the encodi ng of a datasource

Set the encoding of adatasourcein caseif it'snot already UTF-8, so dataprovided by it isautomatically
converted.

voi d

ocr pt _dat asour ce_set _encodi ng(ocr pt _dat asource *source,
const char *encoding);

10.1.3.4. Free a dat asource

Free a datasource from the opencreport structure it was added to. It's not needed to be called, all
datasources are automatically freewith ocr pt _free()

voi d
ocrpt _datasource_free(ocrpt_datasource *source);

10.1.3.5. Add a direct data based query
Add adirect (application internal) data based query to the report handler.

ocrpt _query *

100

Low level Clanguage API reference

ocr pt _query_add_dat a(ocr pt _dat asource *sour ce,
const char *nane,
const void *dat a,
int32 t rows, int32_t cols,
const int32_t *types,
int32_t types_cols);

The built-in ar r ay datasource interprets voi d *dat a as a two-dimensiona array containing
pointersto C strings, a.k.a

char *array[rows + 1][cols]

The first row of the array are the column (field) names. Thet ypes array containscol s (or fewer)
number of enum ocr pt _resul t _t ype elementsto indicate the column data types.

If thet ypes pointer is NULL, the column values are treated as st ri ng data. Thisis how RLIB
worked.

The call isonly successful if the datasource is direct data based. See Section 10.1.3.9 and Datasource
input driver details.

10.1.3.6. Add a symbolic data based query
Add a"symbolic" (discoverable by name) data based query.

ocr pt_query *

ocr pt _query_add_synbol i c_dat a(ocr pt _dat asource *source,
const char *nane,
const char *data_nane,
int32_t rows, int32_t cols,
const char *types_nane,
int32_t types_cols);

Symbols of the application can be discovered via dl syn() if the application was built with the
compiler option - r dynani c.

The call is only successful if the datasource is symbolic data based. See Section 10.1.3.10 and
Datasource input driver details.

10.1.3.7. Add afile based query

Add afile based query to the report handler.

ocr pt _query *
ocrpt_query_add fil e(ocrpt_datasource *source,
const char *nane,
const char *fil enane,
const int32_t *types,
int32_t types_cols);

The call isonly successful if the datasource is file based. See Section 10.1.3.11 and Datasource input
driver details.

Thet ypes array pointer may be NULL. For file based datasource types that don't support datatype
specifiers internally (or they are optional and omitted), this means that the column values are of the
st ri ng datatype. Thisishow RLIB worked. In this case, conversion functions like Section 4.12.4,
Section 4.10.16 and Section 4.10.10 are needed to process the values using their actual data type.

When thet ypes array pointer isnot NULL, it is used to set the data type specifiers for built-in file
based datasources, even if the file contains type specifiers.

101

Low level Clanguage API reference

The JSON file format expected by OpenCReports is defined in JSON file type.

The XML file format expected by OpenCReportsisdefined in XML file type.

10.1.3.8. Add an SQL statement based query

Add an SQL statement based query to the report handler.
ocrpt_query *
ocr pt _query_add_sql (ocr pt _dat asource *source,

const char *nane,
const char *querystr);

Thecall isonly successful if the datasourceis SQL based. See Section 10.1.3.12 and Datasource input
driver details.

10.1.3.9. Test whether a datasource is direct data based

bool
ocrpt _datasource_i s_data(ocrpt_datasource *source);

10.1.3.10. Test whether a datasource is direct data based

bool
ocrpt _datasource_i s_synbol i c_data(ocrpt_datasource *source);

10.1.3.11. Test whether a datasource is file based

bool
ocrpt _datasource_is _file(ocrpt_datasource *source);

10.1.3.12. Test whether a datasource is SQL based

bool
ocrpt _datasource_is_sqgl (ocrpt_datasource *source);

10.1.3.13. Fi nd a query

Find a query using its name.

ocrpt_query *
ocr pt _query_get (opencreport *o,
const char *nane);

10.1.3.14. Get the current data row froma query

Create (first call) or get theocr pt _query_resul t array from a query. Output parameter col s
returns the number of columnsin the result array. It must be re-run after ocrpt_navigate next() since
the previously returned pointer becomesinvalid.

ocrpt_query result *
ocrpt_query _get result(ocrpt_query *q,
int32_t *cols);

10.1.3.15. Get col umm nane

Usingtheocr pt _query_result * resultfromocrpt _query _get result(),thecolumn
names can be discovered from a query.

102

Low level Clanguage API reference

const char *
ocrpt _query_result_colum_nanme(ocrpt_query_result *qr,
int32_t col);

10.1.3.16. Get col um dat a

Usingtheocr pt _query_result * resultfromocr pt _query_get result(),getapointer
to the column datain itsinterna (hidden) representation.

ocrpt_result *
ocrpt_query result_columm_result(ocrpt_query result *qr,
int32_t col);

10.1.3.17. Add a fol |l oner query

Add af ol | ower querytothel eader query. Theleader isthe primary query and the follower will
run in parallel with it until the leader runs out of rows. In case the leader has more rows than the
follower, then for rows in the leader where there are no follower rows, the follower fields are set to
NULL.

bool
ocrpt _query_add foll ower (ocrpt_query *| eader,
ocrpt _query *follower);

10.1.3.18. Add an N. 1 foll ower query

Addan N:1f ol | ower query tothel eader query. The leader isthe primary query and rows from
the follower will be matched using the mat ch expression. If there are multiple rows in the follower
matching the leader row, then the leader row will be listed that many times. For rows in the leader
where there are no matching rows in the follower, the follower fields are set to NULL. It is similar
to LEFT OUTER JO Nin SQL databases. For creating an ocr pt _expr expression pointer, see
the next section.

bool

ocrpt_query add follower _n to 1(ocrpt_query *|eader,
ocrpt _query *foll ower,
ocrpt _expr *match);

10.1.3.19. Refresh query contents

Call the ocrpt_input::refresh() method for datasources that support it. It returnst r ue if all queries
were successfully refreshed.

bool
ocrpt _query_refresh(opencreport *o);

10.1.3.20. Free a query

Free a query and remove it from the report handler. It's optional. ocr pt _free() freesthe queries
added to theopencr epor t structure.

voi d
ocrpt_query free(ocrpt_query *q);

10.1.3.21. Start the main query

Start query (or query set) navigation. q should be the primary query of the report.

103

Low level Clanguage API reference

voi d
ocrpt _query_navi gate_start(ocrpt_query *q);

10.1.3.22. Navi gate to the next query row

Navigate the query (or query set) to the next row. Returns f al se if there was no more rows. in
which casetheocr pt _query_resul t arraysfor all queriesin the query set (returned by previous
ocrpt_query_get _result() calscontaininvaid data.

bool
ocr pt _query_navi gate_next (ocrpt_query *q);

10.1.3.23. Navi gat e use previ ous/ next row

These functions expose an implementation detail of the datatraversal in OpenCReports. Thereisa 3-
row data cachein which there is always the current row. One past row is kept so e.g. break boundaries
can be detected and there is one row read-ahead to detect the end-of-data condition early. These
functions allow to switch back and forth in the 3-row data cache, making the previous or next row the
“current” one momentarily. The query must always be the primary query of the report. Used by unit
teststhat don't useocr pt _execut e().

voi d
ocrpt _query_navi gate_use_prev_row(ocrpt_query *q);

voi d
ocr pt _query_navi gate_use_next _row(ocrpt_query *q);

10.1.3.24. APl specific data discovery function

For direct (application internal) data based data sources and queries, OpenCReports needs a way to
to find the data pointer and the supplementary type identifier array. These are language specific. The
below ones are the C specific ones. An override function is also provided to set a new discovery
function. The discovery function should return the dimensions for both the (usuall 2D array) dat a
and the 1D t ypes array. It also returns whether t ypes must be freed by the caller.

t ypedef void

(*ocrpt_query_discover_func)(const char *,
voi d **,
int32_t *,
int32_t *,
const char *,
voi d **,
int32_t *,
bool *);

voi d
ocrpt _query_set discover_func(ocrpt_query_discover_func func);

extern ocrpt_query_discover_func ocrpt_query_discover_array;

voi d

ocrpt _query_di scover _array_c(const char *arraynane,
void **array,
int32_t *rows,
int32_t *cols,
const char *typesnane,
void **types,
int32_t *types_cols,

104

Low level Clanguage API reference

bool *free_types);

Note that the C specific generic discovery function does not and cannot return the array dimensions,
sincethereisno official APl relatedtodl syn() that would return the size associated with a symbol.
It's up to the application writers to come up with a smarter (application specific) discovery function
that also returnsthe array dimensions. With such asmart discovery function, one can specify the array
and the column types array name without the related dimensions, i.e. ther ows and col s specifiers
in Array queries and File based queries.

10.1.4. Expression related functions

Expressions in OpenCReportsis explained in the Expressions chapter.
10.1.4.1. Parse an expression string

This function parses an expression string and creates an expression tree. It returns a pointer to the
ocr pt _expr structure.

If an error occurs, it returns NULL and optionally returns the error message in er r pointer if it's not
NULL.

ocr pt _expr *

ocr pt _expr _parse(opencreport *o,
const char *expr_string,
char **err);

The returned pointer must be freed with ocr pt _expr _free().

10.1.4.2. Parse an expression string and bind it to a report

This function parses an expression string, creates an expression tree and binds it to areport. It returns
apointer totheocr pt _expr structure.

If an error occurs, it returns NULL and optionally returns the error message in er r pointer if it's not
NULL.

ocrpt _expr *

ocrpt _report_expr_parse(ocrpt_report *r,
const char *expr_string,
char **err);

The returned pointer is automatically freed by ocr pt _free()

10.1.4.3. Free an expression parse tree

Freean expression parsetree. If it wasbound to the passed-inocr pt _r eport , thisassociationisalso
deleted. Alternatively, the expression doesn't need to be freed if it was bound to a report when it was
parsed, asit will be automatically freed when freeing either the report, or the global opencr epor t
structure.

voi d
ocrpt _expr_free(ocrpt_expr *e);

10.1.4.4. Get the original expression string

Get the original expression string from an expression parse tree.

const char *
ocr pt _expr_get _expr_string(ocrpt_expr *e);

105

Low level Clanguage API reference

10.1.4.5. Resolve expression references

This function resolves variable (identifier) references in the expression. Thisis needed to bind query
columns to expressions that use them.

voi d
ocr pt _expr_resol ve(ocrpt_expr *e);

10.1.4.6. Optimize an expression

This function optimizes an expression so it may needs fewer computation steps during report
execution.

voi d
ocr pt _expr_optim ze(ocrpt_expr *e);

10.1.4.7. Evaluate an expression

This function evaluates the expression. It returns the expression's ocrpt _result result
structure. The result must not be freed with ocrpt _result _free(). It will be done by
ocrpt _expr_free()

For expressions with query column references, this function must be caled after
ocr pt _query_navi gat e_next otherwisetheresult isnot valid.

ocrpt_result *
ocrpt _expr_eval (ocrpt _expr *e);

10.1.4.8. Get expression result without evaluation

This function returns the expression result if it was already evaluated. The result must not be freed
withocrpt _result _free().Itwill bedoneby ocrpt _expr_free().Used by unit tests.

ocrpt_result *
ocrpt _expr_get _result(ocrpt_expr *e);

10.1.4.9. Print an expression tree

Print an expression tree in its processed form on the standard output. Used by unit tests.

voi d
ocrpt _expr_print(ocrpt_expr *e);

10.1.4.10. Print an expression tree with subexpressions and their
results

Print an expression tree with subexpressions and their results in its processed form on the standard
output. Used by unit tests.

voi d
ocrpt_expr_result_deep_print(ocrpt_expr *e);

10.1.4.11. Count the number of expression nodes

This function returns the number of expression nodes. Used by unit tests to validate optimizazion.

int32_t
ocr pt _expr _nodes(ocrpt_expr *e);

106

Low level Clanguage API reference

10.1.4.12. Initialize expression result type

OpenCReportskeepstrack of thelast three query rowsand computesthreeresult valuesfor expressions
for internal reasons. These functions initialize the type for either the current result or all results of
the expression.

enum ocrpt _result_type {
OCRPT_RESULT_ERROR,
OCRPT_RESULT_STRI NG,
OCRPT_RESULT_NUMBER,
OCRPT_RESULT_DATETI ME

b

bool ocrpt_expr_init_result(ocrpt_expr *e,
enum ocrpt _result_type type);

void ocrpt_expr_init_results(ocrpt_expr *e,
enum ocrpt _result_type type);

10.1.4.13. Set an error string as expression result

ocrpt_result *
ocr pt _expr _make_error_result(ocrpt_expr *e,
const char *format, ...);

10.1.4.14. Set start value flag for an iterative expression

Set whether theiterative expression'sfirst valueis computed from its base expression or fromitsresult
expression.
voi d
ocrpt_expr_set _iterative_start_val ue(ocrpt_expr *e,
bool start_with_init);

10.1.4.15. Get current value of an expression in base type

Get the current value of an expression in a C base type. Used by parsing report description XML files
and unit tests.

const char *
ocrpt _expr_get_string(ocrpt_expr *e);

| ong
ocr pt _expr_get | ong(ocrpt_expr *e);

doubl e
ocr pt _expr_get _doubl e(ocr pt_expr *e);

10.1.4.16. Set current value of an expression in a base type

Used by unit tests.

voi d
ocrpt _expr_set _string(ocrpt_expr *e,
const char *s);

voi d
ocrpt _expr_set | ong(ocrpt_expr *e,
long |);

107

Low level Clanguage API reference

voi d
ocr pt _expr_set _doubl e(ocr pt _expr *e,
doubl e d);

10.1.4.17. Set nth value of an expression in a base type

Expressions use OCRPT_EXPR_RESULTS number of values. With these functions, any of them can
be set. Used by unit tests.

voi d
ocrpt _expr_set_nth_result_string(ocrpt_expr *e,
i nt which,
const char *s);
voi d
ocrpt _expr_set_nth_result_| ong(ocrpt_expr *e,
i nt which,
long I);
voi d
ocrpt _expr_set_nth_result_doubl e(ocrpt _expr *e,
i nt which,
doubl e d);

10.1.4.18. Compare the current of an expression with its previous

value

Comparethe current value of an expression with its previousvalueand returnt r ue if they are equal.
It's used to implement Report breaks.

bool
ocrpt _expr_cnp_resul ts(ocrpt_expr *e);

10.1.4.19. Set delayed flag of an expression

voi d
ocrpt _expr_set _del ayed(ocrpt _expr *e,
bool del ayed);

10.1.4.20. Set field expression reference for an expression

If e containsr . val ue, theexpression r val ue will be used to resolve this reference.

voi d
ocrpt _expr_set field expr(ocrpt_expr *e,
ocrpt _expr *rval ue);

10.1.5. Column data or expression result related
functions

Theinterna typeocr pt _r esul t holdsvalues either for query columns or expression results.

10.1.5.1. Create an expression result

The returned pointer must be freed withocrpt _result _free().

ocrpt_result *

108

Low level Clanguage API reference

ocrpt _result_new(opencreport *0);
10.1.5.2. Get expression result type

enum ocrpt_result_type
ocrpt_result_get _type(ocrpt_result *result);

10.1.5.3. Copy an expression result

Copy expression result from source to destination. Both results must have been created for the same
opencr eport structure, either explicitly with ocrpt _result _new() or implicitly with an
expression parsed for thisopencr epor t structure or areport structure owned by it.

voi d
ocrpt _result_copy(ocrpt_result *dst,
ocrpt _result *src);

10.1.5.4. Print an expression result

Used by unit tests.

voi d
ocrpt_result_print(ocrpt_result *r);

10.1.5.5. Free an expression result

voi d
ocrpt _result free(ocrpt_result *r);

10.1.5.6. Detect whether a column result is NULL

Usingtheocr pt _resul t * result fromaquery column or an expression, detect whether the column
valueisNULL.

bool
ocrpt_result_isnull (ocrpt_result *result);

10.1.5.7. Detect whether a column result is numeric

Usingtheocr pt _resul t * result fromaquery column or an expression, detect whether the column
value is numeric.

bool
ocrpt_result_isnunber(ocrpt result *result);

10.1.5.8. Get the numeric value of a column result

Usingtheocr pt _result * result from aquery column or an expression, get the numeric column
value. It returns NULL if the columniis:

e not anumeric result

* NULL

npfr_ptr
ocrpt_result_get number(ocrpt _result *result);

10.1.5.9. Detect whether a column result is string

Usingtheocr pt _resul t * resultfromaquery column or an expression, detect whether the column
valueis string.

109

Low level Clanguage API reference

bool
ocrpt_result_isstring(ocrpt_result *result);

10.1.5.10. Get the string value of a column result

Usingtheocrpt _result * result from aquery column or an expression, get the string column
value. It returns NULL if the columnis

* not astring result
* NULL

ocrpt_string *
ocrpt _result_get string(ocrpt _result *result);

10.1.5.11. Detect whether a column result is datetime

Usingtheocr pt _resul t * result fromaquery column or an expression, detect whether the column
value is datetime.

bool
ocrpt _result_isdatetinme(ocrpt _result *result);

10.1.5.12. Get the datetime value of a column result

Usingtheocr pt _result * result from aquery column or an expression, get the datetime column
value. It returns NULL if the columnis

* not adatetime result
 NULL

const struct tm*
ocrpt _result _get datetime(ocrpt _result *result);

10.1.5.13. Detect whether a datetime column result is interval

Using the ocrpt _result * result from a query column or an expression, detect whether the
datetime column valueisinterval.

bool
ocrpt _result _datetime_is_ interval (ocrpt _result *result);

10.1.5.14. Detect whether a datetime column result has valid date

Using the ocrpt _result * result from a query column or an expression, detect whether the
datetime column value has valid date.

bool
ocrpt _result datetime_is date valid(ocrpt result *result);

10.1.5.15. Detect whether a datetime column result has valid time

Using the ocrpt _result * result from a query column or an expression, detect whether the
datetime column value has valid time.

bool
ocrpt _result datetime_is time_valid(ocrpt _result *result);

110

Low level Clanguage API reference

10.1.6. Variable related functions

Variables can be created for areport using the API.

10.1.6.1. Create a basic variable

Using this function, any variable type except OCRPT_VARI ABLE_CUSTOMmay be created. For a
custom variable, see the next function.

enum ocr pt _var_type {
OCRPT_VARI ABLE_| NVALI D,
OCRPT_VAR!I ABLE_EXPRESSI ON,
OCRPT_VAR!I ABLE_COUNT,
OCRPT_VARI ABLE_COUNTALL,
OCRPT_VARI ABLE_SUM
OCRPT_VARI ABLE_AVERAGE,
OCRPT_VAR!I ABLE_AVERAGEALL,
OCRPT_VARI ABLE_LOVEST,
OCRPT_VARI ABLE_HI GHEST,
OCRPT_VARI ABLE_CUSTOM

}s

typedef enum ocrpt_var_type ocrpt_var_type;

ocrpt_var *
ocrpt _variabl e _new(ocrpt_report *r,
ocrpt _var _type type,
const char *nane,
const char *expr,
const char *ignoreexpr,
const char *reset_on_break nane,
bool precal cul ate);

10.1.6.2. Create a custom variable

Create a custom variable of the specified type with the specified subexpressions.

ocrpt_var *

ocrpt_variabl e_new full (ocrpt_report *r,
enum ocrpt_result_type type,
const char *nane,
const char *baseexpr,
const char *ignoreexpr,
const char *internedexpr,
const char *interned2expr,
const char *resultexpr,
const char *reset_on_break_nane,
bool precal cul ate);

10.1.6.3. Get the variable type
Get the type of the variable.

ocrpt _var_type
ocrpt _variabl e_get _type(ocrpt_var *v);

10.1.6.4. Get subexpressions of a variable

Get subexpressions of a previously created basic or custom variable.

111

Low level Clanguage API reference

ocr pt _expr *
ocr pt _vari abl e_baseexpr (ocrpt_var *v);

ocr pt _expr *
ocr pt _vari abl e_i gnor eexpr (ocr pt _var *v);

ocr pt _expr *
ocr pt _vari abl e_i nt er medexpr (ocrpt _var *v);

ocr pt _expr *
ocrpt _vari abl e_i nt er med2expr (ocr pt _var *v);

ocr pt _expr *
ocrpt _vari abl e_resul t expr(ocrpt_var *v);

10.1.6.5. Get precalculate flag for a variable

bool
ocrpt _vari abl e_get _precal cul ate(ocrpt_var *var);

10.1.6.6. Resolve a variable
Resolve subexpressions of avariable so it can be evaluated correctly.

voi d
ocrpt_vari abl e_resol ve(ocrpt _var *v);

10.1.6.7. Evaluate a variable
After evaluation, the result isin the expression returned by ocr pt _vari abl e_resul t expr ().

voi d
ocrpt _vari abl e_eval uat e(ocrpt _var *v);

10.1.6.8. Iterate over variables of a report
Iterate over variables of areport. Thefirst call needs the iterator list pointer to be set to NULL.
ocrpt_var *

ocrpt _vari abl e_get _next (ocrpt_report *r,
ocrpt_list **list);

10.1.7. Break related functions

10.1.7.1. Create a break
Create abreak. No need to freeit, ocr pt _f r ee() doesit.
ocrpt_break *

ocrpt _break _new(ocrpt_report *r,
const char *nane);

10.1.7.2. Set attribute flag expressions for a break

Set break attributes from expression strings for header newpage and suppr essbl ank. Thereis
a 3rd flag accepted in the report XML DTD called newpage which is not represented (ignored) in
the API, becauseit's also ignored in RLIB and is only handled for RLIB compatibility.

112

Low level Clanguage API reference

voi d
ocr pt _break_set _header newpage(ocr pt _break *br,
const char *header newpage);

voi d
ocr pt _break_set _suppressbl ank(ocrpt_break *br,

const char *suppressbl ank);
header newpage="yes" instructs the layout to render <Br eakHeader > on anew page.

suppr esshl ank="yes" instructs the layout to suppress <Br eakHeader > if any of the
<Br eakFi el d>sare NULL value or an empty string, if the break field is of the string type.

10.1.7.3. Get break using its name
Get the pointer to the break using its name.
ocrpt_break *

ocrpt _break_get (ocrpt_report *r,
const char *nane);

10.1.7.4. Get the name of a break

Get the name of the break using its structure pointer.

const char *
ocrpt _break _get name(ocrpt_break *br);

10.1.7.5. Add a watched expression to a break

bool
ocr pt _break_add_breakfi el d(ocrpt_break *br,
ocr pt _expr *bf);

10.1.7.6. Iterate over breaks of a report
Iterate over breaks of areport. The first call needs theiterator list pointer to be set to NULL.
ocrpt_break *
ocrpt _break _get next(ocrpt_report *r,
ocrpt _list **list);

10.1.7.7. Resolve and optimize break fields

voi d
ocrpt _break_resol ve_fields(ocrpt_break *br);

10.1.7.8. Check whether the break triggers

bool
ocrpt _break_check_fiel ds(ocrpt_break *br);

10.1.7.9. Check whether break field values are blank

The second parameter eval uat e alows skipping evaluating the breakfield vaues. (This is
an optimization in case it's executed after ocr pt _break check fi el ds() which aready
evaluated the breakfields.)

bool

113

Low level Clanguage API reference

ocr pt _break_check_bl ank(ocr pt _break *br,
bool eval uate);

10.1.7.10. Reset variables for the break

voi d
ocrpt _break _reset_vars(ocrpt_break *br);

10.1.8. Function related functions
10.1.8.1. Add a user defined function

Add a user defined function by specifying the name, the function pointer that contains the
implementation, the number of operands (0 or greater for fixed number or operands, -1 is varying
number of operands) and the function mathematical properties that help optimizing it.

bool

ocr pt _function_add(opencreport *o,
const char *fnane,
ocrpt_function_call func,
void *user data,
int32_t n_ops,
bool comutati ve,
bool associ ati ve,
bool |eft _associative,
bool dont_optimni ze);

Adding a user defined function with a name of a pre-existing function will overrideit.
OpenCReports functions are called with the parameters as declared below.

#defi ne OCRPT_FUNCTI ON_PARAMS \
ocrpt_expr *e, void *user_data

OpenCReports functions may be declared with these convenience symbols below.

#defi ne OCRPT_FUNCTI ON(nane) \
voi d name(OCRPT_FUNCTI ON_PARAMS)

#defi ne OCRPT_STATI C_FUNCTI ON(nane) \
static voi d nane(OCRPT_FUNCTI ON_PARANS)

The above function (ocr pt _functi on_add()) is caled with a function pointer which has this
type:

t ypedef void
(*ocrpt_function_call) (OCRPT_FUNCTI ON_PARAMNS) ;

10.1.8.2. Find a named function
const ocrpt_function *

ocrpt _function_get (opencreport *o,
const char *fnane);

10.1.8.3. Get number of operands for an expression (function)

In an expression tree, functions are represented as subexpressions with operands. This call may be
used by OpenCReports functions to inspect whether the number of operandsisin the expected range.

114

Low level Clanguage API reference

int32 t
ocr pt _expr _get_num oper ands(ocrpt _expr *e);

10.1.8.4. Get current value of a function operand
This function is used by OpenCReports functionsinternally to compute the result from its operands.
ocrpt_result *

ocr pt _expr_operand_get result(ocrpt_expr *e,
int32_t opnum;

10.1.9. Report part and report related functions

10.1.9.1. Create a report part

ocrpt_part *
ocr pt _part_new opencreport *o0);

10.1.9.2. Create arow in areport part

ocrpt_part_row *
ocrpt _part_new row(ocrpt_part *p);

10.1.9.3. Create a column in report part row

ocrpt _part_colum *
ocrpt _part_row_new _col umm(ocrpt_part_row *pr);

10.1.9.4. Create a new report in a part column

ocrpt_report *
ocrpt _part_col unm_new report (ocrpt_part_colum *pd);

10.1.9.5. Report part related iterators

Iterators for getting report parts, part rows, columns in rows and reports in columns. Every iterator
function must be called the first time with the list pointer set to NULL.

ocrpt_part *
ocr pt _part_get _next (opencreport *o,
ocrpt_list **list);

ocrpt_part_row *
ocr pt_part_row_get_next(ocrpt_part *p,
ocrpt_list **list);

ocrpt_part_colum *
ocrpt _part_col unn_get next(ocrpt_part_row *pr,
ocrpt_list **list);

ocrpt_report *
ocrpt_report_get _next(ocrpt_part_col um *pd,
ocrpt_list **list);

10.1.9.6. Set the main query for areport

Set themain query for areport either by the query structure pointer, or from expression. The expression
must resolve to a string value, with fallback to aplain string.

115

Low level Clanguage API reference

voi d
ocrpt _report_set _main_query(ocrpt_report *r,
const ocrpt_query *query);

voi d
ocrpt_report_set_main_query_from expr(ocrpt_report *r,
const char *expr_string);

See Report query name. Unlike with the XML description, where the first globally declared query is
used for the report if its main query is not set, the default viathe low level API is unset.

10.1.9.7. Get the current row number of the main query
The row number starts from 1.

| ong
ocrpt _report_get _query_rownun(ocrpt_report *r);

10.1.9.8. Resolve all report variables

voi d
ocrpt_report_resol ve_vari abl es(ocrpt_report *r);

10.1.9.9. Evaluate all report variables

voi d
ocrpt _report_eval uate_vari abl es(ocrpt_report *r);

10.1.9.10. Resolve all report breaks

voi d
ocrpt _report_resolve_breaks(ocrpt_report *r);

10.1.9.11. Resolve all report expressions

voi d
ocrpt _report_resol ve_expressions(ocrpt_report *r);

10.1.9.12. Evaluate all report expressions

voi d
ocrpt _report_eval uate_expressi ons(ocrpt_report *r);

10.1.10. Layout related functions
10.1.10.1. Global layout options

10.1.10.1.1. Set or get "size unit" option

See Size unit attribute. The expression string must evaluate to a string value, where poi nt s will set
the layout rendering to use points for size units. Any other value will make the layout rendering use
the convoluted RLIB compatible size units, mostly based on font sizes.

ocr pt _expr *
ocrpt_set_size_ unit(opencreport *o,
const char *expr_string);

The expression also has a getter function, so itsresult (value) can be queried. Which may be useful, in
caseit's set in the report XML description and callbacks and the report processing needs to inspect it.

116

Low level Clanguage API reference

ocr pt _expr *
ocrpt _get_size_unit(opencreport *o);

10.1.10.1.2. Set or get "no query show NoData" option
See No query show NoData attribute. The expression string should evaluate to a boolean value.
ocr pt _expr *
ocrpt _set _noquery_show nodat a(opencreport *o,

const char *expr_string);

ocr pt _expr *
ocr pt _get _noquery_show nodat a(opencreport *0);

10.1.10.1.3. Set or get "report height after last” option
See Report height after last attribute. The expression string should evaluate to a boolean value.
ocr pt _expr *
ocrpt_set_report_hei ght _after_| ast (opencreport *o,

const char *expr_string);

ocr pt _expr *
ocrpt _get_report_hei ght _after_| ast (opencreport *0);

10.1.10.1.4. Set "follower match single" option
See Follower match single attribute. The expression string should evaluate to a boolean value.
ocr pt _expr *
ocrpt_set _foll ower _match_si ngl e(opencreport *o,

const char *expr_string);

ocr pt _expr *
ocrpt _get foll ower_match_singl e(opencreport *o);

10.1.10.1.5. Set or get "follower match single" option directly

See above and Follower match single attribute. The difference is that the modified behaviour is set
directly and immediately. Used by unit tests.

voi d
ocrpt_set _foll ower_match_single_direct(opencreport *o,
bool val ue);

bool
ocrpt_get foll ower_match_singl e _direct(opencreport *o);

10.1.10.2. Report part options

10.1.10.2.1. Set or get part iterations
See Part iterations attribute. The expression string must evaluate to a numeric value.
ocr pt _expr *
ocrpt _part_set iterations(ocrpt_part *p,

const char *expr_string);

ocr pt _expr *

117

Low level Clanguage API reference

ocrpt_part_get_iterations(ocrpt_part *p);
10.1.10.2.2. Set or get part font name

See Part font name.

ocr pt _expr *

ocrpt_part_set font_nane(ocrpt_part *p,
const char *expr_string);

ocr pt _expr *
ocrpt _part_get font_nane(ocrpt_part *p);

10.1.10.2.3. Set or get part font size
See Part font size.
ocr pt _expr *

ocrpt_part_set_font_size(ocrpt_part *p,
const char *expr_string);

ocr pt _expr *
ocrpt _part_get_font_size(ocrpt_part *p);

10.1.10.2.4. Set or get part paper type
See Paper type.
ocr pt _expr *

ocrpt _part_set _paper_type(ocrpt_part *p,
const char *expr_string);

ocr pt _expr *
ocrpt _part_get _paper_type(ocrpt_part *p);

10.1.10.2.5. Set or get part paper's orientation

See Part page orientation. The expression string must evaluate to a string val ue, with possible options
of portrait andl andscape. By default, the part usespor t r ai t orientation.

ocrpt _expr *

ocrpt_part_set_orientation(ocrpt_part *p,
const char *expr_string);

ocrpt _expr *
ocrpt_part_get_orientation(ocrpt_part *p);

10.1.10.2.6. Set or get part margins
See Margin settings. The margin values must be passed in via strings as they can be expressions.
ocr pt _expr *

ocrpt _part_set _top_margi n(ocrpt_part *p,
const char *expr_string);

ocr pt _expr *
ocrpt_part_get _top_margi n(ocrpt_part *p);

ocr pt _expr *
ocrpt_part_set bottom margi n(ocrpt_part *p,

118

Low level Clanguage API reference

const char *expr_string);

ocr pt _expr *
ocrpt _part_get_bottom margi n(ocrpt_part *p);

ocr pt _expr *

ocrpt_part_set_left_margi n(ocrpt_part *p,
const char *expr_string);

ocr pt _expr *
ocrpt_part_get_left_margi n(ocrpt_part *p);

ocr pt _expr *

ocrpt _part_set_right_margin(ocrpt_part *p,
const char *expr_string);

ocr pt _expr *
ocrpt _part_get_right_margin(ocrpt_part *p);

10.1.10.2.7. Set or get part suppression
See Part suppress attribute. The expression string must evaluate to a numeric (boolean) value.
ocr pt _expr *

ocrpt _part_set_suppress(ocrpt_part *p,
const char *expr_string);

ocr pt _expr *
ocrpt _part_get_suppress(ocrpt_part *p);

10.1.10.2.8. Set or get part's page header suppressed on the first page

See Suppress page header on thefirst page. The expression string must eval uate to anumeric (boolean)
value.

ocr pt _expr *
ocrpt _part_set_suppress_pageheader firstpage(ocrpt_part *p,
const char
*expr_string);

ocr pt _expr *
ocrpt _part_get _suppress_pageheader firstpage(ocrpt_part *p);

10.1.10.3. Part row options

10.1.10.3.1. Set or get part row suppression
See Part row suppress attribute. The expression string must evaluate to a numeric (boolean) value.
ocrpt _expr *
ocrpt _part_row set_suppress(ocrpt_part_row *pr,

const char *expr_string);

ocrpt _expr *
ocr pt_part_row_get _suppress(ocrpt_part_row *pr);

10.1.10.3.2. Set or get part row new page

See Part row new page attribute. The expression string must evaluate to a numeric (boolean) value.

119

Low level Clanguage API reference

ocr pt _expr *
ocr pt _part_row_set_newpage(ocrpt_part_row *pr,
const char *expr_string);

ocr pt _expr *
ocr pt _part_row_get _newpage(ocrpt_part_row *pr);

10.1.10.3.3. Set or get part row layout mode

See Part row layout attribute. The expression string must evaluate to a string value, with possible
optionsf | owand f i xed. This setting isignored, it's only accepted for RLIB compatibility.

ocr pt _expr *

ocrpt_part_row set_| ayout (ocrpt_part_row *pr,
const char *expr_string);

ocr pt _expr *
ocrpt_part_row_get | ayout (ocrpt_part_row *pr);

10.1.10.4. Part column options

10.1.10.4.1. Set or get part column suppression
See Part column suppress attribute. The expression must evaluate to a numeric (boolean) value.
ocr pt _expr *

ocr pt _part_col umm_set _suppress(ocrpt_part_col um *pd,
const char *expr_string);

ocr pt _expr *
ocr pt _part_col um_get _suppress(ocrpt_part_col um *pd);

10.1.10.4.2. Set or get part column width
See Part column width attribute. The expression must evaluate to a numeric value.
ocr pt _expr *

ocrpt_part_columm_set _wi dth(ocrpt_part_col um *pd,
const char *expr_string);

ocr pt _expr *
ocrpt_part_colunnm_get width(ocrpt_part_col um *pd);

10.1.10.4.3. Set or get part column height
See Part column height attribute. The expression must evaluate to a numeric value.
ocrpt _expr *
ocrpt _part_col unm_set _hei ght (ocrpt _part_col um *pd,

const char *expr_string);

ocrpt _expr *
ocrpt _part_col unm_get hei ght (ocrpt _part_col um *pd);

10.1.10.4.4. Set or get part column border width
See Part column border width. The expression must evaluate to a numeric value.

ocr pt _expr *

120

Low level Clanguage API reference

ocrpt _part_col umm_set border_w dt h(ocrpt_part_col utm *pd,
const char *expr_string);

ocr pt _expr *
ocr pt _part_col umm_get border_w dt h(ocrpt_part_col utm *pd);

10.1.10.4.5. Set or get part column border color

See Part column border color. The expression must evaluate to a string value with avalid color name
or specification.

ocr pt _expr *

ocrpt _part_columm_set border _col or(ocrpt_part_col um *pd,
const char *expr_string);

ocr pt _expr *
ocrpt _part_colunm_get border _col or (ocrpt_part_col umm *pd);

10.1.10.4.6. Set or get part column's number of detail columns
See Detail columns. The expression must evaluate to a numeric value.
ocr pt _expr *

ocrpt _part_columm_set _detail _col ums(ocrpt_part_col um *pd,
const char *expr_string);

ocr pt _expr *
ocrpt _part_columm_get detail _columms(ocrpt_part_col um *pd);

10.1.10.4.7. Set or get part column's detail column padding
See Column padding. The expression must evaluate to a numeric value.
ocr pt _expr *
ocrpt _part_colunmm_set col umm_paddi ng(ocrpt _part_col um *pd,

const char *expr_string);

ocr pt _expr *
ocrpt _part_columm_get col unm_paddi ng(ocrpt_part_col umm *pd);

10.1.10.5. Report options

10.1.10.5.1. Set or get report suppression
See Report suppress attribute. The expression must evaluate to a numeric (boolean) value.
ocrpt _expr *
ocrpt _report_set _suppress(ocrpt_report *r,

const char *expr_string);

ocrpt _expr *
ocrpt _report_get _suppress(ocrpt_report *r);

10.1.10.5.2. Set or get report iterations
See Report iterations attribute. The expression must evaluate to a numeric value.

ocr pt _expr *
ocrpt _report_set iterations(ocrpt_report *r,

121

Low level Clanguage API reference

const char *expr_string);

ocr pt _expr *
ocrpt_report_get _iterations(ocrpt_report *r);

10.1.10.5.3. Set or get report font name

See Report font name. The expression must evaluate to a string value, with fallback to plain string: in
case of aparsing error, the value string istaken as is.

ocr pt _expr *

ocrpt _report_set_font_name(ocrpt_report *r,
const char *expr_string);

ocr pt _expr *
ocrpt_report_get _font_name(ocrpt_report *r);

10.1.10.5.4. Set or get report font size
See Report font size. The expression must evaluate to a numeric value.
ocr pt _expr *

ocrpt_report_set _font_size(ocrpt_report *r,
const char *expr_string);

ocr pt _expr *
ocrpt_report_get _font_size(ocrpt_report *r);

10.1.10.5.5. Set or get report height
See Report height. The expression must evaluate to a numeric value.
ocr pt _expr *

ocrpt _report_set hei ght (ocrpt_report *r,
const char *expr_string);

ocr pt _expr *
ocrpt_report_get hei ght(ocrpt_report *r);

10.1.10.5.6. Set or get report's field header priority

See Report field header priority attribute. The expression must evaluate to a string value with the
options of hi gh and | ow. Default is| ow.

ocr pt _expr *
ocrpt _report_set fieldheader priority(ocrpt_report *r,
const char *expr_string);

ocr pt _expr *
ocrpt _report_get fieldheader priority(ocrpt_report *r);

10.1.10.6. Get part layout sections

Get the part's <Qut put > sections for <PageHeader > or <PageFoot er >.

ocr pt _out put *
ocrpt _layout part_page header (ocrpt_part *p);

ocr pt _out put *

122

Low level Clanguage API reference

ocrpt | ayout _part_page footer(ocrpt_part *p);
10.1.10.7. Set report for part layout sections

Set the report pointer for the part's <Qut put > sections for <PageHeader > or <PageFoot er >.

voi d
ocrpt | ayout _part_page_header _set _report(ocrpt_part *p,
ocrpt_report *r);

voi d
ocrpt _layout _part_page footer_set_report(ocrpt_part *p,
ocrpt_report *r);

10.1.10.8. Get report layout sections

Get the report's <Qut put > sections for <NoDat a>, <Repor t Header >, <Report Foot er >,
<Fi el dHeader s> or <Fi el dDet ai | s>.

ocr pt _out put *
ocrpt _layout _report_nodata(ocrpt_report *r);

ocr pt _out put *
ocrpt _layout _report_header (ocrpt_report *r);

ocr pt _out put *
ocrpt_| ayout _report_footer(ocrpt_report *r);

ocr pt _out put *
ocrpt_| ayout _report_field_header(ocrpt_report *r);

ocr pt _out put *
ocrpt_l ayout _report_field_detail s(ocrpt_report *r);

10.1.10.8.1. Miscellaneous report layout and line element functions

Itispossibleto load areport XML descriptor and maodify the layout contents defined by it using code.

Thefirst iterator function loopsthrough toplevel output elements: line, horizontal line, image, barcode.
An abstract opague pointer type is returned by the iterator. Further boolean functions determine the
actual element type. Thevoi d **i t er pointer must pointtoaNULL pointer initially and theiterator
function returns NULL when there are no more elements in the output section. Depending on the
boolean function results, the abstract opaque pointer type can be case to the actua output element
type:ocrpt _line *,ocrpt_hline *,ocrpt_image * orocrpt_barcode *.

struct ocrpt_out put_el ement;
typedef struct ocrpt_output_ el ement ocrpt_output_el ement;

ocr pt _out put _el enent *
ocr pt _out put _el enment _get _next (ocrpt_out put *output, ocrpt_|ist
**jiter);

bool
ocrpt_output_elenent _is_line(ocrpt_output_element *elen);

bool
ocrpt_output_elenent _is_hline(ocrpt_output_elenent *elem;

123

Low level Clanguage API reference

bool
ocrpt _out put _el ement _i s_i nage(ocr pt_out put _el enent *elem;

bool

ocr pt _out put _el ement _i s_bar code(ocr pt _out put _el enent *el em;

The second iterator function loops through line elements: text, image and barcode. An abstract opaque
pointer type is returned by the iterator. Further boolean functions determine the actual element type.
Thevoid **iter pointer must point to a NULL pointer initially and the iterator function returns
NULL when there are no more elements in the output section. Depending on the boolean function
results, the abstract opaque pointer type can be cast to the actual output element type: ocr pt _t ext

* ocrpt_inmage * orocrpt_barcode *.

struct ocrpt_line_el ement;
typedef struct ocrpt _line_elenment ocrpt_l|ine_el enent;

ocrpt _line_elenent *
ocrpt _line_elenment_get next(ocrpt_line *line, void **iter);

bool
ocrpt _line_element is text(ocrpt _|ine_elenent *elem;

bool
ocrpt _line_elenent is imge(ocrpt _line_element *elen);

bool
ocrpt _line_elenent _is barcode(ocrpt _|line element *elem;

10.1.10.9. Get break layout sections

Get the break's <Qut put > sections for <Br eakHeader > or <Br eak Foot er >.

ocr pt _out put *
ocrpt _break _get header (ocrpt_break *br);

ocr pt _out put *
ocrpt _break _get footer(ocrpt_break *br);

10.1.10.10. Set output section global settings

Note that part (page) header and footer, and report header and footer sections must be constant
expressions. Other sections may depend on data derived from query columns. See Expressions.

10.1.10.10.1. Set or get output section suppression
Set suppression from an expression string.
ocr pt _expr *
ocr pt _out put _set _suppr ess(ocrpt _out put *out put,

const char *expr_string);

ocr pt _expr *
ocr pt _out put _get _suppr ess(ocr pt _out put *out put);

10.1.10.11. Add a text line to an output section

ocrpt _line *
ocrpt _out put_add _|ine(ocrpt_output *output);

124

Low level Clanguage API reference

10.1.10.12. Text line settings

Note that settings in the part (page) header and footer sections must be constant expressions. Settings
in other sections may depend on data derived from query columns. See Expressions.

10.1.10.12.1. Set or get line font name
Set the text line's font name from an expression string.

ocr pt _expr *
ocrpt _line_set _font_nane(ocrpt_line *line,
const char *expr_string);

ocr pt _expr *
ocrpt _line_get font_nane(ocrpt_line *line);

10.1.10.12.2. Set line font size

Set the text line's font size from an expression string.

ocr pt _expr *
ocrpt_line_set_font_size(ocrpt_line *line,
const char *expr_string);

ocr pt _expr *
ocrpt_line_get_font_size(ocrpt_line *line);

10.1.10.12.3. Set or get line bold value

Set the text line's bold value from an expression string.

ocr pt _expr *
ocrpt _line_set bold(ocrpt_Iine *line,
const char *expr_string);

ocr pt _expr *
ocrpt _line_get bold(ocrpt _line *line);

10.1.10.12.4. Set or get line italic value
Set the text line'sitalic value from an expression string.
ocrpt _expr *
ocrpt _line_set_italic(ocrpt_line *line,

const char *expr_string);

ocrpt _expr *
ocrpt _line_get italic(ocrpt_line *line);

10.1.10.12.5. Set or get line suppression
Set the text line's suppression value from an expression string.
ocr pt _expr *
ocrpt _line_set suppress(ocrpt_line *line,

const char *expr_string);

ocr pt _expr *
ocrpt _line_get suppress(ocrpt _line *line);

125

Low level Clanguage API reference

10.1.10.12.6. Set or get line text color
Set the text line's text color from an expression string.
ocr pt _expr *

ocrpt _line_set _color(ocrpt_line *line,
const char *expr_string);

ocr pt _expr *
ocrpt _line_get _color(ocrpt_line *line);

10.1.10.12.7. Set or get line background color
Set or get the text line's background color from an expression string.
ocr pt _expr *

ocrpt _line_set_bgcol or(ocrpt_line *line,
const char *expr_string);

ocr pt _expr *
ocrpt _line_get_bgcol or(ocrpt_line *line);

10.1.10.13. Add a text element to a text line

ocrpt_text *
ocrpt_line_add_text(ocrpt_line *line);

10.1.10.14. Text element settings

Note that settings in the part (page) header and footer sections must be constant expressions. Settings
in other sections may depend on data derived from query columns. See Expressions.

10.1.10.14.1. Set text element literal value
Set the text element’s literal value from a string.
ocrpt _expr *

ocrpt _text_set_value_string(ocrpt_text *text,
const char *string);

10.1.10.14.2. Set or get text element value
Set the text element's value from an expression string.
ocr pt _expr *
ocrpt _text _set val ue_expr(ocrpt_text *text,
const char *expr_string);

The getter function for the text element’s value also works when the text value is set as aliteral.

ocrpt _expr *
ocr pt _text_get_val ue(ocrpt_text *text);

10.1.10.14.3. Set or get text element value's delayed property
Set the text element value's delayed property from an expression string.

ocr pt _expr *
ocrpt _text _set val ue_del ayed(ocrpt_text *text,

126

Low level Clanguage API reference

const char *expr_string);
ocr pt _expr *
ocrpt _text_get_val ue_del ayed(ocrpt _text *text);
10.1.10.14.4. Set or get text element format string
Set the text element’s format string from an expression string.
ocr pt _expr *
ocrpt _text _set format(ocrpt_text *text,

const char *expr_string);

ocr pt _expr *
ocrpt _text _get format(ocrpt_text *text);

10.1.10.14.5. Set or get text element translation
Set the text element's translation from an expression string.
ocr pt _expr *
ocrpt _text _set translate(ocrpt_text *text,

const char *expr_string);

ocr pt _expr *
ocrpt _text _get translate(ocrpt_text *text);

OpenCReports will attempt to translate both the format string and the text element’s value.

10.1.10.14.6. Set or get text element field width
Set the text element’s field width from an expression string.
ocr pt _expr *
ocrpt_text_set_w dth(ocrpt_text *text,

const char *expr_string);

ocr pt _expr *
ocrpt _text_get _w dth(ocrpt_text *text);

10.1.10.14.7. Set or get text element alignment
Set the text element’s alignment from a string or an expression string.
ocr pt _expr *
ocrpt _text_set _alignnent(ocrpt_text *text,

const char *expr_string);

ocr pt _expr *
ocrpt _text _get alignnent(ocrpt_text *text);

Stringvalues!l eft ,ri ght,cent er andj usti f i ed areaccepted either asis, or asan expression.

10.1.10.14.8. Set or get text element text color
Set the text element’s text color from an expression string.

ocr pt _expr *

127

Low level Clanguage API reference

ocrpt _text_set_col or(ocrpt_text *text,
const char *expr_string);

ocr pt _expr *
ocrpt _text_get_col or(ocrpt_text *text);

10.1.10.14.9. Set or get text element background color
Set the text element's background color from an expression string.
ocr pt _expr *
ocrpt _text _set bgcol or(ocrpt_text *text,

const char *expr_string);

ocr pt _expr *
ocrpt _text _get bgcol or(ocrpt_text *text);

10.1.10.14.10. Set or get text element font name
Set the text element’s font name from an expression string.
ocr pt _expr *
ocrpt _text_set_font_nane(ocrpt_text *text,

const char *expr_string);

ocr pt _expr *
ocrpt _text_get_ font_nane(ocrpt_text *text);

10.1.10.14.11. Set or get text element font size
Set the text element’s font size from an expression string.
ocr pt _expr *
ocrpt_text_set font_size(ocrpt_text *text,

const char *expr_string);

ocr pt _expr *
ocrpt _text _get font_size(ocrpt_text *text);

10.1.10.14.12. Set or get text element bold value
Set the text element's bold value from an expression string.
ocrpt _expr *
ocrpt _text_set bol d(ocrpt_text *text,

const char *expr_string);

ocrpt _expr *
ocr pt _text_get_bol d(ocrpt_text *text);

10.1.10.14.13. Set or get text element italic value
Set the text element’s italic value from an expression string.
ocr pt _expr *
ocrpt_text _set italic(ocrpt_text *text,

const char *expr_string);

ocr pt _expr *

128

Low level Clanguage API reference

ocrpt_text _get_italic(ocrpt_text *text);
10.1.10.14.14. Set or get text element link URL
Set the text element's link URL from an expression string.

ocr pt _expr *
ocrpt _text_set link(ocrpt_text *text,
const char *expr_string);

ocr pt _expr *
ocrpt _text _get link(ocrpt_text *text);

10.1.10.14.15. Set or get text element multiline property

Set the text element's multiline property from an expression string. The expression must evaluate to
anumeric (boolean) value.

ocr pt _expr *
ocrpt _text_set_neno(ocrpt_text *text,
const char *expr_string);

ocr pt _expr *
ocrpt _text_get_neno(ocrpt_text *text);

10.1.10.14.16. Set or get text element "hyphenate" property

Set the text element's "hyphenate" property from an expression string. The expression must evaluate
to anumeric (boolean) value. This setting isonly used for multilinefields. When settof al se, words
at the end of the lines in the multiline text field would break over to the next line as awhole. When
settot r ue, theword will be hyphenated. Default ist r ue. When character wrapping isin used (see
below), this setting in not used.

ocr pt _expr *
ocrpt _text_set nmeno_hyphenat e(ocrpt _text *text,
const char *expr_string);

ocr pt _expr *
ocrpt _text _get nmeno_hyphenate(ocrpt _text *text);

10.1.10.14.17. Set or get text element "wrap at characters" property

Set the text element's "wrap at characters' property from an expression string. The expression must
evaluate to a numeric (boolean) value. This setting is only used for multiline fields. When unset or set
tof al se, multiline text fields wrap at word boundaries.

ocr pt _expr *
ocrpt _text_set_nmeno_wrap_chars(ocrpt_text *text,
const char *expr_string);

ocr pt _expr *
ocrpt _text_get_nmeno_wrap_chars(ocrpt_text *text);

10.1.10.14.18. Set or get text element maximum lines

Set thetext element's maximum lines property from an expression string. The expression must evaluate
to a numeric value. This setting is only used for multiline fields. When unset or set to 0, the whole
content of the multiline field is rendered. Otherwise, not more than the maximum lines are rendered
from the multiline field value. The used font size, the field's width and word/character wrapping
influence the number of linesthe field valueis rendered into.

129

Low level Clanguage API reference

ocr pt _expr *
ocrpt _text_set_meno_max_lines(ocrpt_text *text,
const char *expr_string);

ocr pt _expr *
ocrpt _text_get_meno_max_lines(ocrpt_text *text);

10.1.10.15. Add a horizontal line to an output section

ocrpt_hline *
ocr pt _out put _add_hl i ne(ocrpt _out put *out put);

10.1.10.16. Horizontal line settings

Note that settingsin the part (page) header and footer sections must be constant expressions. Settings
in other sections may depend on data derived from query columns. See Expressions.

10.1.10.16.1. Set or get horizontal line size (width)
Set the horizontal lin€'s size (width) from an expression string.
ocr pt _expr *

ocrpt _hline_set_size(ocrpt_hline *hline,
const char *expr_string);

ocr pt _expr *
ocrpt _hline_get _size(ocrpt_hline *hline);

10.1.10.16.2. Set or get horizontal line alignment

Set the horizontal line's alignment from an expression string. Possibly valuesare |l ef t , ri ght and
cent er. Defaultis| ef t alignment. The alignment is only applied if the line length is shorter than
the designated page or column width without the margins.

ocr pt _expr *

ocrpt _hline_set_alignment(ocrpt_hline *hline,
const char *expr_string);

ocr pt _expr *
ocrpt _hline_get_alignment(ocrpt_hline *hline);

10.1.10.16.3. Set or get horizontal line indentation

Set the horizontal line's indentation value from an expression string. The indentation isused if | ef t
alignment is set.

ocr pt _expr *

ocrpt_hline_set _indentation(ocrpt_hline *hline,
const char *expr_string);

ocr pt _expr *
ocrpt_hline_get_indentation(ocrpt_hline *hline);

10.1.10.16.4. Set or get horizontal line length

Set the horizontal line's length from an expression string.

ocr pt _expr *
ocrpt_hline_set length(ocrpt_hline *hline,

130

Low level Clanguage API reference

const char *expr_string);

ocr pt _expr *
ocrpt _hline_get_length(ocrpt_hline *hline);

10.1.10.16.5. Set or get horizontal line font size

Set the horizontal line's font size from an expression string. It's used in indentation and length
calculationsif Size unit attributeissettor | i b.

ocr pt _expr *
ocrpt _hline_set font_size(ocrpt_hline *hline,
const char *expr_string);

ocr pt _expr *
ocrpt_hline_get font_size(ocrpt_hline *hline);

10.1.10.16.6. Set or get horizontal line suppression
Set the horizontal lin€'s suppression from an expression string.
ocr pt _expr *
ocrpt _hline_set_suppress(ocrpt_hline *hline,

const char *expr_string);

ocr pt _expr *
ocrpt _hline_get _suppress(ocrpt_hline *hline);

10.1.10.16.7. Set or get horizontal line color
Set the horizontal line's color from an expression string.
ocr pt _expr *
ocrpt _hline_set_col or(ocrpt_hline *hline,

const char *expr_string);

ocr pt _expr *
ocrpt _hline_get_col or(ocrpt_hline *hline);

10.1.10.17. Add a barcode to an output section

ocr pt _bar code *
ocr pt _out put _add_bar code(ocrpt _out put *out put);

10.1.10.18. Add a barcode to a text line

ocr pt _barcode *
ocrpt _|ine_add_barcode(ocrpt_line *line);

10.1.10.19. Barcode settings

10.1.10.19.1. Set or get barcode value

Set the barcode's value from an expression string. The expression must evaluate to a string, whose
value is the string to be encoded as a barcode.

ocrpt _expr *
ocr pt _barcode_set _val ue(ocrpt _barcode *bc,

131

Low level Clanguage API reference

const char *expr_string);

ocr pt _expr *
ocr pt _barcode_get _val ue(ocr pt _barcode *bc);

10.1.10.19.2. Set or get barcode value delayed

Set the barcode's value delayed from an expression string. The expression must eval uate to a boolean
value.

ocr pt _expr *
ocr pt _barcode_set _val ue_del ayed(ocr pt _barcode *bc,
const char *expr_string);

ocr pt _expr *
ocr pt _barcode_get val ue_del ayed(ocrpt _barcode *bc);

10.1.10.19.3. Set or get barcode suppression

Set the barcode's suppression value from an expression string. The expression must evaluate to a
boolean value.

ocr pt _expr *
ocr pt _barcode_set _suppress(ocrpt_barcode *hc,
const char *expr_string);

ocr pt _expr *
ocr pt _barcode_get suppress(ocrpt_barcode *bhc);

Default valueisf al se, i.e. no suppression.

10.1.10.19.4. Set or get barcode type
Set the barcode's type from an expression string.

ocr pt _expr *
ocr pt _barcode_set _type(ocrpt_barcode *bc,
const char *expr_string);

ocr pt _expr *
ocr pt _barcode_get _type(ocrpt _barcode *bc);

Thetype may be optional, in which caseit's autodetected and the barcode is rendered in the format that
first allowstheval ue string to be rendered. Possible types (in the order of autodetection) are: upc-
a,ean- 13,upc- e,ean- 8,i sbn,code39,code39ext ,codel28b codel28c,orcodel28.
If t ype is specified, theval ue isrendered in that barcode type if the string is valid for the type. If
val ue isinvalid for the specifiedt ype, or autodetection fails, becausetheval ue isinvalid for any
of the above listed types, the barcode is not rendered.

10.1.10.19.5. Set or get barcode width
Set the barcode's width from an expression string.
ocr pt _expr *
ocr pt _barcode_set _w dth(ocrpt _barcode *bc,

const char *expr_string);

ocr pt _expr *
ocr pt _barcode_get _w dth(ocrpt _barcode *bc);

132

Low level Clanguage API reference

Thewidth is set according to Size unit attribute, either in points (1/72th inch) or in (monospace) font
width units set by <Li ne>.

10.1.10.19.6. Set or get barcode width
Set the barcode's height from an expression string.
ocr pt _expr *

ocr pt _barcode_set _hei ght (ocrpt _barcode *bc,
const char *expr_string);

ocr pt _expr *
ocr pt _bar code_get hei ght (ocrpt _barcode *bc);

This setting is always in points, i.e. 1/72th of an inch. The line height will be determined by greatest

height of all the<f i el d>, <l i t er al >and <Bar code> fieldsin the same <Li ne> in away that
the elements of the same line will appear (approximately) centered vertically.

10.1.10.19.7. Set or get barcode line color
Set the barcode's line color from an expression string.
ocr pt _expr *
ocr pt _barcode_set _col or (ocrpt_barcode *bc,

const char *expr_string);

ocr pt _expr *
ocr pt _barcode_get _col or (ocrpt _barcode *bhc);

10.1.10.19.8. Set or get barcode background color
Set the barcode's background color from an expression string.
ocr pt _expr *
ocr pt _bar code_set _bgcol or (ocr pt _barcode *bc,

const char *expr_string);

ocr pt _expr *
ocr pt _bar code_get _bgcol or (ocr pt _barcode *bc);

10.1.10.20. Add an image to an output section

ocrpt _inage *
ocr pt _out put _add_i mage(ocrpt _out put *out put);

10.1.10.21. Add an image to atext line

ocrpt _inage *
ocrpt _line_add_ i mage(ocrpt_line *line);

10.1.10.22. Image settings

Note that settings in the part (page) header and footer sections must be constant expressions. Settings
in other sections may depend on data derived from query columns. See Expressions.

10.1.10.22.1. Set or get image value

Set the image's value (filename) from an expression string.

133

Low level Clanguage API reference

ocr pt _expr *
ocr pt _i mage_set _val ue(ocrpt _i mage *i mage,
const char *expr_string);

ocr pt _expr *
ocr pt _i mage_get _val ue(ocr pt _i mage *i mage);

10.1.10.22.2. Set or get image suppression
Set the image's suppression from an expression string.
ocr pt _expr *
ocrpt _i nage_set _suppress(ocrpt_i mage *i mage,

const char *expr_string);

ocr pt _expr *
ocrpt _i nage_get suppress(ocrpt_i mage *i mage);

10.1.10.22.3. Set or get image type
Set the image's type from an expression string.
ocr pt _expr *

ocrpt _i mage_set _type(ocrpt_i mage *i nage,
const char *expr_string);

ocr pt _expr *
ocrpt _i mage_get _type(ocrpt _i mage *i nage);

10.1.10.22.4. Set or get image width

Set the image's width from an expression string. Used when the image is directly added to an output
section.

ocr pt _expr *

ocrpt i nage_set _wi dth(ocrpt_image *i mage,
const char *expr_string);

ocr pt _expr *
ocrpt _i nage_get wi dt h(ocrpt_i mage *i mage);

10.1.10.22.5. Set or get image height

Set the image's width from an expression string. Used when the image is directly added to an output
section.

ocrpt _expr *
ocr pt _i mage_set _hei ght (ocr pt _i nage *i mage,
const char *expr_string);

ocrpt _expr *
ocr pt _i mage_get _hei ght (ocrpt _i nage *i mage);

10.1.10.22.6. Set or get image alignment
Set the image's alignment from an expression string. Used when the image is added to text line.

ocr pt _expr *
ocrpt i nage_set _alignnent (ocrpt _inage *imge,

134

Low level Clanguage API reference

const char *expr_string);

ocr pt _expr *
ocr pt _i nage_get _al i gnment (ocr pt _i nage *i mage);

10.1.10.22.7. Set or get image background color
Set the image's background color from an expression string.
ocr pt _expr *

ocr pt _i mage_set _bgcol or (ocr pt _i mage *i nage,
const char *expr_string);

ocr pt _expr *
ocr pt _i nage_get _bgcol or (ocr pt _i mage *i nage) ;

10.1.10.22.8. Set or get image field width
Set the image's field width from an expression string. Used when the image is added to atext line.
ocr pt _expr *

ocrpt _i nage_set _text_w dth(ocrpt_i mage *i nage,
const char *expr_string);

ocr pt _expr *
ocrpt _i mage_get _text _w dt h(ocrpt_i mage *i mage);

10.1.10.23. Add an image end marker to an output section

voi d
ocr pt _out put _add_i mage_end(ocr pt_out put *output);

10.1.11. Callback related functions

Certain stages of the report execution can notify the application about the stage being executed or
finished.

Every "add a callback” function below returnt r ue for success, f al se for failure.

10.1.11.1. Add a "part added" callback

t ypedef void

(*ocrpt_part_chb) (opencreport *,
ocrpt_part *,
voi d *data);

bool

ocrpt _add_part_added_cb(opencreport *o,
ocrpt_part_cb func,
voi d *data);

10.1.11.2. Add a "report added" callback

t ypedef void

(*ocrpt _report_cbh) (opencreport *,
ocrpt_report *,
void *data);

135

Low level Clanguage API reference

bool

ocrpt _add_report_added_cb(opencreport *o,
ocrpt _report_cb func,
voi d *data);

10.1.11.3. Add an "all precalculations done" callback

typedef void
(*ocrpt_chb) (opencreport *,
void *data);

bool

ocr pt _add_precal cul ati on_done_cb(opencreport *o,
ocrpt _cb func,
void *data);

10.1.11.4. Add a "part iteration" callback

bool

ocrpt_part_add_iteration_cb(ocrpt_part *r,
ocrpt _part_cb func,
void *data);

bool

ocrpt _part_add_iterati on_cb2(opencreport *o,
ocrpt_part_cb func,
void *data);

The second variant adds the callback in the opencr eport structure context, making the callback
apply to every report part. It'sfor RLIB compatibility.

10.1.11.5. Add a "report started" callback

bool

ocrpt_report_add start_cb(ocrpt_report *r,
ocrpt _report_cb func,
void *data);

bool

ocrpt_report_add start_cb2(opencreport *o,
ocrpt _report_cb func,
void *data);

The second variant adds the callback in the opencr eport structure context, making the callback
apply to every report. It'sfor RLIB compatibility.

10.1.11.6. Add a "report done" callback

bool

ocrpt_report_add _done_cb(ocrpt_report *r,
ocrpt_report_cb func,
void *data);

bool

ocrpt_report_add_done_ch2(opencreport *o,
ocrpt_report_cb func,
void *data);

136

Low level Clanguage API reference

The second variant adds the callback in the opencr eport structure context, making the callback
apply to every report. It'sfor RLIB compatibility.

10.1.11.7. Add a "new row" callback

bool

ocrpt_report_add_new row cb(ocrpt_report *r,
ocrpt _report_cb func,
voi d *data);

bool

ocrpt_report_add_new row cbh2(opencreport *o,
ocrpt _report_cb func,
voi d *data);

The second variant adds the callback in the opencr eport structure context, making the callback
apply to every report. It'sfor RLIB compatibility.

10.1.11.8. Add a "report iteration done" callback

bool

ocrpt _report_add iteration_cb(ocrpt_report *r,
ocrpt_report_cb func,
void *data);

bool

ocrpt _report_add iteration_cb2(opencreport *o,
ocrpt_report_cb func,
void *data);

The second variant adds the callback in the opencr eport structure context, making the callback
apply to every report. It'sfor RLIB compatibility.

10.1.11.9. Add a "report precalculation done" callback

bool

ocrpt _report_add _precal cul ati on_done_cb(ocrpt_report *r,
ocrpt _report_cb func,
void *data);

bool

ocrpt _report_add _precal cul ati on_done_cb2(opencreport *o,
ocrpt _report_cb func,
void *data);

The second variant adds the callback in the opencr eport structure context, making the callback
apply to every report. It'sfor RLIB compatibility.

10.1.11.10. Add a "break triggers" callback

t ypedef void

(*ocrpt_break _trigger _cb)(opencreport *,
ocrpt_report *,
ocrpt _break *,
void *);

bool
ocrpt _break _add _trigger_cb(ocrpt_break *br,

137

Low level Clanguage API reference

ocrpt _break_trigger_cb func,
voi d *data);

10.1.12. Environment related functions

10.1.12.1. Indirect function to get an environment variable

typedef ocrpt _result *
(*ocrpt_env_query_func) (opencreport *,
const char *);

extern ocrpt_env_query_func
ocrpt _env_get;

10.1.12.2. Set the environment query function

voi d
ocrpt _env_set _query_func(ocrpt_env_query_func func);

10.1.12.3. C APl environment query function

ocrpt_result *
ocr pt _env_get _c(opencreport *o,
const char *env);

10.1.12.4. Add an "m" domain variable

Set an"'m" domain variable. If such avariable nane didn't exist yet, and val ue isnot NULL, thenthe
variableisset. If val ue isNULL, the variableisremoved. Such an explicit variable takes precedence
over the environment variable of the same name when used in expressions.

voi d
ocrpt _set_nmnvari abl e(opencreport *o,

const char *nane,
const char *val ue);

10.1.13. File handling related functions

10.1.13.1. Return a canonical file path

The returned path contains only single directory separators and doesn't contains symlinks.

char *
ocr pt _canoni cal i ze_path(const char *path);

10.1.13.2. Add search path
Add anew directory pathto thelist of search paths. It'suseful to find filesreferenced with relative path.
voi d

ocrpt _add_search_pat h(opencreport *o,
const char *path);

10.1.13.3. Add search path (delayed variant)

Add anew directory path from an expression string to the list of search paths. It's useful to find files
referenced with relative path. The expression must evaluate to a string value. It is evaluated at the

138

Low level Clanguage API reference

beginning of the report execution. Thisfunction may be used explicitly but it's also used when parsing
the <Pat h> nodesin areport XML description.

voi d

ocr pt _add_search_pat h_from expr (opencreport *o,
const char *expr_string);

10.1.13.4. Resolve search paths

Resolve expressions added by ocr pt _add_sear ch_path_from expr (). It'sused internally
when executing the report.

voi d
ocrpt _resol ve_search_pat hs(opencreport *o);

10.1.13.5. Find a file
Find afile and return the canonicalized path to it. This function takes the search paths into account.

char *
ocrpt_find_fil e(opencreport *o,
const char *fil ename);

Note that search paths added by ocr pt _add_search_pat h() and
ocrpt _add_search _path fromexpr() are used in their order of appearance when
searching for files during executing the report.

10.1.14. Color related functions

10.1.14.1. Find a color by its name
Thefunctionfillsin the ocr pt _col or structure with RGB valuesin Cairo values (0.0 ... 1.0).
If the color name starts with # or Ox or 0X then it must bein HTML notation.

Otherwise, the color nameislooked up in the color name database in a case insensitive way. If found,
the passed-in ocrpt_color structureisfilled with the RGB color value of that name.

If not found or the passed-in color name is NULL, depending on the the expected usage (foreground
or background color), theocr pt _col or structureisfilled with either white or black.

voi d

ocrpt _get _col or(opencreport *o,
const char *cnane,
ocrpt _col or *col or,
bool bgcol or);

10.1.15. Paper size related functions

Paper size in OpenCReportsis handled viali bpaper4.
This structure is used in OpenCReports to represent paper name and size:

struct ocrpt_paper {
const char *nane;
doubl e wi dt h;
doubl e hei ght;

4 http://packages.ga.debian.org/libp/libpaper.html

139

http://packages.qa.debian.org/libp/libpaper.html
http://packages.qa.debian.org/libp/libpaper.html

Low level Clanguage API reference

b

typedef struct ocrpt_paper ocrpt_paper;

10.1.15.1. Get the system default paper

const ocrpt_paper *
ocrpt _get system paper(void);

10.1.15.2. Get the paper specified by name

const ocrpt_paper *
ocrpt _get paper by nane(const char *paper);

10.1.15.3. Set the global paper

Set global paper using an ocr pt _paper structure. The contents of the structure is copied.
voi d

ocr pt _set _paper (opencreport *o,
const ocrpt_paper *paper);

10.1.15.4. Set global paper specified by name

Set paper for the report using a paper name. If the paper name is unknown, the system default paper
IS set.

voi d

ocr pt _set_paper _by_name(opencreport *o,
const char *paper);

10.1.15.5. Get currently set global paper

const ocrpt_paper *
ocr pt _get paper(opencreport *o);

10.1.15.6. Iterate over paper sizes

Get the next ocr pt _paper structure in the iterator. For the first call, the iterator pointer must be
NULL. It returns NULL when there are no more papers known to the system.

const ocrpt_paper *

ocr pt _paper _next (opencreport *o,
void **iter);

10.1.16. Memory handling related functions

Memory handling isdone through anindirection, to hel p with bindings (that may do their own memory
handling) override the default.

10.1.16.1. Indirect function pointers

typedef void *
(*ocrpt_memmalloc_t)(size t);

typedef void *
(*ocrpt_memrealloc t)(void *,
size t);

140

Low level Clanguage API reference

typedef void *

(*ocrpt_memreall ocarray_t)(void *,
size_t,
size_t);

typedef void
(*ocrpt_memfree_t)(const void *);

typedef char *
(*ocrpt_memstrdup_t)(const char *);

typedef char *
(*ocrpt_mem strndup_t) (const char *,
size_t);

typedef void
(*ocrpt_memfree_size_t)(void *,
size_t);

extern ocrpt_memmal loc_t ocrpt_mem mall ocO;

extern ocrpt_memrealloc_t ocrpt_nemreallocO

extern ocrpt_memreal l ocarray_t ocrpt_nemreall ocarray0
extern ocrpt_memfree_t ocrpt_nemfreeO;

extern ocrpt_memstrdup_t ocrpt_mem strdupO;

extern ocrpt_mem strndup_t ocrpt_nem strndupO;

10.1.16.2. Allocate memory

void *
ocrpt_nem nal |l oc(size_t sz);

10.1.16.3. Reallocate memory
void *
ocrpt_memrealloc(void *ptr,
size t sz);
10.1.16.4. Reallocate array of memory
void *
ocrpt_memreall ocarray(void *ptr,
size_t nnenb,
size_t sz);

10.1.16.5. Free memory

voi d
ocrpt_nem free(const void *ptr);

10.1.16.6. Duplicate C string

void *
ocrpt _mem strdup(const char *ptr);

10.1.16.7. Duplicate C string up to the specified length

void *
ocrpt _mem strndup(const char *ptr,

141

Low level Clanguage API reference

size_t sz);
10.1.16.8. Free a C string

It'aconvenience diasfor ocr pt _nem free().

voi d
ocrpt_strfree(const char *s);

10.1.16.9. Set indirect allocation functions
voi d
ocrpt _mem set _all oc_funcs(ocrpt_nmemnmalloc_t rnalloc,
ocrpt_memrealloc_t rrealloc,
ocrpt_memreallocarray_t rreallocarray,
ocrpt_memfree_ t rfree,

ocrpt _mem strdup_t rstrdup,
ocrpt _mem strndup_t rstrndup);

10.1.17. List related functions

These functionsimplement asingle linked list. The list element structure is hidden:

struct ocrpt_list;
typedef struct ocrpt list ocrpt _|ist;

10.1.17.1. Get the list length

size_t
ocrpt _list_length(ocrpt_list *I);

10.1.17.2. Make a list from one element

ocrpt _list *
ocrpt _makelistl(const void *data);

10.1.17.3. Make a list from multiple elements
This function can be used with variable number of arguments.

ocrpt_list *
ocr pt _makel i st(const void *datal, ...);

10.1.17.4. Get the last element of a list

ocrpt _list *
ocrpt _list _last(const ocrpt list *I);

10.1.17.5. Get the nth element of a list

ocrpt _list *
ocrpt _list_nth(const ocrpt _list *I, uint32_t n);

10.1.17.6. Append a new element to a list
ocrpt _list *

ocrpt _list_append(ocrpt _list *I,
const void *data);

142

Low level Clanguage API reference

10.1.17.7. Append to list using the last element
This function make appending to the list work O(1) instead of O(n).
ocrpt _list *
ocrpt _list_end append(ocrpt list *I,

ocrpt _list **e,
const void *data);

10.1.17.8. Prepend a new element to a list

ocrpt _list *
ocrpt _list_prepend(ocrpt _list *I,
const void *data);

10.1.17.9. Remove a data element from a list
ocrpt_list *

ocrpt_list_remove(ocrpt_list *I,
const void *data);

10.1.17.10. Remove a data element from a list and update the last
link

ocrpt list *

ocrpt _list_end renove(ocrpt list *I,

ocrpt _list **endptr,
const void *data);

10.1.17.11. Get next link in the list

This can be used to iterate through a list. It returns NULL if the passed-in link is the last list in the
list or it'san empty list.

ocrpt list *
ocrpt _list_next(ocrpt _list *I);

10.1.17.12. Get the data element from a list

void *
ocrpt _list_get data(ocrpt_list *I);

10.1.17.13. Free a list

voi d
ocrpt_list_free(ocrpt_list *I);

10.1.17.14. Free a list and its data elements
voi d

ocrpt _list free deep(ocrpt _list *I,
ocrpt_memfree_t freefunc);

10.1.18. String related functions

For memory safety and higher performance, awrapper structure is used over C functions.

143

Low level Clanguage API reference

struct ocrpt_string {
char *str;
size_t allocated_|en;
size t len;

b

typedef struct ocrpt_string ocrpt_string;

10.1.18.1. Create a new string

Create a new string from a C string. The ownership of the input string may be taken over, or the
original string's contents are copied.

ocrpt_string *
ocrpt _mem string_new(const char *str,
bool copy);

10.1.18.2. Create a new string with specified allocated length

Create a new string with specified allocated length so future growth can be done without reallocation.
Theinput string is aways copied.

ocrpt_string *
ocrpt_memstring _new with_|en(const char *str,
size_t len);

10.1.18.3. Create a string from a formatted string with maximum
length

ocrpt_string *

ocrpt_nemstring_new vnprintf(size_t |en,
const char *fornmat,
va_list va);

10.1.18.4. Create a string from a formatted string

ocrpt_string *
ocrpt_memstring new printf(const char *format, ...);

10.1.18.5. Resize a string

Resize the string to the specified allocated length.

ocrpt_string *
ocrpt_memstring resize(ocrpt_string *string,
size t len);

10.1.18.6. Free a string

char *
ocrpt_memstring free(ocrpt_string *string,
bool free_str);

10.1.18.7. Append a C string of the specified length to a string

voi d
ocrpt _mem string append_ |l en(ocrpt_string *string,
const char *str,

144

Low level Clanguage API reference

const size_t len);

10.1.18.8. Append a binary string of the specified length to a
string

voi d

ocrpt _mem string_append_| en_binary(ocrpt_string *string,
const char *str,
const size_t len);

10.1.18.9. Append a C string of unspecified length to a string

voi d
ocrpt _mem string _append(ocrpt_string *string,
const char *str);

10.1.18.10. Append a byte to a string

voi d
ocrpt _mem string_append_c(ocrpt_string *string,
const char c);

10.1.18.11. Append a formatted string to a string

voi d
ocrpt _mem string_append_printf(ocrpt_string *string,
const char *format, ...);

145

Chapter 11. Implement a datasource
Input driver

11.1. Datasource input driver registration API

A datasource driver can be implemented and registered with OpenCReports easily. In fact, all the
built-in datasource input drivers use the registration interface. A newly registered datasource input
driver can also replace the built-in ones.

11.1.1. Register a datasource input driver

bool
ocrpt _input_register(const ocrpt_input * const input);

11.1.2. Get a datasource input driver

Get adatasource input driver using its name.

const ocrpt_input * const
ocrpt _input_get(const char *nane);

11.2. Datasource input driver details

11.2.1. Datasource input driver interface

Below is the driver interface that defines the driver nanes, the connect _par anet er s used by
adding a datasource (see Section 10.1.3.1) and the driver methods.

struct ocrpt_input {
const char **nanes;
const ocrpt_i nput_connect _paraneter **connect_paraneters;
bool (*connect) (ocrpt_datasource *ds,
const ocrpt_i nput_connect _paraneter *parans);
ocrpt_query *(*query_add_sqgl) (ocrpt_datasource *ds,
const char *nane,
const char *sql);
ocrpt_query *(*query_add file)(ocrpt_datasource *ds,
const char *nane,
const char *fil enane,
const int32_t *types,
int32_t types_cols);
ocrpt_query *(*query_add_dat a) (ocr pt _dat asource *ds,
const char *nane,
const void *data
int32_t rows,
int32_t cols,
const int32_t *types,
int32_t types_cols);
ocrpt_query *(*query_add_synbol i c_dat a) (
ocr pt _dat asource *ds,
const char *nane,
const char *dat anane,
int32_t rows,

146

Implement a datasource input driver

int32_t cols,
const char *types,
int32_t types_cols);
void (*describe)(ocrpt_query *query,
ocrpt_query result **result,
int32_t *result_cols);
bool (*refresh)(ocrpt_query *query);
void (*rew nd)(ocrpt_query *query);
bool (*next)(ocrpt_query *query);
bool (*popul ate_result)(ocrpt_query *query);
bool (*isdone)(ocrpt_query *query);
void (*free)(ocrpt_query *query);
bool (*set_encodi ng) (ocrpt_dat asource *ds,
const char *encoding);
void (*close)(const ocrpt_datasource *);
b

typedef struct ocrpt_input ocrpt_input;

The driver nanes is a NULL-terminated array of name strings. This allows the driver to be picked
up using either name. For example the built-in MariaDB driver does so:

static const char *
ocrpt _mariadb_i nput_nanes[] = {

“mari adb", "nysql", NULL
1

The connect _par anet er s data pointer and the connect method are either both set as valid,
or both are NULL.

Thequery_add* () methods are optional. Some datasource drivers support direct or symbolic data,
some support file formats, some are SQL based. A datasource input driver must support at least one
of theinterfaces.

The descri be() method is mandatory. It returns an array of ocr pt _query_result data
together with the number of columnsin the result set. The result array must contain elements 3 times
the number of columnsin total due to theinterna operation of OpenCReports.

#defi ne OCRPT_EXPR _RESULTS (3)
Ther ef resh() method isoptional. See the PHP module source code for its potential uses.

Therewi nd(),next (), popul ate_result() andi sdone() methods are all mandatory as
they are required to traverse the result set.

Thefree() method isoptional. It's needed if the query uses private data.

Theset _encodi ng() method is optional. It's needed if the datasource input driver can use data
in encodings other than UTF- 8.

Thecl ose() method isoptional. It's needed if the datasource connection uses private data.

11.3. Helper functions to implement a
datasource input driver

11.3.1. Get the parent pointer of a datasource

opencreport *
ocr pt _dat asource_get _opencreport(const ocrpt_datasource *ds);

147

Implement a datasource input driver

11.3.2. Get the name of a datasource

const char *
ocr pt _datasource_get name(const ocrpt_datasource *ds);

11.3.3. Get the input driver pointer of a datasource

const ocrpt_input *
ocr pt _datasource_get i nput (const ocrpt_datasource *ds);

11.3.4. Set the private pointer of a datasource

voi d
ocr pt _dat asource_set _private(ocrpt_datasource *ds,
void *priv);

11.3.5. Get the private pointer of a datasource

void *
ocrpt _datasource_get_private(ocrpt_datasource *ds);

11.3.6. Allocate a query structure

Allocate a query structure and add the query name.

ocrpt_query *
ocrpt _query_all oc(const ocrpt_datasource *source,
const char *nane);

11.3.7. Get the query name

char *
ocrpt_query_get _nanme(const ocrpt_query *query);

11.3.8. Get the datasource pointer of a query

ocr pt _datasource *
ocr pt _query_get _source(const ocrpt_query *query);

11.3.9. Set the private pointer of a query
voi d

ocrpt _query_set _private(ocrpt_query *query,
const void *priv);

11.3.10. Get the private pointer of a query

void *
ocrpt _query_get _private(const ocrpt_query *query);

11.3.11. Set current row of a query all NULL

voi d
ocrpt_query result_set values null (ocrpt_query *q);

148

Implement a datasource input driver

11.3.12. Set a column value of a query

Set thei th column valuein the current row of a query. The value can be set to NULL if thei snul |
parameter ist r ue, or to avalid value using the st r and the length parameters.

voi d

ocrpt_query result_set value(ocrpt_query *q,
int32_t i,
bool isnull,

iconv_t conv,
const char *str,
size t len);

149

Chapter 12. PHP language API
reference

12.1. The OpenCReports PHP module

OpenCReports comes with a PHP module, which must be enabled in the PHP configuration:

ext ensi on=opencreports. so

12.2. The OpenCReport class

The main class in OpenCReports is called OpenCRepor t . (Note that the project name is used as
singular.)

cl ass OpenCReport {
public const RESULT ERROR;

public const RESULT_STRI NG
public const RESULT NUVBER,
public const RESULT_ DATETI ME;
public const VARI ABLE EXPRESSI ON;
public const VARI ABLE COUNT;
public const VAR ABLE COUNTALL;
public const VARI ABLE SUM

public const VAR ABLE AVERAGE;
public const VARI ABLE AVERAGEALL;
public const VARI ABLE LOWEST;
public const VAR ABLE H GHEST;
public final _ construct();

public final parse xm (string $fil enane): bool;
public final parse xml frombuffer(string $buffer): bool;

public const QOUTPUT_PDF;

public const QUTPUT_ HTM;

public const QUTPUT_TXT;

public const QUTPUT_CSV;

public const QUTPUT XM

public const QUTPUT_ JSON;

public final set _output format(long $format): void,;
public final get _output format(): |ong;

public static final get_ output format_nanme(long $format):

string;

public final set_output_paraneter(
string $param
string $val ue): void;

public final execute(): bool;

public final spool (): void,;

public final get_output(): string|false;
public final get_content_type(): array|false;

public static final version(): string;

150

PHP language API reference

publ i
publ i
publ i

publ i

publ i

publ i

publ i

publ i

publ i
publ i
publ i

publ i
publ i

publ i

publ i
publ i

publ i

publ i

publ i

publ i

publ i

f

f

f

f

f

f

f

f

f

f

fi

fi
fi

fi

fi

fi

fi

fi

fi

fi

fi

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal
nal

nal

nal

nal

nal

nal

nal

nal

nal

set _nuneric_precision_bits(

string $expr_string): void;
get _nuneric_precision_bits(): |ong;
set _roundi ng_node(

string $expr_string): void;

bi ndt ext domai n(

string $domai nnane,

string $dirnanme): void;
set_| ocal e(string $l ocale): void;

dat asour ce_add(string $source_nane,
string $source_type,
?array $conn_paranms =
?0penCReport\ Dat asour ce;

dat asource_get (string $source_nane):
?0penCReport\ Dat asour ce;

query_get (string $query_nane):
?0penCReport\ Query;

qguery_refresh(): void;

expr_parse(string $expr_string):
?0penCRepor t\ Expr;
expr_error(): 7?string;

part_new(): OpenCReport\Part;
part_get _next(): OpenCReport\Part;

function_add(
string $expr_func_nane,
string $zend_func_naneg,
 ong $n_ops,
bool $commut ati ve,
bool $associ ati ve,
bool $l eft_associati ve,
bool $dont _optim ze): bool

add_precal cul ati on_done_cb(

string $cal |l back): void;
add_part _added_ch(

string $cal |l back): void;
add_report_added_cb(

string $cal |l back): void;

env_get (string $var_nane):
OpenCReport\ Resul t;

result_new():
OpenCReport\ Resul t;

set _nvari abl e(
string $nane,
?string $value = null): void;

add_sear ch_pat h(

nul 1) :

151

PHP language API reference

string $path): void;
public static final canonicalize_path(
string $path): string;
public final find_ file(string $path): $string;

public static final get_col or(
string $col or_nane,
?bool $bgcol or = false): array;

public final set_paper(string $paper): void;

public final set_size unit(string $expr_string):
?0penCRepor t\ Expr;

public final get_size unit():
?0penCRepor t\ Expr;

public final set_noquery_show nodat a(
string $expr_string):
?0penCRepor t\ Expr;

public final get_noquery_show nodata():
?0penCRepor t\ Expr;

public final set_report_height_after_I|ast(
string $expr_string):
?0penCRepor t\ Expr;

public final get_report_height _after_last():
?0penCRepor t\ Expr;

public final set_follower_natch_single(
string $expr_string):
?0penCRepor t\ Expr;

public final get_follower_match_single():
?0penCRepor t\ Expr;

public final set_follower_match_single_direct(
bool $val ue): void;

public final get _follower_match_single direct()
bool

}

12.3. High level PHP API

Here is an example code using the high level PHP APl where everything concerning the report
(including the data source) is described in the report XML:

<?php
$0 = new OpenCReport();

if (!%0->parse_xm (o, "report.xm")) {
printf("XM. parse error\n");
exit(1);
}
$0->set _out put _format (o, OpenCReport:: OQUTPUT_PDF);
$0- >execut e();
$- >spool ();

Thiscodewill load r eport . xmi , set the output format to PDF, runs the report and dumps the result
on st dout , which ends up in your browser if the PHP code is run behind a webserver.

Most of the class methods are direct wrappers of the corresponding C API functions.

152

PHP language API reference

12.3.1. Constructor

The class constructor creates an OpenCRepor t object.

public final
OpenCReport:: construct();

12.3.2. Load a report XML description

These methods oad the report description either from the specified XML file or from the XML content
provided in the string. They returnt r ue for success, f al se for failure.

public final
OpenCReport::parse_xm (string $fil enane): bool;

public final
OpenCReport::parse_xm _frombuffer(string $buffer): bool;

12.3.3. Set report output format

Defaultispubl i ¢ const OpenCReport: : OQUTPUT_PDF.

public const OpenCReport:: QUTPUT _PDF;
public const OpenCReport:: QUTPUT_HTM,;
public const OpenCReport:: QUTPUT_TXT;
public const OpenCReport:: QUTPUT_CSV;
public const OpenCReport:: QUTPUT XM
public const OpenCReport:: QUTPUT _JSON,

public final
penCReport::set_output format(int $format): void;

Note that these constants are not to be overridden in subclasses. With PHP 8.1 and newer, thef i nal
flag is added so overriding these constants will throw an exception.

12.3.4. Get report output format

This method returns the previously set output format, or the default if it wasn't set.

public final
OpenCReport::get _output format(): |ong;

12.3.5. Get report output format name

This method returns the name of the output format as string.

public static final
OpenCReport:: get_output_format_nane(l ong $f ormat):
string;

12.3.6. Set report output parameter

public final
OpenCReport: : set _out put _paraneter(
string $param

153

PHP language API reference

string $val ue): void;

Possible parameters for the HTML output driver:

docunent _root setsthe document root for trimming path prefix from image paths.

met a extends the default <met a charset="utf-8">.1iteral (see The passed-in string
value may containthewhole<net a . . . >, inwhich casetheinner parameters are used only. The
char set specificationisignored. Only therest is used.

suppr ess_head suppresses the default <head> ... </ head> section. Possible values to
enable suppressing the default <head> ... </ head> areyes,true and on. Anything else

disables it. Be aware, that the default section contains importand CSS stylesheet settings that are
needed for the correct layout.

Possible parameters for the CSV output driver:

csv_fil ename setsthefilenamefor Cont ent - Di sposi ti onintheHTTPmetadatareturned
by ocrpt _get _content _type().

csv_as_text setsthe MIME type for Cont ent - Type in the HTTP metadata returned by
ocrpt _get _content _type().

csv_delimter (alsoaliased ascsv_del i met er according to the historical typo in RLIB)
setsthe CSV field delimiter to the first character of the string. By default it's a comma.

no_quot es will create a CSV output with values unquoted. Possible valuesto enableit areyes,
true, on or any positive non-zero number. Anything else disables it. It takes precedence over
only _quote_strings

only_quot e_st ri ngs will createaCSV output with only string values quoted. Possible values
toenableit areyes, t r ue, on or any positive non-zero number. Anything else disablesiit.

Note that some languages (e.g German, Swedish and Hungarian) use comma as the decimal
separator instead of decimal point. For these languages, either set csv_del i mi t er or set neither
no_quot es, noronly_quote_stri ngs

Possible parameters for the XML output driver:

12.3.7.

xm _rlib_conpat setstheflag to create an RLIB compatible XML output. Possible values to
enableit areyes, t r ue, on or any positive non-zero number. Anything else disablesiit.

When enabled, the toplevel element will be <rl i b> and <Report >s inside <pd> won't be
embedded inar eport element.

Run the report

This method executes the report, constructs the result in memory. It returnst r ue for success, f al se
for failure. Itisafailureif the output format is unset.

public final
OpenCReport: :execute(): bool;

12.3.8.

Dump report result

Dump the report output on the program's standard output channel.

public final
OpenCReport: :spool (): void;

154

PHP language API reference

12.3.9. Get report result

Get the report output. The application then can save it as a file. This method returns the output in a
st ri ng if report execution succeeded, otherwiseit returnsf al se.

public final
OpenCReport::get_output(): string|false;

12.3.10. Get report content type

Get the report content type. The application then can add it as HT TP header line(s) to the request. This
method returns an array of strings with Cont ent - Type: , Cont ent - Lengt h: and other header
linesif report execution succeeded. Otherwise it returnsf al se.

public final
OpenCReport::get_content _type(): array]|false;

12.3.11. Get library version

12.4.

This method reports the OpenCReports library version.

public final static
OpenCReport::version(): string;

Low level PHP API

The High level PHP AP is also part of the low level API. The class methods described below allow
creating a report using program code, or simply fine tuning the report behavior by mostly using the
High level PHP API.

Note that whenever the method argument isst ri ng $expr _st ri ng, such arguments are treated
as Expressions and are only parsed when calling the method. Evaluation of the expressionsis delayed
to report execution time.

Also note that for class methods that return objects, the parent object must not be unset () before
using such aderived object. These derived objects are merely wrappers over C pointersin their parent
objects C representation. Such a "use after free" is a sure way to crash the PHP process.

12.4.1. Numeric behavior related methods

12.4.1.1. Set nuneric precision

The default is 256 hits of floating point precision.

public final
OpenCReport::set_numeric_precision_bits(
string $expr_string): void;

12.4.1.2. Get nuneric precision

public final
OpenCReport::get_nuneric_precision_bits(): |ong;

12.4.1.3. Set rounding mode

The rounding modes may be nearest, to mnus_inf, to_inf, to_zero,
away _from zeroandfait hful . Thedefaultisnear est .

155

PHP language API reference

final public
OpenCReport::set_roundi ng_node(
string $expr_string): void;

12.4.2. Locale related methods
12.4.2.1. Set up translation

Setting up the translation needs two parameters: the so called trandation domain and the toplevel
directory for the trandations. It relies on GNU Gettext.

public final

OpenCReport: : bi ndt ext domai n(
string $donmai nnane,
string $dirnane): void;

12.4.2.2. Set report locale

Setting the locale for the report does not affect the main program or other threads. Locale setting
includes the language, the country. The UTF-8 suffix is necessary. E.g.: en_GB. UTF-8 or
de_DE. UTF- 8

public final
penCReport::set | ocal e(string $locale): void;

12.4.3. Data source and query related methods
12.4.3.1. Add a datasource

For the OpenCRepor t \ Dat asour ce class methods, see The OpenCReport\Datasource class

public final
OpenCReport : : dat asour ce_add(string $source_nane,
string $source_type,
?array $conn_paranms = null):
?0OpenCRepor t\ Dat asour ce;

This method adds a datasource of the specified type to the report, using the optional connection
parameters.

The possible datasource types are: arr ay, csv, j son, xm , mari adb (aso aliased as nysql),
post gresql andodbc.

The connection parameter array is an associative array which contains keys and value pairs. The
contents of this array is needed to connect to SQL databases. For example:

$conn_paranms = |
"dbname" => "nydat abase",
"user" => "nyuser"”

1
Thearray,csv,]j son,andxm datasource types do not need connection parameters.

Thelist of connection parametersto establish database connection for mar i adb, post gr esql , and
odbc arelisted at Section 10.1.3.1, in the Low level C API Reference.

12.4.3.2. Get a named datasource

For the OQpenCRepor t \ Dat asour ce class methods, see The OpenCReport\Datasource class.

156

PHP language API reference

public final
OpenCReport:: datasource_get(string $source_nane):
?0penCRepor t\ Dat asour ce;

12.4.3.3. Get a named query

For the OpenCRepor t \ Quer y class methods, see The OpenCReport\Query class.
public final

OpenCReport::query_get(string $query nane):
?0penCReport\ Query;

12.4.3.4. Refresh the internal representation of array queries

A two dimensional array (actually, a one dimensional array of one dimensional arrays) can be used
in PHP as an array query.

The PHP array may be modified during executing the report, e.g. in an event callback called after
one iteration of areport part. This method refreshes the the query's internals to be aware of the new
contents of the array.

public final
query_refresh(): void;

There are some limitations what may be done to the source PHP array, though.

» The array contents must not change during a report iteration, i.e. in a new row callback and
some others. This would invalidate the contents of the PHP internal representation in a way that
OpenCReports may break in subtle ways.

» Changesto thefirst row of the array (i.e. the column names) are ignored.

e The number of columnsin the array must not change.

12.4.4. Expression related methods

Expressions in OpenCReportsis explained in the Expressions chapter.
12.4.4.1. Parse an expression

The expression string may not reference report specific identifiers.

public final
OpenCReport:: expr_parse(string $expr_string):
?0penCReport\ Expr;

If the expressionisin any way invalid, OpenCReport : : expr _parse() returnsnul | . Theerror
isreturned by:

public final
OpenCReport::expr_error(): ?string;

12.4.4.2. Add a custom report function

public final

OpenCReport: : function_add(
string $expr_func_naneg,
string $zend_func_naneg,

157

PHP language API reference

 ong $n_ops,

bool $commut ati ve,

bool $associ ati ve,

bool $l eft_associative,
bool $dont _optim ze): bool

After thisfunction returns with success, subsequently parsed expressions may use the function named
asthevalue of $expr _f unc_name. During evaluation of the function, the PHP function named as
thevalueof $zend_f unc_nane iscaled. The expressionsthat usethe new function may call it with
either the number of arguments given in $n_ops, or if the valueis- 1, any number of arguments.

The remaining bool arguments indicate the named properties of the function that the expression
optimizer considers.

The declaration of the PHP function named as the value of $zend_f unc_nane must follow this:
function ny_function(OpenCReport\ Expr $e)

The function implementation may return any PHP basetype (st ri ng, | ong, doubl e or bool) or
it may not return avalue at all (i.e. voi d). In the latter case, the function must set the return value

in the passed-in $e object.

For class methods of OpenCRepor t \ Expr , please see The OpenCReport\Expr class.

12.4.5. Layout part related methods
12.4.5.1. Add a new report (layout) part

For class methods of OpenCRepor t\ Par t , see The OpenCReport\Part class.

public final
OpenCReport::part_new(): OpenCReport\Part;

12.4.5.2. Get first (layout) part

Thisfunction returns an object of the OpenCRepor t \ Part class. Theobject isinternally marked as
an "iterator object”, so OpenCReport\ Part: : get next () may becaled onit again to iterate
through every report part of the parent QpenCReport object.

public final
penCReport::part_get first(): OpenCReport\Part;

12.4.5.3. Set paper type
Set the paper type using the paper name, i.e.' | etter' ' Ad4' , etc.

public final
OpenCReport::set_paper(string $paper): void;

12.4.5.4. Set or get size unit

Set the size unit. See Size unit attribute. Possible settings are poi nts andrl i b. Defaultisrlib
for RLIB compatibility.

public final
penCReport::set_size unit(string $expr_string):
?0penCRepor t\ Expr;

158

PHP language API reference

public final
OpenCReport::get_size unit():
?0penCRepor t\ Expr;

12.4.5.5. Set or get "no query show NoData" property

public final

OpenCReport::set_noquery_show _nodat a(
string $expr_string):
?OpenCRepor t\ Expr;

public final
OpenCReport: : get _noquery_show nodata():
?OpenCRepor t\ Expr;

12.4.5.6. Set or get "report height after last" property

public final

OpenCReport::set_report_height_after | ast(
string $expr_string):
?0penCReport\ Expr;

public final
OpenCReport::set_report_height_after_last():
?0penCReport\ Expr;

12.4.5.7. Set or get "follower match single" property

See Follower match single attribute.

public final

OpenCReport::set_foll ower_match_singl e(
string $expr_string):
?0penCRepor t\ Expr;

public final

OpenCReport::get _follower_match_single():
?0penCRepor t\ Expr;

public final

OpenCReport::set _foll ower_match_single direct(
bool $val ue): void;

public final
OpenCReport::get follower _match _single direct():
bool ;

12.4.6. Callback related methods

These methods add a callback function that are called at certain points during executing the report.

public final
OpenCReport: :add _precal cul ati on_done_cb(
string $cal |l back): void;

public final
OpenCReport::add part added_ch(
string $cal |l back): void;

159

PHP language API reference

public final
OpenCReport::add_report_added_cb(
string $cal |l back): void;

The"precalculation done" callback is called after the first phase of the report isfinished. Theinterface
of the callback function must follow this:

function
ny_cal | back(QpenCReport $0)

The "part added" callback is called when either OpenCReport::part_new() is caled,
or a report XML description is parsed via either OpenCReport::parse_xm () or
OpenCReport::parse xnm _frombuffer() and a <Part> node is being parsed. The
interface of the callback function must follow this:

function
ny_cal | back(OpenCReport $o,
OpenCReport\Part $p)

The "report added” callback is called when either OQpenCReport\ Col umrm: : report _new()
is called, or a report XML description is parsed via either OpenCReport: : parse_xm () or
OpenCReport::parse_xm _from buffer() and a<Report> nodeis being parsed. The
interface of the callback function must follow this:

function
ny_cal | back(QpenCReport $o,
OpenCReport\ Report $r)

12.4.7. Environment related methods

In PHP, the "environment" includes both global variables and actual environment variables. If aglobal
variable name exists in the PHP environment, its value is returned as OpenCRepor t \ Resul t . If
such aPHP global variable doesn't exist, the variable from operating (e.g. UNIX) environment is used
and itsvalueisreturned if it exists. Otherwise NULL is returned.

public final
OpenCReport::env_get (string $var_nane):
OpenCReport\ Resul t;

12.4.8. Add "m" domain variable

Add an "m" domain variable. If such avariable name didn't exist yet, and val ue isnot NULL, then
the variable is set. If val ue is NULL or omitted, the variable is removed. Such an explicit variable
takes precedence over the PHP global variable or the environment variable of the same name when
used in expressions.

public final
OpenCReport::set_nvari abl eg(
string $nane,
string $val ue): void;

12.4.9. Result related methods

Thismethod creates an uninitialized QpenCRepor t \ Resul t with no value. See The OpenCReport
\Result classto set the value.

public final

160

PHP language API reference

OpenCReport::result_new(): OpenCReport\Result;

12.4.10. Path related methods
12.4.10.1. Add a search path

public final
OpenCReport::add_search_path(string $path): void;

12.4.10.2. Canonicalize path

This method returns (a possibly modified) path that will create a canonical absolute path that doesn't
contain. and. . references, symlinks are replaced with the actual target directory, etc.

public static final
OpenCReport:: canonicalize_path(string $path): string;

12.4.10.3. Find afile

Find a (possibly relative) file using the search paths and return the canonical absolute path if found.

public final
OpenCReport::find file(string $path): $string;

12.4.11. Color related methods

Get an array with doubl e components for the color name or color specification.

public static
OpenCReport::final get_col or(
string $col or_nane,
?bool $bgcol or = false): array;

12.5. The OpenCReport\Datasource class

This class has no constructor, so such an object cannot be created or used on its own. A datasource
only is only useful as part of areport. The OpenCReport : : dat asour ce_add() method return
an object of this class.

cl ass OpenCReport\ Dat asource {
public final free(): void;

public final query_add(string $nane,
string $array_or _file or_sql,
?string $coltypes = null):
OpenCReport\ Query;

public final set_encoding(string $encoding): void;

}
12.5.1. Free a datasource

The datasource is freed for the parent OpenCReport object.

public final
OpenCReport\ Dat asource: :free(): void,;

161

PHP language API reference

12.5.2. Add a query to the datasource

Add a query to the parent OpenCReport object associated with the OpenCReport
\ Dat asour ce.

public final

OpenCRepor t\ Dat asour ce: : query_add(stri ng $nane,
string $array_or_file_or_sql,
?string $coltypes = null):
OpenCReport\ Query;

$nane isthe query name that Expressions may use as the identifier domain.

$array_or _file_or_sql containsthe array name (for an array datasource), the file name (for
a file based datasource, like JSON, CSV or XML), or the SQL query statement for SQL based
datasources (like MariaDB, PostgreSQL or ODBC).

Passing $col t ypes is optional and is only valid for array or file based datasources. File based
datasources may or may not include column type specification. Array datasources don't. The
$col t ypes array containslong valuesOQpenCRepor t : : RESULT_*. See The OpenCReport class.
It helps the engine to add automatic data conversion for query column data. SQL based datasources
provide the data type for query columns.

12.5.3. Set datasource encoding

Set encoding for the datasource. By default, UTF-8 is expected.

public final
OpenCRepor t\ Dat asour ce: : set _encodi ng(stri ng $encodi ng): voi d;

12.6. The OpenCReport\Query class

cl ass OpenCReport\ Query {
public final get_result():
OpenCReport\ QueryResul t;

public final navigate_start(): void;
public final navigate_next(): bool;

public final navigate_use_prev_row): void,
public final navigate_use_next_row): void,;

public final add_follower(
OpenCReport\ Query $foll ower):
bool ;

public final add follower_n_to_ 1(
OpenCRepor t\ Query $fol | owner,
OpenCReport\ Expr $match):
bool ;

public final free(): void,;

}
12.6.1. Get result for a query's current row

TheresultisOpenCRepor t\ Quer yResul t . See Section 12.7.

public final

162

PHP language API reference

OpenCReport\ Query::get_result():
OpenCReport\ QueryResul t;

12.6.2. Start navigation for a query

Reset query (and al its followers) to go before the first row.

public final
OpenCReport\ Query: : navigate start(): void,

12.6.3. Navigate to the next row

Navigate the query to the next row and return if the new row isvalid. The current row of the query's
follower queries are also moved to the next valid row.

public final
OpenCReport\ Query: : navigate next(): bool;

Usually queries do not have a uniform way to report the total number of rows, although some
datasource types may have such afacility. Instead, they can report that the dataset has ended.

12.6.4. Navigate use previous/next row

These functions expose an implementation detail of the data traversal in OpenCReports. Thereisa 3-
row data cache in which there is always the current row. One past row is kept so e.g. break boundaries
can be detected and there is one row read-ahead to detect the end-of-data condition early. These
functions allow to switch back and forth in the 3-row data cache, making the previous or next row the
"current” one momentarily. The query must always be the primary query of the report. Used by unit
teststhat don't use ocr pt _execut e() .

public final
OpenCRepor t\ Query: : navi gate_use_prev_row): bool;

public final
OpenCReport\ Query: : navi gate _use_next _row): bool;

Usually queries do not have a uniform way to report the total number of rows, although some
datasource types may have such afacility. Instead, they can report that the dataset has ended.

12.6.5. Add a query follower

Add a query as an 1:1 follower to the main query object. The method returns whether the call
succeeded.

public final

OpenCRepor t\ Query: : add_f ol | ower (
OpenCReport\ Query $follower):
bool ;

Adding acircular reference between queries would fail.

12.6.6. Add an N:1 query follower

Add a query and the matching expression as a follower to the main query object. The method returns
whether the call succeeded.

public final
OpenCReport\ Query::add _follower_n to_1(

163

PHP language API reference

OpenCReport\ Query $foll ower,
OpenCReport\ Expr $match):
bool ;

Adding acircular reference between queries would fail.

The call takes over ownership of the match object and it must not be explicitly freed.

12.6.7. Free a query

public final
OpenCReport\ Query: :free(): void,

12.7. The OpenCReport\QueryResult class

cl ass OpenCReport\ QueryResult {
public final colums(): Iong;

public final colum_name(long $i ndex): ?string;

public final colum_result(long $index):
?0penCReport\ Resul t;
}

12.7.1. Get number of columns for a query result

This method returns the number of columns for the query result.

public final
OpenCRepor t\ QueryResul t:: col ums(): | ong;

12.7.2. Get the nth column name for a query result

This method returns the column name for the query result at $i ndex. It returns NULL for invalid
indices.

public final
OpenCRepor t\ QueryResul t:: col utm_name(1l ong $i ndex):
?string;

12.7.3. Get the nth column result for a query result

This method returns the column result for the query result at $i ndex. It returns NULL for invalid
indices.

public final

OpenCRepor t\ QueryResul t:: col um_resul t (I ong $i ndex):
?0penCReport\ Resul t;

12.8. The OpenCReport\Expr class

cl ass OpenCReport\ Expr {
public final free(): void;

public final get_expr_string(): string;

public final print(): void,;

164

PHP language API reference

public final nodes(): |ong;

public final resolve(): void;

public final optimze(): void,

public final eval():
?0penCReport\ Resul t;

public final get_result():

?0penCReport\ Resul t;
public final set_string(

string $val ue): void;
public final set_Iong(

| ong $val ue): void;
public final set_doubl e(

doubl e $val ue): void;
public final set_numnber(

string $val ue): void;

public final get_num operands(): |ong;
public final operand_get_result(
| ong $opi dx):
?0penCReport\ Resul t;

public final cnp_results(): bool;

public final init_results(long $result_type):
voi d;

public final get_string(): ?string;
public final get_long(): Iong;

public final get_double(): double;
public final get_number(): ?string;

public final set_nth_result_string(
[ong $whi ch,
string $val ue): void;

public final set_nth_result_I|ong(

[ong $whi ch,

| ong $val ue): void;
public final set_nth_result_doubl e(

[ong $whi ch,
doubl e $val ue): void;

public final set_iterative_start_val ue(
bool $val ue): void;

public final set_del ayed(
bool $val ue): void;

}
12.8.1. Free an expression

Used by unit tests.

public final

165

PHP language API reference

OpenCReport\ Expr::free(): void;

12.8.2. Get the original expression string

public final
OpenCReport\ Expr::get_expr_string(): string;

12.8.3. Print an expression

Used by unit tests.

public final
OpenCReport\ Expr::print(): void;

12.8.4. Get the number of expression tree nodes

Used by unit tests to compare the expression tree before and after optimization.

public final
OpenCReport\ Expr:: nodes(): |ong;

12.8.5. Resolve an expression

public final
OpenCReport\ Expr::resolve(): void,

12.8.6. Optimize an expression

public final
OpenCReport\ Expr::optimze(): void;

12.8.7. Evaluate an expression

public final
OpenCRepor t\ Expr: :eval ():
?0penCReport\ Resul t;

12.8.8. Get the result of an expression

public final
OpenCReport\ Expr::get _result():
?0penCReport\ Resul t;

12.8.9. Set expression result to a string value

Useful for user functions.
public final

OpenCReport\ Expr::set_string(
string $val ue): void;

12.8.10. Set expression result to a long value

Useful for user functions.

166

PHP language API reference

public final
OpenCReport\ Expr::set | ong(
| ong $val ue): void;

12.8.11. Set expression result to a double value

Useful for user functions.
public final

OpenCReport\ Expr::set _doubl e(
doubl e $val ue): void;

12.8.12. Set expression result to a numeric value from
string

Useful for user functions. Thisalows using BC Math®

public final

OpenCReport\ Expr::set_nunmber fromstring(
string $val ue): void;

12.8.13. Get number of operands of a expression

Useful for user functions.

public final
OpenCReport\ Expr::get _num operands(): |ong;

12.8.14. Get nth operands' result of a expression

Useful for user functions.
public final
OpenCReport\ Expr: : operand_get resul t(

| ong $opi dx):
?0penCReport\ Resul t;

12.8.15. Compare the expression's current and
previous results

Used internally by the report executor and unit tests. Useful for implementing acustom report executor
with breaks.

public final
OpenCReport\ Expr::crmp_results(): bool;

12.8.16. Initialize expression results

Usedinternally by thereport executor and unit tests. Useful for implementing acustom report executor.

public final
OpenCReport\Expr::init_results(long $result_type):

L hitps://www. php.net/manual /en/book.bc.php

167

https://www.php.net/manual/en/book.bc.php
https://www.php.net/manual/en/book.bc.php

PHP language API reference

voi d;
12.8.17. Get string value of an expression

Used by unit tests.

public final
OpenCReport\ Expr::get_string(): ?string;

12.8.18. Get long value of an expression

Used by unit tests.

public final
OpenCReport\ Expr::get _long(): |ong;

12.8.19. Get double value of an expression

Used by unit tests.

public final
OpenCReport\ Expr::get _doubl e(): doubl e;

12.8.20. Get numeric value of an expression as a string

Used internally by unit tests.
public final
OpenCReport\ Expr:: get _nunber():
?string;
12.8.21. Set nth result of an expression to a string

value
Used by unit tests.
public final
OpenCRepor t\ Expr::set_nth_result_string(

| ong $whi ch,
string $value): void,

12.8.22. Set nth result of an expression to a long value

Used by unit tests.

public final

OpenCReport\ Expr::set_nth_result_I| ong(
[ong $whi ch,
| ong $val ue): void;

12.8.23. Set nth result of an expression to a double
value

Used by unit tests.

168

PHP language API reference

public final

OpenCReport\ Expr::set_nth_result_doubl e(
[ong $whi ch,
doubl e $val ue): void;

12.8.24. Set iterative start flag of an expression

Used internally by the report executor and by unit tests.

public final
OpenCReport\ Expr::set _iterative_start_val ue(
bool $val ue): void;

12.8.25. Set expression to delayed

A delayed expression's final value is precalculated, and this value is used in the output in every row
of the report.

public final

OpenCReport\ Expr: : set _del ayed(
bool $val ue): void;

12.9. The OpenCReport\Result class

cl ass OpenCReport\Result {
public final free(): void,;

public final copy(
OpenCReport\Result $src_result):
voi d;

public final print(): void,;

public final get_type(): |ong;

public final is_null(): bool;

public final is_string(): bool;

public final is_nunber(): bool;

public final get_string(): ?string;

public final get_nunber(?string $format): ?string;

}
12.9.1. Free aresult object

Only use it for separately created result objects, like via OpenCReport::env_get() and
OpenCReport::result_new().Not needed for freeing an expression.

public final
OpenCReport\Result::free(): void;

12.9.2. Copy aresult object

Used by unit tests.

public final
OpenCReport\ Resul t:: copy(

169

PHP language API reference

OpenCReport\Result $src_result):
voi d;

12.9.3. Print aresult object

Used by unit tests.

public final
penCReport\Result::print(): void,

12.9.4. Get result object value type

Useful for user functions.

public final
OpenCReport\ Resul t::get _type(): long;

12.9.5. Detect whether result object value is NULL

Useful for user functions.

public final
OpenCReport\Result::is_null(): bool;

12.9.6. Detect whether result object value is a string

Useful for user functions.

public final
OpenCReport\Result::is_string(): bool;

12.9.7. Detect whether result object value is a number

Useful for user functions.

public final
OpenCReport\Resul t::is_nunber(): bool;

12.9.8. Get string value of a result object

Useful for user functions.

public final
OpenCReport\ Resul t::get_string(): 7?string;

12.9.9. Get numeric value of a result object as a string

Useful for user functions. The method may optionally use a format string to specify the number of
decimal digits. See MPFR format stri ngsz. The returned value may be used with BC Math®in PHP or
(if the precision is small enough) converted to doubl e or | ong.

public final

2 https://www.mpfr.org/mpfr-current/mpfr.html#Format-String
3 https://www.php.net/manual /en/book.bc.php

170

https://www.mpfr.org/mpfr-current/mpfr.html#Format-String
https://www.php.net/manual/en/book.bc.php
https://www.mpfr.org/mpfr-current/mpfr.html#Format-String
https://www.php.net/manual/en/book.bc.php

PHP language API reference

OpenCRepor t\ Resul t:: get_nunber(?string $format): ?string

12.10. The OpenCReport\Part class

cl ass OpenCReport\Part {
public final

publ

publ

publ

publ

publ

publ

publ

publ

publ

publ

publ

publ

publ

publ

publ

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

get _next():
?0penCReport\ Part;

row _new):
OpenCRepor t\ Row,

row get first():
?0penCRepor t\ Row,

add_iteration_cb(

string $cal |l back): void;

equal s(

OpenCReport\ Part $part): bool

set _iterations(
?string $expr_string
?0penCRepor t\ Expr;

get iterations():
?0penCRepor t\ Expr;

set _font_nane(
?string $expr_string
?0penCRepor t\ Expr;

get _font_name():
?0penCRepor t\ Expr;

set _font_size(
?string $expr_string
?0penCRepor t\ Expr;

get _font_size():
?0penCRepor t\ Expr;

set _paper (
?string $expr_string
?0penCRepor t\ Expr;

get _paper():
?0penCRepor t\ Expr;

set_orientation(
?string $expr_string
?0penCRepor t\ Expr;

get _orientation():
?0penCRepor t\ Expr;

set _top_margi n(
?string $expr_string

nul 1):
nul 1):
nul 1):
nul 1):
nul 1):
nul 1):

171

PHP language API reference

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

?0penCRepor t\ Expr;

get _top_margin():
?0penCRepor t\ Expr;

set _bottom nmargi n(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

get _bottom margin():
?0penCRepor t\ Expr;

set _left_margin(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

get _left_margin():
?0penCRepor t\ Expr;

set _right_margin(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

get _right_margin():
?0penCRepor t\ Expr;

set _suppress(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

get _suppress():
?0penCRepor t\ Expr;

set _suppress_pageheader _fi rst page(
?string $expr_string = null):
?0penCRepor t\ Expr;

get _suppress_pageheader _firstpage():
?0penCRepor t\ Expr;

page_header () :
?0penCReport\ Cut put ;

page_header _set _report (
OpenCReport\ Report $report):
voi d;

page_footer():
?0penCReport\ Cut put ;

page_footer_set_report (
OpenCReport\ Report $report):
voi d;

172

PHP language API reference

12.10.1. Get the next report part

Get the next abject in the chain of report parts. This method may only be used on an object created with
penCReport::part_get first(),i.e onethat wasinternaly marked as an iterator object.

public final

OpenCReport\Part::get_next():
?0penCReport\ Part;

12.10.2. Create a new report part row

For class methods of OpenCRepor t \ Row, see Section 12.11

public final
OpenCReport\Part::row new():
OpenCReport\ Row,

12.10.3. Get the first report part row

Get the first part row from the part. The object is marked internally as an iterator. For class methods
of OpenCRepor t \ Row, see Section 12.11

public final
OpenCReport\Part::row get first():
?0penCReport\ Row,

12.10.4. Add iteration callback for the part

Add an "iteration done" event callback for the part object.

public final
OpenCReport\Part::add_ iteration_cb(
string $cal l back): void;

12.10.5. Check whether two parts are identical

Check whether two part objectsrefer to the sameinterna part structure of the report. Used by unit tests.

public final
OpenCReport\ Part: : equal s(
OpenCReport\Part $part): bool;

12.10.6. Set or get number of part iterations

Set the number of iterations for the part. The expression must evaluate to a numeric (integer) value.
The part and all of its subsections will be calculated and rendered this many times. Default is 1.

public final

OpenCReport\Part::set _iterations(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\Part::get _iterations():
?0penCRepor t\ Expr;

173

PHP language API reference

12.10.7. Set or get part font name

public final

OpenCReport\ Part::set_font_name(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Part::get_font_name():
?0penCRepor t\ Expr;

12.10.8. Set or get part font size

public final

OpenCReport\Part::set_font_size(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Part::get_font_size():
?0penCRepor t\ Expr;

12.10.9. Set or get paper type

public final

OpenCReport\ Part::set_paper(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ Part::get_paper():
?0penCReport\ Expr;

12.10.10. Set or get part orientation

The expression must evaluateto astring value. The possiblevaluesareport rai t andl andscape.
Defaultisportrait.

public final

OpenCReport\Part::set_orientation(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\Part::get_orientation():
?0penCRepor t\ Expr;

12.10.11. Set or get part top margin

public final

OpenCReport\ Part::set_top_margin(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\Part::get _top_margin():
?0penCReport\ Expr;

174

PHP language API reference

12.10.12. Set or get part bottom margin

public final

OpenCReport\Part::set_bottom margin(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Part::get _bottom margin():
?0penCRepor t\ Expr;

12.10.13. Set or get part left margin

public final

OpenCReport\ Part::set_|eft_margin(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\Part::get_left_margin():
?0penCRepor t\ Expr;

12.10.14. Set or get part right margin

public final

OpenCReport\Part::set_right_margin(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\Part::get_right_margin():
?0penCReport\ Expr;

12.10.15. Set or get part suppression

Set whether the part is suppressed, i.e. all its subsections are omitted from cal culating and rendering.
Defaultisf al se.

public final

OpenCReport\ Part::set suppress(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Part::get suppress():
?0penCRepor t\ Expr;

12.10.16. Set or get suppression of the page header on
the first page

Set whether the page header of the part is suppressed on the first page. The expression must evaluate
to anumeric value, which is treated as a boolean (i.e. 0 or non-0). Default isf al se.

public final

OpenCReport\ Part::set_suppress_pageheader firstpage(
?string $expr_string = null):
?0penCRepor t\ Expr;

175

PHP language API reference

public final
OpenCReport\ Part::set_suppress_pageheader firstpage():
?0penCRepor t\ Expr;

12.10.17. Get the part's page header

Get the part's page header <Qut put > section. See Section 12.16 and Output node.

public final
OpenCReport\ Part:: page_ header():
?0penCReport\ Qut put ;

12.10.18. Set the report object for the part's page
header

Set the report object for the part's page header. This will add the internal association between the
part's page header and the report, and expressionsin the part page header may reference report query
column identifiers and report user variables. Thereforeit isonly recommended for single-part, single-
report reports.

public final

OpenCReport\ Part:: page_header_set _report(
OpenCRepor t\ Report $report):
voi d;

12.10.19. Get the part's page footer

Get the part's page footer <Qut put > section. See Section 12.16 and Output node.

public final
OpenCReport\ Part::page footer():
?0penCReport\ Qut put ;

12.10.20. Set the report object for the part's page
footer

Set the report object for the part's page footer. Thiswill add the internal association between the part's
page footer and the report, and expressions in the part page footer may reference report query column
identifiers and report user variables. Therefore it is only recommended for single-part, single-report
reports.

public final

OpenCReport\ Part::page footer_set report(
OpenCReport\ Report $report):
voi d;

12.11. The OpenCReport\Row class

cl ass OpenCReport\ Row {
public final get _next():
?0penCReport\ Row;

public final colum_new():
OpenCReport\ Col umm;

public final colum_get first():

176

PHP language API reference

public
public
public
public
public
public

}

fi

fi

fi

fi

fi

fi

nal

nal

nal

nal

nal

nal

?0penCRepor t\ Col umm;

set _suppress(
?string $expr_string
?0penCRepor t\ Expr;

get _suppress():
?0penCRepor t\ Expr;

set _newpage(
?string $expr_string
?0penCRepor t\ Expr;

get _newpage():
?0penCRepor t\ Expr;

set | ayout (
?string $expr_string
?0penCRepor t\ Expr;

set _layout ():
?0penCRepor t\ Expr;

12.11.1. Get the next part row

Get the next object in the chain of part rows. This method may only be used on an object created with
OpenCReport\Part::row get first(),i.e onetha was internally marked as an iterator

object.

public final
OpenCReport\ Row: : get _next():

?0penCReport\ Row;

nul 1) :
nul 1) :
nul 1) :

12.11.2. Create a new part column for the row

For class methods of OpenCRepor t \ Col um, see Section 12.12.

public final
OpenCReport\ Row: : col utm_new() :

12.11.3. Get first column of a part row

OpenCReport\ Col unm;

Get thefirst column from the part row. The object ismarked internally asan iterator. For class methods
of OpenCRepor t\ Col um, see Section 12.12

public final
OpenCRepor t\ Row: : col uim_get _first():

?0penCReport\ Col um;

12.11.4. Set or get suppression for the part row

public final
OpenCReport\ Row: set _suppress(

?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

177

PHP language API reference

public final
OpenCReport\ Row. get _suppress():
?0penCRepor t\ Expr;

12.11.5. Set or get new page for the part row

When set to yes, the part row will start on a new page.

public final

OpenCReport\ Row. set _newpage(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Row. get _newpage():
?0penCRepor t\ Expr;

12.11.6. Set or get layout type for the part row

public final

OpenCReport\ Row: : set | ayout (
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Row: : set | ayout():
?0penCRepor t\ Expr;

12.12. The OpenCReport\Column class

cl ass OpenCReport\ Col um {
public final get _next():
?0penCReport\ Col umm;

public final report_new():
OpenCReport\ Report;

public final report_get first():
?0penCReport\ Report;

public final set_suppress(
?string $expr_string
??0penCRepor t \ Expr;

nul 1) :

public final get_ suppress():
??0penCRepor t \ Expr;

public final set_wi dth(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get width():
?0penCRepor t\ Expr;

public final set_wi dth(
?string $expr_string = null):
?0penCRepor t\ Expr;

178

PHP language API reference

public final get_wdth():
?0penCRepor t\ Expr;

public final set_border_w dt h(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_border_w dth():
?0penCRepor t\ Expr;

public final set_border_col or(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_border_color():
?0penCRepor t\ Expr;

public final set_detail_col ums(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_detail _colums():
?0penCRepor t\ Expr;

public final set_col um_paddi ng(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_colum_padding():
?0penCRepor t\ Expr;
}

12.12.1. Get next column

Get the next object in the chain of part columns. This method may only be used on an object created
with QpenCReport\ Row: : col unm_get _first(), i.e. one that was internally marked as an
iterator object.

public final
OpenCReport\ Col um: : get _next():
?0penCReport\ Col unm;

12.12.2. Create a new report in the column

For class methods of OpenCRepor t \ Report , see Section 12.13.

public final
OpenCRepor t\ Col um: : report _new():
OpenCReport\ Report;

12.12.3. Get first report of a part column

Get the first report from the part column. The aobject is marked internally as an iterator. For class
methods of OQpenCRepor t \ Report, see Section 12.13

public final
OpenCReport\ Col um: :report_get first():

179

PHP language API reference

?0penCReport\ Report;

12.12.4. Set or get part column suppression

public final

OpenCReport\ Col umm: : set _suppress(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCRepor t\ Col um: : get _suppress():
?0penCRepor t\ Expr;

12.12.5. Set or get part column width

Set the width of thewhole part column. If aninner report iswider than the column width, it'srendering
is truncated.

public final

OpenCReport\ Col um: : set _wi dt h(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCRepor t\ Col um: : get _wi dt h():
?0penCRepor t\ Expr;

12.12.6. Set or get part column height

Set the part column height. During report execution, the column height is calculated for rendering.
Inner reports and the height of their lines that would be rendered are added. New lines of areport that
would exceed the part column height are not rendered and the report is rendered partially. The data
shown in rendered lines are identical in both cases, whether or not the pre-set height is set. When the
set column height is reached, further inner reports are not rendered. Default is unset, i.e. every inner
report isfully rendered.

public final

OpenCReport\ Col um: : set _hei ght (
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Col um: : get _hei ght ():
?0penCRepor t\ Expr;

12.12.7. Set or get border width

Set the border width around the part column. The width isin points (1/72 inches). Default is O, i.e. a
border is not rendered around the part column.

public final

OpenCReport\ Col um: : set _border _w dt h(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Col um: : get _border_wi dth():
?0penCRepor t\ Expr;

180

PHP language API reference

12.12.8. Set or get border color

Set the border color around the part column. Only used if the border width is set.

public final

OpenCReport\ Col um: : set _border _col or(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Col umm: : get _border_color():
?0penCRepor t\ Expr;

12.12.9. Set or get number of detail columns

Set the number of detail columns in the part column. Inner reports inside the part column may be
narrow and visually wasteful with empty areas on the page. In this case, when a page break would
occur, acolumn break would occur instead. Only reaching thelast columnwould resultin apage break.

public final

OpenCReport\ Col um: : set _detai |l _col ums(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Col um: : get _detail _col ums():
?0penCRepor t\ Expr;

12.12.10. Set or get column padding

Set the padding between detail columns. It isused if the number of detail columnsis greater than 1.

public final

OpenCRepor t\ Col um: : set _col utm_paddi ng(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCRepor t\ Col um: : get _col utm_paddi ng():
?0penCReport\ Expr;

12.13. The OpenCReport\Report class

cl ass OpenCReport\ Report {
public final get _next():
?0penCReport\ Report;

public final variable new
| ong $vari abl e_t ype,
string $nane,
string $expr,
?string $i gnoreexpr = null,
?string $reset_on_break_nane = nul |,
?bool $precal cul ate = fal se):
OpenCReport\ Vari abl e;

public final variable new full(
| ong $result_type,

181

PHP language API reference

string $nane,

?string $baseexpr = null,

?string $ignoreexpr = null,

?string $internedexpr = null,
?string $interned2expr = null,
?string $resultexpr = null

?string $reset_on_break_nane = nul |,
?bool $precal culate = fals):
OpenCReport\ Vari abl e;

public full variable_get first():
?0penCReport\ Vari abl e;

public final expr_parse(

string $expr_string):

?0penCRepor t\ Expr;
public final expr_error(): ?string;
public final resolve_variables(): void;
public final evaluate_variables(): void;
public final break_new

?string $nane):

OpenCReport\ Report Br eak;
public final break_get(

string $break_nane):

OpenCReport\ Report Br eak;

public final break_get first():
?0penCReport\ Report Br eak;

public final resolve_breaks(): void;
public final get_query_rownum(): |ong;

public final add_start_ch(
string $cal |l back): void;

public final add_done_cb(
string $cal |l back): void;

public final add_new row cb(
string $cal |l back): void;

public final add_iteration_cb(
string $cal |l back): void;

public final add_precal cul ati on_done_cb(
string $cal |l back): void;

public final equal s(
OpenCReport\ Report $report):
bool

public final set_main_query(

182

PHP language API reference

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i
publ i
publ i
publ i
publ i

O 0000

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi
fi
fi
fi
fi

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal
nal
nal
nal
nal

OpenCReport\ Query $query): void;

set _mai n_query_by name(
string $query_nane): void;

set _suppress(
?string $expr_string = null):
?0penCRepor t\ Expr;

get _suppress():
?0penCRepor t\ Expr;

set _iterations(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

get iterations():
?0penCRepor t\ Expr;

set _font_nane(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

get _font_name():
?0penCRepor t\ Expr;

set _font_size(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

get _font_size():
?0penCRepor t\ Expr;

set _hei ght (
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

get _hei ght ():
?0penCRepor t\ Expr;

set _fiel dheader _priority(
?string $expr_string = null):
?0penCRepor t\ Expr;

get _fiel dheader _priority():
?0penCRepor t\ Expr;

nodat a(): OpenCReport\ Cut put;
header (): OpenCReport\ Cut put ;
footer(): OpenCReport)\Qutput;
fiel d_header(): OpenCReport\ Cutput;
field_details(): OpenCReport\ Qutput;

183

PHP language API reference

12.13.1. Get the next report

Get the next object in the chain of reports. This method may only be used on an object created with
OpenCReport\ Col um: : report _get _first(), i.e onethat was internally marked as an
iterator object.

public final
OpenCReport\ Report::get_next():
?0penCReport\ Report;

12.13.2. Create a new report variable

Create a new variable of the specified type and name, using the expression to produce the value.
Optionally a break name (see Report breaks) may be specified, where, upon a break change, the
variable is reset. See Report variables. For class methods of OpenCReport\ Vari abl e, see

Section 12.14.

public const OpenCReport\ Report:: VAR ABLE EXPRESSI ON,
public const OpenCReport\Report:: VAR ABLE COUNT,;
public const OpenCReport\Report:: VAR ABLE COUNTALL;
public const OpenCReport\Report:: VAR ABLE SUM

public const OpenCReport\ Report:: VAR ABLE AVERAGE,
public const OpenCReport\Report:: VAR ABLE AVERAGEALL,;
public const OpenCReport\ Report:: VAR ABLE LONEST,;
public const OpenCReport\Report:: VAR ABLE H GHEST;

public final
OpenCReport\ Report::variabl e_new
[ong $vari abl e_t ype,
string $nane,
string $expr,
?string $ignoreexpr,
?string $reset_on_break nanme = nul |,
?bool $precal culate = fal se):
OpenCReport\ Vari abl e;

A precalculated variable's value (or set of values) is calculated during the precalculation phase of
report execution. When the report is being rendered, the precalculated values are used. This allows
using an end value in a header, e.g. a report header may contain a summary of bottom line values.
Similarly, break headers may show valuesthat would otherwise be shown only in break footer sections
for variables that are reset on a break.

12.13.3. Create a new custom report variable

Create a new custom variable of the specified name, with total control over the base expression,
intermediary expression(s) and the result expression. Optionally a break name (see Report breaks)
may be specified, where, upon a break change, the variable is reset. See Report variables. For class
methods of OpenCReport\ Vari abl e, see Section 12.14.

public final

OpenCReport\ Report::variable new full(
| ong $result_type,
string $nane,
?string $baseexpr = null,
?string $ignoreexpr,
?string $internedexpr = null,
?string $interned2expr = null,
?string $resultexpr = null,

184

PHP language API reference

?string $reset_on_break_nane = nul |,
?bool $precal cul ate = fal se):
OpenCReport\ Vari abl e;

12.13.4. Get the first variable of a report

Get the first variable object in the chain of variables of the report. The object is marked internally as
an iterator, so QpenCReport\ Vari abl e: : get _next () may beused onit.

public final
OpenCReport\ Report::variable get first():
?0penCReport\ Vari abl e;

12.13.5. Parse and expression for the report

Parse and expression for the report. If the expression fails to parse, the method returns NULL and the
error isfound in OpenCReport\ Report: : expr_parse().

public final

OpenCReport\ Report: :expr_parse(
string $expr_string):
?0penCRepor t\ Expr;

The main difference between OpenCReport : : expr _parse() (see Section 12.4.4.1) and this
method is that the former may not reference a report variable identifier. Since the expression for
the former method is not associated with a report, report variable identifiers in the expression may
not be resolved. The same applies to any function that is related to report internal details, e.g. the
br r ownun() function (see Break row number function: the expressionisnot associated with areport
with breaks, the break name will not be found.

12.13.6. Get the error after a failed expression parsing

public final
OpenCReport\ Report::expr_error(): ?string;

12.13.7. Resolve variables of the report

Resolve al variables of the report. This method may be useful to implement a custom report executor.
The equivalent C function is used internally. This method is used by unit tests.

public final
OpenCReport\ Report::resolve_variables(): void,;

12.13.8. Evaluate variables of the report

This method may be useful to implement a custom report executor. The equivalent C function is used
internally. This method is used by unit tests.

public final
OpenCRepor t\ Report: :eval uate_variabl es(): void;

12.13.9. Create a new report break

Create a new report break. A break is the basis for grouping data. See Report breaks. For the class
methods of QpenCRepor t \ Repor t Br eak, see Section 12.15.

public final

185

PHP language API reference

OpenCReport\ Report: : break_new
?string $nane):
OpenCReport\ Report Br eak;

12.13.10. Get areport break by its name

Get apreviously created break using its name. The object that's created this way is not marked as an
iterator, so OpenCRepor t \ Report Break: : get _next () may not be used on it.

public final

OpenCReport\ Report: : break_get (
string $break_name):
OpenCReport\ Report Br eak;

12.13.11. Get the first report break

Get the first break object in the chain of breaks of the report. The object is marked internally as an
iterator, so QpenCRepor t \ Report Br eak: : get _next () may beused onit.

public final
OpenCReport\ Report::break get first():
?0penCRepor t\ Report Br eak;

12.13.12. Resolve breaks of the report

Resolve all breaks of the report. It may be useful to create a custom report executor. The equivalent
C function isused internally. Used by unit tests.

public final
OpenCReport\ Report::resolve _breaks(): void;

12.13.13. Get the current row number of the main
query
Get the current row number of the report's main query. Used by unit tests.

public final
OpenCReport\ Report::get_query rownunm(): |ong;

12.13.14. Add a "report start" callback

Add a"report start" callback to the report. The callback is called when the report starts during report
execution.

public final
OpenCReport\ Report::add_start_cb(
string $cal |l back): void;

The callback function interface must follow this:

function
ny_cal | back(OpenCReport $o0, OpenCReport\Report $r): void;

12.13.15. Add a "report done" callback

Add a"report done" callback to the report. The callback is called when the report is done during report
execution.

186

PHP language API reference

public final
OpenCReport\ Report::add_done_cb(
string $cal |l back): void;

The callback function interface must follow this:

function
my_cal | back(OpenCReport $o, OpenCReport\Report $r): void;

12.13.16. Add a "new row" callback

Add a"new row" callback to the report. The callback is called for every datarow for the report during
report execution.

public final
OpenCReport\ Report::add _new row cb(
string $cal |l back): void;

The callback function interface must follow this:

function
ny_cal | back(OpenCReport $o0, OpenCReport\Report $r): void;

12.13.17. Add an "iteration done" callback

Add an "iteration done" callback to the report. The callback is called after every iteration for the report
during report execution.

public final
OpenCReport\ Report::add_iteration_cb(
string $cal |l back): void;

The callback function interface must follow this:

function
ny_cal | back(OpenCReport $o, OpenCReport\Report $r): void;

12.13.18. Add a "precalculation done" callback

Add a"precalculation done" callback to the report. The callback is called after precalculation is done
for the report during report execution.

public final
OpenCReport\ Report::add _precal cul ati on_done_ch(
string $cal |l back): void;

The callback function interface must follow this:

function
ny_cal | back(OQpenCReport $o, OpenCReport\Report $r): void;

12.13.19. Check whether two report objects are the
same

Check whether the main object'sinternal C representation isthe same as the passed-in object'sinternal
representation.

187

PHP language API reference

public final

OpenCReport\ Report: : equal s(
OpenCRepor t\ Report $report):
bool ;

12.13.20. Set the report's main query
Set the report's main query to the passed-in OpenCRepor t\ Query.

public final
OpenCRepor t\ Report::set_main_query(
OpenCReport\ Query $query): void;

12.13.21. Set the report's main query by name
Set the report's main query using the query name.

public final
OpenCReport\ Report::set_main_query_by nanme(
string $query_nane): void;

12.13.22. Set or get the report suppression

Set the report's suppression. The expression must evaluate too a numeric value. It's zero or non-zero
value will decide whether the report is suppressed, i.e. not calculated and not rendered in the output.

public final

OpenCReport\ Report::public final set_suppress(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Report::public final get_ suppress():
?0penCRepor t\ Expr;

12.13.23. Set or get number of iterations for the report

Set the number of iterations for the report. The report will be calculated and rendered this many times.
Defaultis 1.

public final

OpenCReport\ Report::set_iterations(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final

OpenCReport\ Report::get _iterations():
?0penCRepor t\ Expr;

12.13.24. Set or get the font name for the report

Set the font name for the report. The report font name will be used for any child elements that don't
specify the font name themselves.

public final
OpenCReport\ Report::set_font_nane(

188

PHP language API reference

?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Report::get_font_name():
?0penCRepor t\ Expr;

12.13.25. Set or get the font size for the report

Set the font size for the report. The report font size will be used for any child elements that don't
specify the font size themselves.

public final

OpenCReport\ Report::set_font_size(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Report::get_font_size():
?0penCRepor t\ Expr;

12.13.26. Set or get the report height

Set the report height. During report execution, the report height is calculated for rendering. Height of
linesthat would be rendered are added. New linesthat would exceed the report height are not rendered.
The data shown in rendered lines are identical in both cased, whether or not the report height is set.
Default isunset, i.e. every lineis rendered and the number of lines determine the report height,

public final

OpenCReport\ Report::set height(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ Report::get_height():
?0penCReport\ Expr;

12.13.27. Set or get the report's field header prioroty

Set the report's field header priority. See Report field header priority attribute for explanation.

public final

OpenCReport\ Report::set fieldheader_priority(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCRepor t\ Report::get_fieldheader_priority():
?0penCRepor t\ Expr;

12.13.28. Get output sections of the report

Get the output sections of the report. See NoData node, Report header, Report footer and Detail node.
For class methods of , see Section 12.16.

public final
OpenCReport\ Report::nodata(): OpenCReport\CQutput;

189

PHP language API reference

public final
OpenCReport\ Report:: header(): OpenCReport\ Cutput;

public final
OpenCReport\ Report::footer(): OpenCReport\ Cutput;

public final
OpenCReport\ Report::field_header(): OpenCReport\ Qutput;

public final
OpenCReport\Report::field_detail s(): OpenCReport\ Qutput;

12.14. The OpenCReport\Variable class

cl ass OpenCReport\Variable {
public final baseexpr():
?0penCRepor t\ Expr;

public final ignoreexpr():
?0penCRepor t\ Expr;

public final intermedexpr():
?0penCRepor t\ Expr;

public final intermed2expr():
?0penCRepor t\ Expr;

public final resultexpr():
?0penCRepor t\ Expr;

public final get type(): long;
public final get precal culate(): bool;

public final resolve(): void,
public final eval (): void;

public final get_next():
?0penCReport\ Vari abl e;
}

12.14.1. Get the base expression of a variable

Used by unit tests. For class methods of QpenCRepor t \ Expr , see The OpenCReport\Expr class

public final
OpenCRepor t\ Vari abl e: : baseexpr ():
?0penCRepor t\ Expr;

12.14.2. Get the ignore expression of a variable

Used by unit tests. For class methods of OpenCRepor t \ Expr , see The OpenCReport\Expr class

public final
OpenCReport\ Vari abl e: ;i gnoreexpr():
?0penCRepor t\ Expr;

190

PHP language API reference

12.14.3. Get the first intermediary expression of a
variable

Used by unit tests. For class methods of OpenCRepor t \ Expr , see The OpenCReport\Expr class

public final
OpenCReport\ Vari abl e: ;i nternmedexpr():
?0penCRepor t\ Expr;

12.14.4. Get the second intermediary expression of a
variable
Used by unit tests. For class methods of OpenCRepor t \ Expr , see The OpenCReport\Expr class

public final
OpenCReport\ Vari abl e: : i nternmed2expr():
?0penCRepor t\ Expr;

12.14.5. Get the result expression of a variable

Used by unit tests. For class methods of QpenCRepor t \ Expr , see The OpenCReport\Expr class

public final
OpenCReport\ Variabl e::resul texpr():
?0penCRepor t\ Expr;

12.14.6. Get the variable type

public final
OpenCReport\ Variabl e:: get_type(): |ong;

12.14.7. Get the variable precalculated flag

Get the variabl€e's precalculated flag.

public final
OpenCReport\ Vari abl e:: get_precal culate(): bool;

12.14.8. Resolve expressions of a variable

Resolve the base, intermediary and result expressions of asingle variable. Used by unit tests.

public final
OpenCReport\ Variabl e: :resol ve(): void;

12.14.9. Evaluate expressions of a variable

Evaluate the base, intermediary and result expressions of asingle variable. Used by unit tests.

public final
OpenCReport\Variabl e::eval (): void;

12.14.10. Get the next variable of the same report

Get the next variable object from the chain of variables in the report this variable belongs to. This
method may only be called on an object that was marked as an iterator, i.e. one that was created by
OpenCReport\ Report::variable get first().

191

PHP language API reference

public final
OpenCReport\ Vari abl e: : get _next ():
?0penCReport\ Vari abl e;

12.15. The OpenCReport\ReportBreak class

cl ass OpenCReport\ ReportBreak {
public final get _next():
?0penCRepor t\ Report Br eak;

public final breakfield add(
OpenCRepor t\ Expr $breakfiel d_expr):
voi d;

public final check fields(): bool;
public final reset _vars(): void,;

public final add _trigger cb(
?string $cal |l back):
voi d;

public final nane(): string;

public final header(): OpenCReport\ Qutput;
public final footer(): OpenCReport\ Qutput;

}
12.15.1. Get next break

Get the next break object from the chain of breaksin the report this break belongsto. This method may
only be called on an object that was marked as an iterator, i.e. onethat was created by OpenCRepor t
\ Report::break_get first().

public final
OpenCReport\ Report Break: : get_next():
?0OpenCReport\ Report Br eak;

12.15.2. Add a breakfield to a break

Add a breakfield to a break. A bresk may consists of multiple breakfields. A break triggersif any of
the breakfields change from one data line to another.

public final

OpenCReport\ Report Break: : breakfi el d_add(
OpenCReport\ Expr $breakfiel d_expr):
voi d;

12.15.3. Check breakfields

Check breakfields of abreak. This method returnst r ue if the break triggers, i.e. field values for the
current datarow do not match the values for the previous datarow. It also the triggersfor the first row
when there is no previous row. It is used internally by the report executor and also used by unit tests.
It may be useful to implement a custom report executor.

public final

192

PHP language API reference

OpenCReport\ Report Break:: check_fields(): bool;

12.15.4. Reset variables associated with a break

Reset report variables associated with a break. Such variables were created with specifying the "reset
on bresk" bresk name. These variables restart from their initial values. It is used internally by the
report executor and also used by unit tests. It may be useful to implement a custom report executor.

public final
OpenCReport\ Report Break: :reset_vars(): void;

12.15.5. Add a "trigger" callback to a break

Add a"trigger" callback to the break.

public final

OpenCReport\ Report Break: :add_trigger cb(
?string $cal |l back):
voi d;

12.15.6. Get the name of a break

Get the name of a break. It may be useful if the breaks were added via a report XML descriptor but
variables are added afterwards from code.

public final
OpenCRepor t\ Report Break: : nane(): string;

12.15.7. Get output sections of a break

Get the header and footer sections of a break. See adso BreakHeader and BreakFooter. For class
methods of QpenCRepor t \ Qut put , see Section 12.16

public final
OpenCRepor t\ Report Break: : header (): OpenCReport\ Qut put ;

public final
OpenCRepor t\ ReportBreak: :footer(): OpenCReport)\ Qutput;

12.16. The OpenCReport\Output class

cl ass OpenCReport\ Qut put {
public final set_suppress(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_ suppress():
?0penCRepor t\ Expr;

public final add_line():
?0penCReport\ Li ne;

public final add _hline():
?0penCReport\ Hori zont al Li ne;

public final add_imge():

193

PHP language API reference

?penCReport\ | mage;
public final add_innage_end(): void,;

public final get first_elenment():
?0penCRepor t\ Qut put El enent ;
}

12.16.1. Set or get suppression of the output section

Set suppression of the output section. The expression must evaluate to a numeric value which will be
treated as aboolean, i.e. 0 or non-0. The default isf al se, i.e. the section is not suppressed.

public final

OpenCReport\ Qut put:: set_suppress(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Qut put:: get_suppress():
?0penCRepor t\ Expr;

12.16.2. Add a (text) line

Add a(text) lineto the output section. A linemay have children elements, likeCpenCRepor t \ Text ,
OpenCReport\ I mage and OQpenCReport\ Bar code. (See Section 12.20, Section 12.19 and
Section 12.21.) For class methods of OpenCRepor t\ Li ne, see Section 12.17.

public final
OpenCReport\ Qut put::add_line():
?0penCReport\ Li ne;

12.16.3. Add a horizontal line

Add ahorizontal line (avisua separator) to the output section. For class methods of OpenCRepor t
\ Hori zont al Li ne, see Section 12.17.

public final
OpenCRepor t\ Qut put::add_hline():
?0penCReport\ Hori zont al Li ne;

12.16.4. Add an image

Add an image to the output section. The image will indent every subsequent elements in the section,
except other images and barcodes (see below). For class methods of OQpenCReport\ | mage, see
Section 12.17.

public final
OpenCReport\ Qut put : : add_i mage() :
?penCReport\ | mage;

12.16.5. Add a barcode

Add a barcode to the output section. The barcode behaves just like an image, i.e. it will indent

every subsequent elements in the section, except other images and barcodes. For class methods of
OpenCReport\ Bar code, see Section 12.17.

194

PHP language API reference

public final
OpenCReport\ Qut put : : add_bar code() :

?0penCRepor t\ Bar code;

12.16.6. Add an image end marker

Add an image end marker to the output section. Subsequent elements in the section won't be indented

and will be drawn vertically below the previousimage.

public final

OpenCRepor t\ Qut put: : add_i mage_end():

12.16.7. Get the first output element

Get the first output layout element. It starts an iterator for the output, and return the first element via
an OpenCRepor t\ Qut put El enent object, or nul | if thereisnone. See also Section 12.22.

public final
OpenCReport\ Qutput::get first_elenment():
?0penCReport\ Qut put El enent ;

12.17. The OpenCReport\Line class

cl ass OpenCReport\Line {
public final

publ |

publ |

publ |

publ |

publ |

publ |

publ |

publ |

fi

fi

fi

fi

fi

fi

fi

fi

nal

nal

nal

nal

nal

nal

nal

nal

set font_nane(
?string $expr_string
?0penCRepor t\ Expr;

get _font _name():
?0penCRepor t\ Expr;

set _font_size(
?string $expr_string
?0penCRepor t\ Expr;

get _font_size():
?0penCRepor t\ Expr;

set _bol d(
?string $expr_string
?0penCRepor t\ Expr;

get bol d():
?0penCRepor t\ Expr;

set _italic(
?string $expr_string
?0penCRepor t\ Expr;

get italic():
?0penCRepor t\ Expr;

set _suppress(
?string $expr_string
?0penCRepor t\ Expr;

voi d;

nul 1):
nul 1):
nul 1):
nul 1):
nul 1):

195

PHP language API reference

public final get_suppress():
?0penCRepor t\ Expr;

public final set_color(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_color():
?0penCRepor t\ Expr;

public final set_bgcol or(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_bgcolor():
?0penCRepor t\ Expr;

public final add_text():
?0penCReport\ Text ;

public final add_imge():
?penCReport\ | mage;

public final add_barcode():
?0penCRepor t\ Bar code;

public final get first_elenment():
?OpenCReport\ Li neEl enent ;

}
12.17.1. Set or get the font name for the line

Set the font name for the line. This font will be used for child text elements that don't set the font
name themselves.

public final

OpenCReport\Line::set_font_name(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\Line::get_font_nanme():
?0penCReport\ Expr;

12.17.2. Set or get the font size for the line

Set the font size for the line. This font size will be used for child text elements that don't set the font
size themselves.

public final

OpenCReport\Line::set _font_size(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\Line::get _font_size():
?0penCRepor t\ Expr;

196

PHP language API reference

12.17.3. Set or get the font's bold flag for the line

Set the font's bold flag for the line. The expression must evaluate to a numeric value that is treated as
aboolean, i.e. 0 or non-0. Defaultisf al se. Thisbold flag value will be used for child text elements
that don't set it themselves.

public final

OpenCRepor t\ Li ne: : set_bol d(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCRepor t\ Li ne:: get_bol d():
?0penCRepor t\ Expr;

12.17.4. Set or get the font's italic flag for the line

Set the font'sitalic flag for the line. The expression must evaluate to a numeric value that istreated as
aboolean, i.e. 0 or non-0. Default isf al se. Thisitalic flag value will be used for child text elements
that don't set it themselves.

public final

OpenCReport\Line::set _italic(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\Line::get _italic():
?0penCReport\ Expr;

12.17.5. Set or get line suppression

Set the suppression flag for the line. The expression must evaluate to a numeric value that is treated
as aboolean, i.e. 0 or non-0. Default isf al se, i.e. not suppressed. When set to a non-0 value (i.e.
t r ue), thewhole line with all its child elements (text or image) will be suppressed, i.e. not rendered.

public final

OpenCReport\Line::set_suppress(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCRepor t\ Li ne::set_suppress():
?0penCRepor t\ Expr;

12.17.6. Set or get text color for the line

Set text color for the line. See Color specification. Thistext color will be used for child elements that
don't set the text color themselves.

public final

OpenCReport\Line::set_col or(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\Line::get _color():

197

PHP language API reference

?0penCRepor t\ Expr;

12.17.7. Set or get background color for the line

Set background color for the line. See Color specification. This background color will be used for
child elements that don't set the background color themselves.

public final

OpenCReport\Line::set_bgcol or (
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ Li ne::get_bgcol or():
?0penCReport\ Expr;

12.17.8. Add a text element to the line

Add achild text element to the line. For class methods of QpenCRepor t \ Text , see Section 12.20.

public final
OpenCRepor t\Line::add_text():
?0penCReport\ Text;

12.17.9. Add an image element to the line

Add a child image element to the line. For class methods of CpenCReport\ | nage, see
Section 12.19.

public final
OpenCRepor t\ Li ne: : add_i mage():
?0penCReport\ | mage;

12.17.10. Get the first line element

Get the first element of the line. It starts an iterator for the output, and return the first element viaan
OpenCReport\ Li neEl erent object, or nul | if thereisnone. See also Section 12.23.

public final
OpenCReport\Line::get_first_elenent():
?0penCRepor t\ Li neEl enent ;

12.18. The OpenCReport\HorizontalLine class

cl ass OpenCReport\Horizontal Li ne {
public final set_size(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_size():
?0penCRepor t\ Expr;

public final set_alignment(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_alignnment():

198

PHP language API reference

?0penCRepor t\ Expr;

public final set_indentation(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_indentation():
?0penCRepor t\ Expr;

public final set_length(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_length():
?0penCRepor t\ Expr;

public final set_font_size(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_font_size():
?0penCRepor t\ Expr;

public final set_suppress(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_suppress():
?0penCRepor t\ Expr;

public final set_color(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_color():
?0penCRepor t\ Expr;
}

12.18.1. Set the line width

Set or get the line width in points. Also see Section 8.18.1.1

public final

OpenCReport\ Hori zont al Li ne: : set _si ze(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ Hori zont al Li ne: : get _size():
?0penCReport\ Expr;

12.18.2. Set or get the line alignment

Set the line alignment. Also see Section 8.18.1.2

public final
OpenCReport\ Hori zont al Li ne: : set _al i gnment (
?string $expr_string = null):

199

PHP language API reference

?0penCRepor t\ Expr;

public final
OpenCReport\ Hori zont al Li ne: : get _al i gnnment () :
?0penCRepor t\ Expr;

12.18.3. Set or get the line indentation

Set the line indentation, i.e. starting point to the right of the left side of the report. Also see
Section 8.18.1.3

public final

OpenCRepor t\ Hori zont al Li ne: : set _i ndent ati on(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Hori zont al Li ne: : get _i ndentati on():
?0penCRepor t\ Expr;

12.18.4. Set or get the line length

Set the line length. See HorizontalLine length and Size unit attribute.

public final

OpenCReport\ Hori zont al Li ne: : set _| engt h(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ Hori zontal Line::get_|ength():
?0penCReport\ Expr;

12.18.5. Set or get the line's font size

Setthelineg'sfont size. Thisfont sizeisused in calculating theline length. See HorizontalLinefont size

public final

OpenCRepor t\ Hori zont al Li ne: : set _font _si ze(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCRepor t\ Hori zont al Li ne: : get _font_size():
?0penCRepor t\ Expr;

12.18.6. Set or get the suppression flag for the line

Set the suppression flag for the line. The expression must evaluate to a numeric value that is treated
asaboolean, i.e. 0 or non-0. When settot r ue, thelineis not rendered. Default isf al se.

public final

OpenCReport\ Hori zontal Li ne: : set _suppress(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final

200

PHP language API reference

OpenCReport\ Hori zont al Li ne: : get _suppress():

?0penCRepor t\ Expr;

12.18.7. Set or get the line color

Set the line color. See Color specification.

public final
OpenCReport\ Hori zont al Li ne: : set _col or (

public final
OpenCReport\ Hori zont al Li ne: : get_col or():

12.19. The OpenCReport\image

?string $expr_string
?0penCRepor t\ Expr;

?0penCRepor t\ Expr;

cl ass OpenCReport\ Il mage {
public final

publ |

publ |

publ |

publ |

publ |

publ |

publ |

publ |

publ |

publ |

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

set _val ue(
?string $expr_string
?0penCRepor t\ Expr;

get val ue():
?0penCRepor t\ Expr;

set _suppress(
?string $expr_string
?0penCRepor t\ Expr;

get _suppress():
?0penCRepor t\ Expr;

set _type(
?string $expr_string
?0penCRepor t\ Expr;

get _type():
?0penCRepor t\ Expr;

set _wi dt h(
?string $expr_string
?0penCRepor t\ Expr;

get _width():
?0penCRepor t\ Expr;

set _hei ght (
?string $expr_string
?0penCRepor t\ Expr;

get _height():
?0penCRepor t\ Expr;

set _al i gnnent (
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :
class
nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :

201

PHP language API reference

public final get_alignment():
?0penCRepor t\ Expr;

public final set_bgcol or(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_bgcolor():
?0penCRepor t\ Expr;

public final set_text_wi dth(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_text_w dth():
?0penCRepor t\ Expr;
}

12.19.1. Set or get the file name of the image

Set the file name of the image. The file name may be and absolute path, relative
to the work directory of the application, or relative to any of the paths added with
OpenCReport: :add_search_path() . (SeeSection 12.4.10.1)

public final

OpenCReport\ 1 mage: : set _val ue(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ | mage: : get _val ue():
?0penCRepor t\ Expr;

12.19.2. Set or get the suppression flag for the image

Set the suppression flag for theimage. The expression must evaluate to anumeric value that istreated
asaboolean, i.e. 0 or non-0. Defaultisf al se.

public final

OpenCReport\ I mage: : set _suppress(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final

OpenCReport\ |l mage: : get _suppress():
?0penCRepor t\ Expr;

12.19.3. Set or get the image type

Set the image file type. Usually it's auto-detected and not needed.

public final

OpenCReport\ 1 mage: : set _type(
?string $expr_string = null):
?0penCReport\ Expr;

public final

202

PHP language API reference

OpenCReport\ | mage: : get _type():
?0penCRepor t\ Expr;

12.19.4. Set or get the image width

Set theimage width. This setting is used when the image element isadirect child of an output section.
See Section 8.19.1.4.

public final

OpenCReport\ 1 mage: : set _w dt h(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ I mage: :get_width():
?0penCRepor t\ Expr;

12.19.5. Set or get the image height

Set theimage height. This setting is used when theimage element isadirect child of an output section.
See Section 8.19.1.4.

public final

OpenCReport\ Il mage: : set _hei ght (
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ Il nmage: : get _hei ght ():
?0penCReport\ Expr;

12.19.6. Set or get the image alignment

Set the image alignment. This setting is used when the image element is a child of atext line. See
Section 8.19.1.8.

public final

OpenCReport\ Il mage: : set_al i gnnent (
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ Il mage: : get_alignnent():
?0penCReport\ Expr;

12.19.7. Set or get the image background color

Set the image background color. This setting is used when the image element isa child of atext line.
See Section 8.19.1.7.

public final

OpenCReport\ | mage: : set _bgcol or(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ | mage: : get _bgcol or ():
?0penCReport\ Expr;

203

PHP language API reference

12.19.8. Set or get the image "text width"

Set the image "text width". This setting is used when the image element is a child of atext line. See
Section 8.19.1.6.

public final

OpenCReport\ I mage: : set _text_w dt h(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCRepor t\ 1l mage: : get _text_w dth():
?0penCReport\ Expr;

12.20. The OpenCReport\Text class

cl ass OpenCReport\ Text {
public final set_value_string(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final set_val ue_expr(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get value():
?0penCRepor t\ Expr;

public final set_val ue_del ayed(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get val ue_del ayed():
?0penCRepor t\ Expr;

public final set format(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get format():
?0penCRepor t\ Expr;

public final set _translate(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get translate():
?0penCRepor t\ Expr;

public final set_wi dth(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get width():
?0penCRepor t\ Expr;

public final set_alignment(

204

PHP language API reference

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

?string $expr_stri
?0penCRepor t\ Expr;

get _alignnent():
?0penCRepor t\ Expr;

set _col or(
?string $expr_stri
?0penCRepor t\ Expr;

get _color():
?0penCRepor t\ Expr;

set _bgcol or(
?string $expr_stri
?0penCRepor t\ Expr;

get _bgcol or():
?0penCRepor t\ Expr;

set _font_nane(
?string $expr_stri
?0penCRepor t\ Expr;

get _font_name():
?0penCRepor t\ Expr;

set _font_size(
?string $expr_stri
?0penCRepor t\ Expr;

get _font_size():
?0penCRepor t\ Expr;

set _bol d(
?string $expr_stri
?0penCRepor t\ Expr;

get _bol d():
?0penCRepor t\ Expr;

set _italic(
?string $expr_stri
?0penCRepor t\ Expr;

get italic():
?0penCRepor t\ Expr;

set _|ink(
?string $expr_stri
?0penCRepor t\ Expr;

get _link():
?0penCRepor t\ Expr;

set _meno(
?string $expr_stri
?0penCRepor t\ Expr;

ng

ng

ng

ng

ng

ng

ng

ng

ng

nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :

205

PHP language API reference

public final get_meno():
?0penCRepor t\ Expr;

public final set_meno_hyphenat e(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_meno_hyphenate():
?0penCRepor t\ Expr;

public final set_meno_w ap_chars(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_menmo_wap_chars():
?0penCRepor t\ Expr;

public final set_menmo_max_|ines(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_menmo_max_I|ines():
?0penCRepor t\ Expr;
}

12.20.1. Set literal value

Set the literal value for the text element.

public final

OpenCReport\ Text::set_val ue_string(
?string $expr_string = null):
?0penCRepor t\ Expr;

12.20.2. Set or get expression value

Set the expression value for the text element. And expression may depend on data row values. See
Expressions.

public final

OpenCReport\ Text : : set _val ue_expr (
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text :: get_val ue():
?0penCRepor t\ Expr;

12.20.3. Set or get delayed flag for the field expression

Set delayed flag for the field expression. When set to t r ue, the field expression's last value is
calculated during the precal culation phase of executing the report and this precalculated value is used
during rendering the report.

public final
OpenCReport\ Text: :set _val ue_del ayed(

206

PHP language API reference

?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text : : get _val ue_del ayed():
?0penCRepor t\ Expr;

12.20.4. Set or get the format string for the field
expression

Set the format string for the field expression. This format string will be used instead of the default
formats for specific types. See Formatting data

public final

OpenCReport\ Text: :set fornat(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
penCReport\ Text::set format():
?0penCRepor t\ Expr;

12.20.5. Set or get the translation flag for the field
expression

Set the trangdlation flag for the field expression. When set to t r ue, the field value will be trandlated
according to the locale and tranglation settings. See Section 12.4.2

public final

OpenCRepor t\ Text: :set_transl at e(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final

OpenCReport\ Text::get_translate():
?0penCRepor t\ Expr;

12.20.6. Set or get the field width

Set the field width. See Text element width

public final

OpenCReport\ Text: : set_wi dt h(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final

OpenCReport\ Text::get_width():
?0penCRepor t\ Expr;

12.20.7. Set or get the field alignment

Set the field alignment. See Text element alignment

public final

207

PHP language API reference

OpenCReport\ Text::set_al i gnment (
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text::get_alignnent():
?0penCRepor t\ Expr;

12.20.8. Set or get the field text color

Set the field text color. See Section 8.17.1.6

public final

OpenCReport\ Text::set_col or(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ Text::get_color():
?0penCReport\ Expr;

12.20.9. Set or get the field background color

Set the field background color. See Section 8.17.1.7

public final

OpenCReport\ Text:: set _bgcol or (
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ Text:: get _bgcol or():
?0penCReport\ Expr;

12.20.10. Set or get the field font name

Set the field font name. See Text element font name

public final

OpenCReport\ Text::set font_namg(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text::get _font_name():
?0penCRepor t\ Expr;

12.20.11. Set or get the field font size

Set the field font size. See Text element font size

public final

OpenCReport\ Text::set _font_size(
?string $expr_string = null):
?0penCRepor t\ Expr;

208

PHP language API reference

public final
OpenCReport\ Text::get_font_size():
?0penCRepor t\ Expr;

12.20.12. Set or get the field's bold flag

Set the field's bold flag. See Section 8.17.1.10

public final

OpenCReport\ Text : : set _bol d(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text:: get _bol d():
?0penCReport\ Expr;

12.20.13. Set or get the field's italic flag

Set thefield'sitalic flag. See Section 8.17.1.11

public final

OpenCReport\ Text::set _italic(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\Text::get italic():
?0penCReport\ Expr;

12.20.14. Set or get the field's link

Set the field's link URL. When set, the text field becomes a link with the specified URL. See
Section 8.17.1.12

public final

OpenCReport\ Text::set |ink(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text::get link():
?0penCRepor t\ Expr;

12.20.15. Set or get the field's memo flag

Set thefield'smemo (multi-linetext) flag. When set tot r ue, thetext field becomesamulti-linefield.
See Multi-line (memo) field

public final

OpenCReport\ Text::set _meno(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text::get _neno():

209

PHP language API reference

?0penCRepor t\ Expr;

12.20.16. Set or get the field's "hyphenate" flag

Set the field's "hyphenate” flag. Only used when the memo flagissettot r ue. When settof al se,
words at the end of the lines in the multiline text field would break over to the next line as a whole.
When set to t r ue, the word will be hyphenated. Default ist r ue. When character wrapping is used
(see below), this setting is not used. See Section 8.17.1.14

public final

OpenCReport\ Text::set _neno_hyphenat e(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ Text:: get _nmeno_hyphenate():
?0penCRepor t\ Expr;

12.20.17. Set or get the field's "wrap at characters" flag

Set the field's "wrap at characters' flag. Only used when the memo flag is set to t r ue. Default is
f al se, the text is wrapped at word boundaries. When set to t r ue, text is wrapped at character
boundaries with hyphenation. See Section 8.17.1.15

public final

OpenCRepor t\ Text : : set _nmeno_wr ap_char s(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCRepor t\ Text: : get _neno_wrap_chars():
?0penCRepor t\ Expr;

12.20.18. Set or get the field's maximum number of

lines

Set the field's maximum number of lines. Only used when the memo flag is set to t r ue. The text
field'svalue isonly rendered up to the set number of lines. Default is unset, the text is rendered fully.
See Section 8.17.1.16

public final

penCReport\ Text::set_nenmo_max_| i nes(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text::get _nmeno_max_|ines():
?0penCRepor t\ Expr;

12.21. The OpenCReport\Barcode class

cl ass OpenCReport\ Barcode {
public final set_val ue(
?string $expr_string = null):
?0penCRepor t\ Expr;

210

PHP language API reference

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

}

12.21.1. Set or get the barcode value

Set the barcode's value from an expression string. The expression must evaluate to a string, whose

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

get val ue():
?0penCRepor t\ Expr;

set _val ue_del ayed(
?string $expr_stri
?0penCRepor t\ Expr;

get _val ue_del ayed():
?0penCRepor t\ Expr;

set _suppress(
?string $expr_stri
?0penCRepor t\ Expr;

get _suppress():
?0penCRepor t\ Expr;

set _type(
?string $expr_stri
?0penCRepor t\ Expr;

get _type():
?0penCRepor t\ Expr;

set _w dt h(
?string $expr_stri
?0penCRepor t\ Expr;

get _width():
?0penCRepor t\ Expr;

set _hei ght (
?string $expr_stri
?0penCRepor t\ Expr;

get _hei ght ():
?0penCRepor t\ Expr;

set _col or(
?string $expr_stri
?0penCRepor t\ Expr;

get _color():
?0penCRepor t\ Expr;

set _bgcol or(
?string $expr_stri
?0penCRepor t\ Expr;

get _bgcol or():
?0penCRepor t\ Expr;

value is the string to be encoded as a barcode.

ng

ng

ng

ng

ng

ng

ng

nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :

211

PHP language API reference

public final

OpenCReport\ Bar code: : set _val ue(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Bar code: : get _val ue():
?0penCRepor t\ Expr;

12.21.2. Set or get the barcode value delayed

Set the barcode's value delayed from an expression string. The expression must evaluate to a boolean
value.

public final

OpenCReport\ Bar code: : set _val ue_del ayed(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ Bar code: : get _val ue_del ayed():
?0penCReport\ Expr;

12.21.3. Set or get the barcode suppression

Set the barcode's suppression value from an expression string. The expression must evaluate to a
boolean value.

public final

OpenCReport\ Bar code: : set _suppress(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ Barcode: : get _suppress():
?0penCReport\ Expr;

Default valueisf al se, i.e. no suppression.

12.21.4. Set or get the barcode type

Set the barcode type.

public final

OpenCReport\ Bar code: : set _type(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Barcode: : get _type():
?0penCRepor t\ Expr;

Thetype may be optional, in which caseit's autodetected and the barcode isrendered in the format that
firstalowstheval ue string to berendered. Possibletypes (inthe order of autodetection) are: upc- a,
ean- 13, upc- e, ean-8,i sbn, code39, code39ext,codel28b, codel28c, or codel28.
If t ype isspecified, the val ue isrendered in that barcode type if the string is valid for the type. If

212

PHP language API reference

val ue isinvalidfor the specified t ype, or autodetection fails, becausetheval ue isinvalid for any
of the above listed types, the barcode is not rendered.

12.21.5. Set or get the barcode width

Set the barcode image width.

public final

OpenCReport\ Barcode: : set _wi dt h(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ Barcode: : get_wi dt h():
?0penCReport\ Expr;

Thewidth is set according to Size unit attribute, either in points (1/72th inch) or in (monospace) font
width units set by <Li ne>.

12.21.6. Set or get the barcode height

Set the barcode image height.

public final

OpenCReport\ Bar code: : set _hei ght (
?string $expr_string = null):
?OpenCRepor t\ Expr;

public final
OpenCReport\ Bar code: : get _hei ght ():
?OpenCRepor t\ Expr;

12.21.7. Set or get the barcode image line color

Set the barcode image line color.

public final

OpenCReport\ Barcode: : set_col or(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ Barcode: : get _col or():
?0penCRepor t\ Expr;

12.21.8. Set or get the barcode image background
color

Set the barcode image background color.

public final

OpenCReport\ Bar code: : set _bgcol or (
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Bar code: : get _bgcol or():

213

PHP language API reference

?0penCRepor t\ Expr;

12.22. The OpenCReport\OutputElement
class

cl ass OpenCReport\ Qut put El emrent {
public final get_next():
?0penCRepor t\ Qut put El enent ;
public final is_line(): bool;
public final is_hline(): bool;
public final is_imge(): bool;

public final is_barcode(): bool;

public final get_line():
?OpenCReport\ Li ne;

public final get_hline():
?0penCReport\ Hori zont al Li ne;

public final get_inmage():
?penCReport\ | mage;

public final get_barcode):
?0penCRepor t\ Bar code;

}

This class iterates through layout elements defined for the output section used in OQpenCRepor t
\Qutput::get _first_element(). An OpenCReport\ Qut put El enent object is an
"abstract” object in the sense that it encapsulates several explicit object types. These object types can
be determined using thei s_* () methods and the actual objects underlying the abstract object can
be acquired using theget _* () methods.

12.23. The OpenCReport\LineElement class

cl ass OpenCReport\Li neEl enent {
public final get _next():
?0penCReport\ Li neEl enent ;
public final is_text(): bool;
public final is_imge(): bool;

public final is_barcode(): bool;

public final get text():
?0penCReport\ Li ne;

public final get _inmage():
?0penCReport\ | mage;

public final get barcode):
?0penCReport\ Bar code;

214

PHP language API reference

}

This class iterates through line elements defined for the line object used in OpenCReport
\Line::get_first_elenment().AnCOpenCReport\LineEl ement objectisan "abstract”
object in the sense that it encapsulates several explicit object types. These object types can be
determined using thei s_* () methods and the actual objects underlying the abstract object can be
acquired using theget _* () methods.

12.24. RLIB compatibility API

These functions mimic the behaviour of the RLIB PHP API but their declaration differ in away that
the RLIB compatibility APl in OpenCReports create and use OpenCReport objects, making the
OpenCReports methods and RLIB compatibility functions inter-operable.

12.24.1. Initialize a report

function
riib_init(): ?0penCReport;

Note that initializing the report using this function automatically enables some RLIB compatibility
settings, like the output parameter "xml_rlib_compat".

12.24.2. Destroy a report

function
riib_free(QpenCReport $r): void;

12.24.3. Get library version

function
riib_version(void): string;

12.24.4. Add a MySQL/MariaDB datasource

function

rlib_add_datasource_nysql (
OpenCReport $r,
string $source_nane,
string $host,
string $user,
string $password,
string $dbnane):
OpenCReport\ Dat asour ce;

This function is equivalent to using OpenCReport : : dat asour ce_add() with the MariaDB
input driver with expanded connection parameters, but without specifying a custom port:

$0 = new OpenCReport();

$conn_parans = |
"host" => "nyserver",
"dbname" => "ocrpttest”,
"user" => "ocrpt"”

1

$ds = $o- >dat asour ce_add(" mari adb", "mariadb", $conn_parans);

215

PHP language API reference

12.24.5. Add a MySQL/MariaDB datasource from an INI
group

function
rlib_add datasource_nysql _from group(
OpenCReport $r,
string $source_nane,
string $group,
?string $option_file = null):
OpenCReport\ Dat asour ce;

Thisfunction is equivalent to using OpenCReport : : dat asour ce_add() with MariaDB input
driver, using the option file and group parameters:

$0 = new OpenCReport();

$conn_parans = |
"optionfile" =>"./mariadb/ocrpt.cnf",
"group” => "ocrpt”

1

$ds = $o- >dat asour ce_add("mari adb", "mariadb", $conn_parans);
12.24.6. Add a PostgreSQL datasource
function

rlib_add_datasource_postgres(
OpenCReport $r,
string $source_nane,
?string $connection_info = null):
OpenCRepor t\ Dat asour ce;

Thisfunction is equivalent to using OpenCReport : : dat asour ce_add() with the PostgreSQL
input driver using the connection info string:

$0 = new QpenCReport ();

$conn_params = ["connstr" => "dbname=ocrpttest user=ocrpt"];

$ds = $o0->dat asource_add("pgsql ", "postgresqgl", $conn_parans);
12.24.7. Add an ODBC datasource
function

rlib_add datasource_odbhc(
OpenCReport $r,
string $source_nane,
string $dbnane,
?string $user, = null,
?string $password = null):
OpenCReport\ Dat asour ce;

Thisfunctionisequivalent to using OpenCReport : : dat asour ce_add() withthe ODBC input
driver with expanded connection parameters:

$0 = new OpenCReport();

216

PHP language API reference

$conn_parans = [
"dbnanme" => "nydb",
"user" => "myuser"”

I

$ds = $o0- >dat asource_add("odbc", "odbc", $conn_parans);

12.24.8. Add an array datasource

function

rlib_add_datasource_array(
OpenCReport $r,
string $source_nane):
OpenCReport\ Dat asour ce;

This function is equivalent to using QpenCRepor t : : dat asour ce_add() with the array input
driver:

$0 = new OpenCReport();

$ds = $o- >dat asource_add("array", "array");
12.24.9. Add an XML datasource
function

rlib_add datasource xnl(
OpenCReport $r,
string $source_nane):
OpenCReport\ Dat asour ce;

This function is equivalent to using OQpenCReport : : dat asour ce_add() with the XML input
driver:

$0 = new QpenCReport ();

$ds = $o- >dat asource_add("xm ", "xm");

12.24.10. Add a CSV datasource

function

rlib_add_datasource_csv(
OpenCReport $r,
string $source_nane):
OpenCRepor t\ Dat asour ce;

This function is equivalent to using OpenCReport : : dat asour ce_add() with the CSV input
driver:

$0 = new OpenCReport();

$ds = $o- >dat asource_add("csv", "csv");

12.24.11. Add a query

This function is equivalent to OQpenCRepor t \ Dat asour ce: : query_add() with a different
order of parameters. The query nameisthe last parameter.

function

217

PHP language API reference

rlib_add_query_as(
OpenCReport $r,
string $source_nane,
string $array_or_file_or_sql,
string $nane):
OpenCReport\ Dat asour ce;

12.24.12. Add aresultset follower

Thisfunctionisabout equivalentto OpenCRepor t\ Query: : add_fol | ower () .The$l eader
and $f ol | ower are query names.

function
riib_add resultset follower(
OpenCReport $r,
string $l eader,
string $follower): bool;

12.24.13. Add aresultset N:1 follower

Thisfunctionis about equivalent to OpenCReport\ Query: : add_foll ower_n_to_1().The
former allows an arbitrary match expression, while the RLIB compatibility function will use the
$l eader _field = $f ol | ower _fi el d expression. Similarly to the abovefunction, $I eader
and $f ol | ower are query names.

function
riib_add resultset_follower_n_to_1(
OpenCReport $r,
string $l eader,
string $l eader_field,
string $foll ower,
string $foll ower_field): bool;

12.24.14. Set datasource encoding

This function is equivaent to OpenCReport\ Dat asource: :set_encodi ng(). See
Section 12.5.3

function
riib_set datasource_encodi ng(
OpenCReport $r,
string $nane,
string $encoding): void;

12.24.15. Add a report XML

Thisfunction is equivalent to QpenCReport : : parse_xm ().
function
rlib_add _report(

OpenCReport $r,
string $filenanme): bool;

12.24.16. Add a report XML from buffer

Thisfunction isequivalent to OpenCReport:: parse_xm from buffer().

218

PHP language API reference

function
rlib_add _report_frombuffer(
OpenCReport $r,
string $buffer): bool;

12.24.17. Add a search path

Thisfunction isequivalent to OpenCReport : : add_search_pat h().

function

rliib_add search_pat h(
OpenCReport $r,
string $path): bool;

12.24.18. Set locale

Thisfunction isequivalent to OpenCReport: : set | ocal e().

function
riib_set |ocal e(
OpenCReport $r,
string $l ocale): void;

12.24.19. Setup translation

Thisfunction isequivalent to OpenCReport : : bi ndt ext domai n() .

function
rlib_bi ndtextdonai n(
penCReport $r,
string $domain,
string $dirnane): void;

12.24.20. Set output format

This function is about equivalent to OQpenCReport::set_output format() but
accepts textua format names (like pdf instead of the numeric constants like
OpenCReport : : OUTPUT_PDF

function

riib_set output_ format_ fromtext(
OpenCReport $r,
string $fornat): void,;

12.24.21. Add a custom report function

This function isthe RLIB compatible variant of OQpenCReport: : functi on_add() . Unlike the
OpenCReports AP, the function added by this function does not have the control knobsto optimize it
properly. After thisfunction returns, subsequently parsed expressions may use afunction name passed
inwith $nane. The PHP function nameisin $f uncti on

function
rlib_add function(
OpenCReport $r,
string $nane,
string $function,
| ong $parans): void;

219

PHP language API reference

Theinterface of the PHP function must follow the below prototype. It must contain the exact number
of arguments passed in via$par ans, i.e. it may not pass - 1 to indicate variadic arguments.

function my_function($argl, $arg2, ...)

The function implementation may return any PHP basetype (st ri ng, | ong, doubl e or bool).

12.24.22. Set output encoding

This function silently does nothing. For PDF, it's not relevant. Other (CURRENTLY NOT
IMPLEMENTED) output formats will all use UTF-8.

function
rlib_set output_encoding(
OpenCReport $r,
string $encoding): void,

12.24.23. Add a report parameter

This function is equivalent to OpenCReport::set_mvariable().

function
riib_add paraneter(
OpenCReport $r,
string $param
?string $value = null): void;

12.24.24. Set an output parameter

Set output parameters for the report. For accepted parameters, see Section 12.3.6

function

rlib_set output_paraneter(
OpenCReport $r,
string $param
string $val ue): void;

12.24.25. Refresh array query contents

Thisfunction is equivalent to executing OpenCReport::query_refresh(). The same limitations apply.

function
riib_query_refresh(OpenCReport $r): void;

12.24.26. Add an event callback

This function adds a callback for the specified $si gnal in an RLIB compatible way. The
signal name may be r ow_change, report _done, report_start, report _iteration,
part _iterationorprecal cul ati on_done.

function
rlib_signal connect(
penCReport $r,
string $signal,
string $function): void;

The PHP function prototype must follow this:

220

PHP language API reference

function ny_cal |l back()

This function is different from the methods that add specific callback types for parts, reports, breaks,
etc. in that the callback is added to the toplevel OpenCReport object context, meaning that a
report _start calback will becalledfor every report in case there are multiple reportsin the same
context. Similarly, the same part _i t erati on callback will be caled for every part in a multi-
part report.

Since there is no way to know which part or which report triggers the callback, it is recommended to
userlib_signal _connect () for single-part single-report reports. For more special purposes,
the callback creation class methods are recommended.

12.24.27. Execute the report

Itisequivalent to OpenCReport: : execut e()

function
rlib_execute(QpenCReport $r): bool;

12.24.28. Dump the report output

Itisequivalent to OpenCReport: : spool ()

function
rlib_spool (QpenCReport $r): ?string;

12.24.29. Get content type

Itisequivalent to OpenCReport:: get _content type()

function
rlib_get_content_type(QpenCReport $r): ?string;

12.24.30. Set radix character

This function silently does nothing. Formatting numbers correctly follow the locale information
regarding the decimal separator.

function
rlib_set _radix_character(OQpenCReport $r): void;

12.24.31. Compile and evaluate an expression

function
riib_conpile_infix(string $expr_string):
st ring| doubl e| nul I ;

Since only the expression string is passed but not the $r resource in RLIB, the compatibility
implementation of this function is equivalent to the sequence of creating an internal OQpenCReport
object, parsing, optimizing and eval uating the expression, converting itsresult to aPHP base type, then
destroying the internal object. For this reason, the expression may not reference any query columns
or report variables.

12.24.32. Add graph background region

This function silently does nothing. GRAPHING ISNOT IMPLEMENTED YET.

function

221

PHP language API reference

rlib_graph_add_bg_region(
OpenCReport $r,
string $graph,
string $region,
string $col or,
doubl e $start,
doubl e $end): void;

12.24.33. Clear graph background region

This function silently does nothing. GRAPHING ISNOT IMPLEMENTED YET.

function

riib_graph_clear_bg_region(
OpenCReport $r,
string $graph): void;

12.24.34. Set graph minor tick

This function silently does nothing. GRAPHING ISNOT IMPLEMENTED YET.

function

rlib_graph_set x mnor_tick(
OpenCReport $r,
string $graph,
string $x): void;

12.24.35. Set graph minor tick by location

This function silently does nothing. GRAPHING ISNOT IMPLEMENTED YET.

function

rlib_graph_set_x_mnor_tick by location(
OpenCReport $r,
string $graph,
doubl e $l ocation): void;

222

Chapter 13. Examples

13.1. Simple report example

This example below uses a PostgreSQL query to generate a report in PDF output format, with many
settings used as default:

» Courier font

e 12 pointsfont size

» automatically calculated field width where it's not specified (note the header and footer fields)
* black font color

 white background

* default paper size

Note that this particular default setting depends on your location, or rather, the computer's country
settings. For example, the U.S. uses the Letter page size as default. On the other hand, most of
Europe uses the A4 page size.

and so on.

13.1.1. Data

Datais created as follows in adatabase called ocr pt t est using the user ocr pt

create table flintstones (id serial, name text, property text, age
int, adult bool);

insert into flintstones (nanme, property, age, adult)

val ues

("Fred Flintstone','strong', 31,true),

("WIlm Flintstone','charmng', 28,true),

(' Pebbl es Flintstone','young', 0.5, false);

The data looks like this when queried:

ocrpttest=> select * fromflintstones;

id | nane | property | age | adult
T T Ty T +-- o - - R R
1| Fred Flintstone | strong | 31] t
2| WIlnma Flintstone | charming | 28 | t
3 | Pebbles Flintstone | young | 1] f
(3 rows)

13.1.2. C program code

The program code uses a minimalistic approach, putting everything into the report XML instead.

#i ncl ude <stdio. h>
#i ncl ude <opencreport. h>

int main(int argc, char **argv) {
opencreport *o = ocrpt_init();

if (locrpt_parse_xm (o, "exanplel.xm")) {
printf("XM parse error\n");

223

Examples

ocrpt_free(o);
return O;

}

ocrpt _set_out put _format (o, OCRPT_QUTPUT_PDF);
ocr pt _execute(0);

ocr pt _spool (0);

ocrpt_free(o);

return O;

}
13.1.3. PHP program code

Here's the equivalent program code in PHP.

<?php
$0 = new OpenCReport();

if (!%0->parse_xnm ("exanplel.xm ")) {
echo "XM. parse error" . PHP_EQ;
exit(0);

}

$0- >execut e() ;
$0- >spool () ;

13.1.4. RLIB compatible PHP program code

Here's the equivalent program code in PHP, using the RLIB compatibility functions.

<?php
$r =rlib_init();

if ('rlib_add_report($r, "examplel.xm ")) {
echo "XM. parse error" . PHP_EQ;
exit(0);

}

rlib_execute($r);
rlib_spool ($r);

13.1.5. Report description

The program code uses this file contents from exanpl el. xm .

<?xm version="1.0"?>
<! DOCTYPE OpenCReport SYSTEM "opencreport.dtd">
<OpenCReport >
<Dat asour ces>
<Dat asource nane="pgsqgl " type="postgresql"
dbnanme="ocrpttest" user="ocrpt" />
</ Dat asour ces>

<Queri es>
<Query nane="qg" datasource="pgsqgl ">select * from
flintstones; </ Query>
</ Queri es>

224

Examples

<Report query="

q">

<PageHeader >
<Qut put >

<Li

ne>
<literal w dth="20">The Flintstones</literal >
<field value="printf('Page %d / %', r.pageno,

r.totpages)” align="right" />
</ Li ne>
</ Qut put >
</ PageHeader >

<PageFoot er >
<Qut put >

<Li

ne>
<literal >The Flintstones</literal >
<field value="printf('Page %d / %', r.pageno,

r.totpages)” align="right" />

</ Li ne>
</ Qut put >
</ PageFoot er >
<Det ai | >
<Fi el dHeader s>
<Qut put >
<Li ne>
<literal width="4" align=""right'">ID</
literal >
<literal wdth="1"/>
<literal w dth="20">Nanme</literal>
<literal wdth="1"/>
<literal w dth="8"
align=""center'">Property</literal >
<literal wdth="1"/>
<literal w dth="6">Age</literal >
<literal wdth="1"/>
<literal wi dth="5" align=""'center'">Adult</
literal >
</ Li ne>
</ Qut put >
</ Fi el dHeader s>
<Fi el dDet ai | s>
<Qut put >
<Li ne>
<field width="4" align="right" value="id" /
>

<literal width="1"/>
<field w dt h="20" val ue="nanme" />
<literal width="1"/>

<field wi dt h="8" align=""center

val ue="property" />

<literal wdth="1"/>
<field width="6" align=""right""

val ue="age" format=""%2d" />

wi dt h="5" align=

<literal width="1"/>
<field value="adult ? 'yes
center'"/>

no

225

Examples

</ Li ne>
</ Qut put >
</ Fi el dDet ai | s>
</Detail >
</ Report >

</ OpenCReport >

13.1.6. Report PDF result

13.2. Simple report example with data access

In code

This example below is mostly the same as the previous one, with one exception: the database access

is done from program code instead of putting it into the report XML description file.

13.2.1. Data

Asthe same datais used as in the previous example, it's not duplicated here.

13.2.2. C program code

The program code adds the datasource and the query before loading the report XML description. The
order of theseare not important, astheocr pt _execut e() call performsmatching expressionswith

guery column namesinternaly.

#i ncl ude <stdio. h>
#i ncl ude <opencreport. h>

int main(int argc, char **argv) {
opencreport *o = ocrpt_init();

struct ocrpt_input_connect paraneter conn_parans[] = {
{ .param nane
{ .param nane
{ NULL }

"user", .paramyvalue = "ocrpt" },

ocr pt _datasource *ds = ocrpt_datasource_add(o, "pgsql",
"postgresql", conn_parans);

"dbnane", .paramyvalue = "ocrpttest”

226

Examples

ocrpt _query_add_sql (ds, "q", "select * fromflintstones;");

if (locrpt_parse_xm (o, "exanple2.xm")) {
printf("XM parse error\n");
ocrpt_free(o);
return O;

}

ocrpt _set_out put _format (o, OCRPT_QUTPUT_PDF);
ocr pt _execute(0);

ocr pt _spool (0);

ocrpt_free(o);

return O;

}
13.2.3. PHP program code

Here's the equivalent program code in PHP.

<?php
$0 = new OpenCReport();

$conn_parans = |
"dbnane" => "ocrpttest”,
"user" => "ocrpt"”

l;
$ds = $o->dat asource_add("pgsql ", "postgresqgl", $conn_parans);
$ds->query_add("qg", "select * fromflintstones;");
if (!%o->parse_xnl ("exanmple2.xm ")) {
echo "XM. parse error” . PHP_EQ;

exit(0);
}

$0- >execut e();
$0- >spool ();

13.2.4. RLIB compatible PHP program code

Here's the equivalent program code in PHP, using the RLIB compatibility functions.

<?php

$r =rlib_init();

riib_add_datasource_postgres($r, "pgsgl", "dbname=ocrpttest
user=ocrpt");

riib_add_query_as($r, "pgsql", "select * fromflintstones;", "q");

if ('rlib_add_report($r, "exanple2.xm")) {
echo "XM. parse error" . PHP_EQ;
exit(0);

}

rlib_execute($r);

227

Examples

rlib_spool ($r);

13.2.5. Report description

The program code uses this file contents from exanpl e2. xmri . Note that the <Dat asour ces>
and <Quer i es> nodes that describe the database access and the query in the previous example are
missing here. The equivalent code was added to the different program codes above.

<?xm version="1.0"?>
<! DOCTYPE OpenCReport SYSTEM "opencreport.dtd">
<OpenCReport >
<Report query="qg">
<PageHeader >
<Qut put >
<Li ne>
<literal w dth="20">The Flintstones</literal >
<field value="printf('Page % / %', r.pageno,
r.totpages)"” align="right" />
</ Li ne>
</ Qut put >
</ PageHeader >

<PageFoot er >
<Qut put >
<Li ne>
<literal >The Flintstones</literal >
<field value="printf('Page % / %', r.pageno,
r.totpages)"” align="right" />

</ Li ne>
</ Qut put >
</ PageFoot er >
<Det ai | >
<Fi el dHeader s>
<Qut put >
<Li ne>
<literal width="4" align=""right'">ID</
literal >
<literal wdth="1"/>
<literal w dth="20">Nane</literal>
<literal wdth="1"/>
<literal wi dth="8"
align="'center'">Property</literal >
<literal wdth="1"/>
<literal wi dth="6">Age</literal >
<literal wdth="1"/>
<literal width="5" align="'center'">Adult</
literal >
</ Li ne>
</ Qut put >
</ Fi el dHeader s>
<Fi el dDet ai | s>
<Qut put >
<Li ne>
<field width="4" align="right" value="id" /
>

<literal width="1"/>

228

Examples

<field wi dt h="20" val ue="nane" />
<literal wdth="1"/>
<field width="8" align=""center""
val ue="property" />
<literal wdth="1"/>
<field width="6" align=""right""
val ue="age" format=""%2d" />
<literal wdth="1"/>
<field value="adult ? 'yes’
center'"/>

no

wi dt h="5" align=

</ Li ne>
</ Qut put >
</ Fi el dDet ai | s>
</Detail >
</ Report >

</ OpenCReport >

13.2.6. Report PDF result

Theresult isidentical to the previous example, it's not duplicated here.

13.3. Colors, images, horizontal lines and
fonts

This example below showsthat reports may be more exciting, with colors and images and other visual
elements and settings.

13.3.1. Data

Datais created as follows in the same database as the first example.

create table flintstones2
(id serial primary key, nane text, filenane text);

insert into flintstones2 (nane, fil enane)

val ues
("Fred Flintstone', 'FredFlintstone.png'),
("WIlm Flintstone', 'WI maFlintstone.png'),

(' Pebbl es Flintstone', 'Pebbl esFlintstone.png'),
(' Barney Rubble', 'BarneyRubble.png'),

('Betty Rubble', 'BettyRubble.png'),

(' Bamm Bamm Rubbl e', ' BamBammRubbl e. png'),

(' The Great Gazoo', 'TheG eat Gazoo. png');

The data looks like this when queried:

ocrpttest=> select * fromflintstones2;
id | name | fil enane

1| Fred Flintstone | FredFlintstone. png
2| WIlm Flintstone | W maFlintstone. png
3 | Pebbles Flintstone | Pebbl esFlintstone. png
4 | Barney Rubble | BarneyRubbl e. png
5| Betty Rubble | BettyRubbl e. png
6 | Banmm Banm Rubbl e | BammBammRubbl e. png
7 | The Great Gazoo | TheGreat Gazoo. png

(7 rows)

229

Examples

13.3.2. C program code

The program code is amost identica to the second example with the database connection and the
guery added to program code, but it loads a different report XML description.

#i ncl ude <stdio. h>
#i ncl ude <opencreport. h>

int main(int argc, char **argv) {
opencreport *o = ocrpt_init();

struct ocrpt_input_connect _paraneter conn_parans[] = {

{ .param nane = "“dbname", .paramvalue = "ocrpttest" },
{ .paramnane = "user", .paramvalue = "ocrpt" },
{ NULL }
b
ocr pt _datasource *ds = ocrpt_dat asource_add(o, "pgsql"
"postgresql", conn_parans);
ocrpt _query_add_sql (ds, "qg", "select * fromflintstones2;");

if (locrpt_parse_xm (o, "exanple3.xm")) {
printf("XM. parse error\n");
ocrpt_free(o);
return O;

}

ocrpt _set _output _fornmat (o, OCRPT_OUTPUT_PDF);
ocr pt _execute(0);

ocr pt _spool (0);

ocrpt_free(o);

return O;

}
13.3.3. PHP program code

Here's the equivalent program code in PHP.

<?php
$0 = new OpenCReport();

$conn_parans = |
"dbname" => "ocrpttest"”,
"user" => "ocrpt"
I
$ds = $o->dat asource_add("pgsql ", "postgresqgl", $conn_parans);
$ds->query_add("q", "select * fromflintstones2;");
if (!%o->parse_xnl ("exanmple3.xm ")) {
echo "XM. parse error" . PHP_EQ;
exit(0);
}

$0- >execut e();

230

Examples

$0- >spool ();

13.3.4. RLIB compatible PHP program code

Here's the equivalent program code in PHP, using the RLIB compatibility functions.

<?php

$r = rlib_init();

rlib_add_datasource_postgres($r, "pgsqgl", "dbname=ocrpttest
user=ocrpt");

rlib_add_query_as($r, "pgsql", "select * fromflintstones2;", "q");

if (!'rlib_add_report($r, "exanmple3.xm")) {
echo "XM. parse error" . PHP_EQ;
exit(0);

}

rlib_execute($r);
rlib_spool ($r);

13.3.5. Report description

The program code uses this file contents from exanpl e3. xni .

Note the new settingss fontName="...", fontSize="...", bold="...",
italic="...",color="...",bgcolor="..." andothers.
Also note that the val ue="..." setting indicates the file names that are used with <l nage>

elements in the report XML description. These files must be present in the report application work
directory, or can be found in Search paths added either in the report XML description or via
programming code.

<?xm version="1.0"?>
<! DOCTYPE OpenCReport SYSTEM "opencreport.dtd">
<OpenCReport >
<Report query="qg">
<PageHeader >
<Qut put >
<l mage wi dt h="227" hei ght ="92"
val ue=""'"A Flintstones_|l ogo.png'" />
<Li ne>
<field fontName=""'Arial'" fontSize="20"
value="printf('Page %d / %', r.pageno, r.totpages)"
align="right" />
</ Li ne>
</ Qut put >
</ PageHeader >

<PageFoot er >
<Qut put >
<l mage wi dt h="227" hei ght ="92"
val ue=""'"A Flintstones_| ogo.png'" />
<Li ne>
<field fontName=""'Ti mes New Ronan'"
font Si ze="20" value="printf('Page %d / %', r.pageno, r.totpages)"
align="right" />
</ Li ne>
</ Qut put >

231

Examples

</ PageFoot er >

<Det ai | >
<Fi el dHeader s>
<Qut put >
<Hori zont al Li ne size="2" col or=""Dblack'" />
<Hori zont al Li ne size="2" color=""green'" />
<Li ne bgcol or=""'green'" bol d="yes"
font Si ze="18">
<literal fontNane="'Petaluma Script'"
wi dt h="7" align=""'center'">Picture</literal >
<literal wdth="1"/>
<literal fontName="'Carlito""
italic="yes">Nane</literal >
</ Li ne>
<Hori zont al Li ne size="2" color=""green'" />
<Hori zont al Li ne size="2" col or=""Dblack'" />
<Hori zont al Li ne size="2" color=""white'" />
</ Qut put >
</ Fi el dHeader s>

<Fi el dDet ai | s>
<Qut put >
<Li ne fontSi ze="18">
<l mage textWdth="7" bgcol or=""yell ow "
val ue="fil enane" />
<literal w dth="1" bgcolor=""yellow " />
<field color=""red" " bgcolor=""yell ow"

al i gn=""'center

val ue="name" />

</ Li ne>
</ Qut put >
</ Fi el dDet ai | s>
</Detail >
</ Report >

</ OpenCReport >

13.3.6. Report PDF result

Page1/1

Page 1/1

N N
JFubIc b

13.4. Report variables and breaks

This example below exercises report variables and breaks. Breaks use changes in a data series, like a
different last name. For more information, see Breaks.

232

Examples

13.4.1. Data

Datais created as follows in the same database using the same user as the first example.

create table flintstones3 (id serial, firstname text, |astnane
text, age int);

insert into flintstones3 (firstnane, |astnanme, age)
val ues

("Fred', '"Flintstone', 31),

("WIlnma', 'Flintstone', 28),

(' Pebbles', 'Flintstone', 2),

(' Barney', 'Rubble', 28),

("Betty', 'Rubble', 27),

(' Bamm Bammi, ' Rubble', 2),

(' The Great', 'Gazoo', 600);

The data looks like this when queried:

ocrpttest=> select * fromflintstones3;

id| firstnane | lastnane | age
T T gy T +--m - -
1| Fred | Flintstone | 31
2| Winm | Flintstone | 28
3 | Pebbles | Flintstone | 2
4 | Barney | Rubbl e | 28
5| Betty | Rubbl e | 27
6 | Bamm Bamm | Rubbl e | 2
7 | The Great | Gazoo | 600

(7 rows)

13.4.2. C program code

The program code isidentical to the second and third examples, except that it uses a different report
XML description.

#i ncl ude <stdio. h>
#i ncl ude <opencreport. h>

int main(int argc, char **argv) {
opencreport *o = ocrpt_init();

struct ocrpt_input_connect paraneter conn_parans[] = {
{ .paramnane = "connstr", .paramvalue = "dbnanme=ocrpttest
user=ocrpt" },
{ NULL }
1

ocr pt _datasource *ds = ocrpt_datasource_add(o, "pgsql"
"postgresql", conn_parans);

ocrpt _query_add_sql (ds, "qg", "select * fromflintstones3;");
if (locrpt_parse_ xm (o, "exanpled4.xm ")) {

printf("XM. parse error\n");

ocrpt _free(o);

return O;

233

Examples

ocrpt _set_out put _format (o, OCRPT_QUTPUT_PDF);
ocr pt _execute(0);

ocr pt _spool (0);

ocrpt_free(o);

return O;

}
13.4.3. PHP program code

Here's the equivalent program code in PHP.

<?php
$0 = new OpenCReport();

$conn_parans = ["connstr" => "dbname=ocrpttest user=ocrpt"];
$ds = $o0->dat asource_add("pgsql ", "postgresqgl", $conn_parans);
$ds->query_add("qg", "select * fromflintstones3;");
if (!%0->parse_xnm ("exanpled.xm ")) {

echo "XM. parse error" . PHP_EQ;

exit(0);
}

$0- >execut e() ;
$0- >spool () ;

13.4.4. RLIB compatible PHP program code

Here's the equivalent program code in PHP, using the RLIB compatibility functions.

<?php

$r = rlib_init();

rlib_add _datasource_postgres($r, "pgsqgl", "dbnanme=ocrpttest
user =ocrpt");

riib_add _query_as($r, "pgsql", "select * fromflintstones3;",

if ('rlib_add_report($r, "exanmple4.xm ")) {
echo "XM. parse error" . PHP_EQ;
exit(0);

}

rlib_execute($r);
rlib_spool ($r);

13.4.5. Report description

The program code uses this file contents from exanpl e4. xm .

<?xm version="1.0"?>
<! DOCTYPE OpenCReport SYSTEM "opencreport.dtd">
<OpenCReport >
<Report query="qg">
<Vari abl es>
<Vari abl e nane="var1" val ue="id" type="count" />

"q");

234

Examples

<Vari abl e nane="var 2" val ue="age" type="average"
precal cul ate="yes" resetonbreak="famly" />

<Vari abl e nane="var 3" val ue="age" type="average"
precal cul ate="yes" />

<Vari abl e nane="var 4" val ue="age" type="sunt />

<Vari abl e nane="var5" val ue="age" type="sunt
precal cul ate="yes" />

</ Vari abl es>

<Br eaks>
<Break nane="fam|y">
<Br eakFi el ds>
<Br eakFi el d val ue="I ast nane" />
</ Br eakFi el ds>
</ Br eak>
</ Br eaks>

<Detail >
<Fi el dHeader s>
<Qut put >
<Hori zont al Li ne size="2" color=""black'" />
<Hori zontal Li ne size="2" color=""white'" />
<Li ne bol d="yes" >
<literal wi dth="2" align="'center"">lD</

literal >

<literal wdth="1"/>

<literal w dth="20">Nanme</literal>

<literal wdth="1"/>

<literal wi dth="8" align=""right'">Age</
literal >

<literal wi dth="8" align=""right'">Count</
literal >

<literal wi dth="8" align=""right'">Avg
age</literal >

<literal wi dth="8" align=""right'">Avg
age</literal >

<literal wi dth="8" align=""right'">Age
sunx/literal >

<literal wi dth="8" align=""right'">Age
sunx/literal >

</ Li ne>
<Li ne bol d="yes">

<literal w dth="2"/>

<literal wdth="1"/>

<literal w dth="20"/>

<literal wdth="1"/>

<literal w dth="8"/>

<literal w dth="8"/>

<literal w dth="8" align=""right'">per
fanx/literal >

<literal wi dth="8" align=""right'">global </
literal >

<literal w dth="8"
align=""right'">running</literal >

<literal width="8" align=""right'">total </
literal >

</ Li ne>
<Hori zont al Li ne size="2" color=""white'" />

235

Examples

<Hori zont al Li ne size="2" color=""black'" />
<Hori zontal Li ne size="2" color=""white'" />
</ Qut put >
</ Fi el dHeader s>

<Fi el dDet ai | s>
<Qut put >
<Li ne>
<field width="2" align=""right""
val ue="id" />
<literal width="1" />
<field wi dth="20" value="firstnane + ' ' +
| ast name" />
<literal width="1"/>
<field w dth="8" val ue="age"
align=""right'" />
<field wi dth="8" val ue="v.var1l"
align=""right'" />
<field wi dth="8" val ue="v.var?2"
align=""right'" />
<field wi dth="8" val ue="v.var 3"
align=""right'" />
<field wi dt h="8" val ue="v.var4"
align=""right'" />
<field wi dth="8" val ue="v.var5"
format=""%2d" align=""right'" />

format ="' % 2d'

format ="' % 2d'

format ="' % 2d'

format ="' % 2d'

format ="' % 2d'

</ Li ne>
</ Qut put >
</ Fi el dDet ai | s>
</Detail >
</ Report >

</ OpenCReport >

13.4.6. Report PDF result

13.5. Follower queries

Thisexample below exercisesabasic follower query along with the main query. For moreinformation,
see Follower queries.

236

Examples

13.5.1. Data

Datais created as follows in the same database using the same user as the first example.

create table flintstones4 (id serial, firstnane text);
create table flintstones5 (id serial, |astnane text);

insert into flintstones4 (firstnane)
val ues

('"Fred),

("Wlma'),

(' Pebbl es'),

(' Barney'),

("Betty'),

(' Bamm Bammi) ,

(' The Great');

insert into flintstones5 (I|astnane)
val ues

(" Flintstone'),

(" Flintstone'),

(" Flintstone'),

(' Rubbl e'),

(' Rubbl e'),

(' Rubbl e'),

(' Gazoo');

The data looks like this when queried:

ocrpttest=> select * fromflintstones4;
id | firstnane

1]

2| Winm

3 | Pebbles

4 | Barney

5| Betty

6 | Bamm Bamm
7 | The Geat
(7 rows)

ocrpttest=> select * fromflintstones5;
id | lastnane

1| Flintstone
2 | Flintstone
3 | Flintstone
4 | Rubble

5 | Rubble

6 | Rubble

7 | Gazoo

(7 rows)

13.5.2. C program code

The program code adds the two queries and establishes the follower link between them.

#i ncl ude <stdi o. h>

237

Examples

#i ncl ude <opencreport.h>

int main(int argc, char **argv) {
opencreport *o = ocrpt_init();

struct ocrpt_input_connect_paraneter conn_paranms[] = {
{ .param_nane "dbname", .paramvalue = "ocrpttest” },
{ .param_nane "user", .paramvalue = "ocrpt" },
{ NULL }

b

ocr pt _dat asource *ds = ocrpt_dat asource_add(o, "pgsql"
"postgresql”, conn_parans);
ocrpt_query *gl = ocrpt_query_add_sql (ds, "ql", "select * from
nt st ones4;");
ocrpt_query *g2 = ocrpt_query_add_sql (ds, "q2", "select * from
nt st ones5; ") ;

fl

fl

ocrpt _query_add_fol |l ower(ql, g2);

if (locrpt_parse_xm (o, "exanple5.xm")) {
printf("XM parse error\n");
ocrpt_free(o);
return O;

}

ocrpt _set_out put _format (o, OCRPT_QUTPUT_PDF);
ocr pt _execute(0);

ocr pt _spool (0);

ocrpt_free(o);

return O;

}
13.5.3. PHP program code

Here's the equivalent program code in PHP.

<?php
$0 = new OpenCReport();

$conn_parans = |
"dbname" => "ocrpttest”,
"user" => "ocrpt"

1

$ds = $o->dat asource_add("pgsql ", "postgresqgl", $conn_parans);
$ql = $ds->query_add("ql", "select * fromflintstones4;");
$q2 = $ds->query_add("qg2", "select * fromflintstones5;");

$g1- >add_f ol | ower ($92);

if (!%o->parse_xnl ("exanmple5.xm ")) {
echo "XM. parse error" . PHP_EQ;
exit(0);

}

$0- >execut e() ;

238

Examples

$0- >spool ();

13.5.4. RLIB compatible PHP program code

Here's the equivalent program code in PHP, using the RLIB compatibility functions.

<?php
$r = rlib_init();

rlib_add datasource_postgres($r, "pgsqgl", "dbnane=ocrpttest
user=ocrpt");

riib_add query as($r, "pgsql", "select * fromflintstones4;",
n qlll) ;

riib_add query as($r, "pgsql", "select * fromflintstones5;",
n q2") ;

rlib_add_resultset_follower($r, "ql", "q2");

if (!'rlib_add report($r, "example5.xm ")) {
echo "XM. parse error" . PHP_EQ;
exit(0);

}

rlib_execute($r);
rlib_spool ($r);

13.5.5. Report description

The program code uses this file contents from exanpl e5. xmi .

Note that when using multiple queries in the same report, column names may be identical.
Because of this, using quer yname. col utmmnarne will indicate which one is needed. When using
col ummnarre then it will mean the first query's column.

<?xm version="1.0"?>
<! DOCTYPE OpenCReport SYSTEM "opencreport.dtd">
<OpenCReport >
<Report query="qgl">
<Det ai | >
<Fi el dHeader s>
<Qut put >
<Hori zontal Li ne size="2" color=""black'" />
<Hori zontal Line size="2" color=""white'" />
<Li ne bol d="yes" >
<literal width="20">First nane</literal >
<literal w dth="20">Last nane</literal >
</ Li ne>
<Hori zontal Line size="2" color=""white'" />
<Hori zontal Li ne size="2" color=""black'" />
<Hori zontal Line size="2" color=""white'" />
</ Qut put >
</ Fi el dHeader s>

<Fi el dDet ai | s>
<Qut put >
<Li ne>
<field wi dt h="20" val ue="ql.firstname" />

239

Examples

<field w dt h="20" val ue="q2. I ast name" />

</ Li ne>
</ Qut put >
</ Fi el dDet ai | s>
</Detail >
</ Report >

</ OpenCReport >

13.5.6. Report PDF result

Note that compared to RLIBY, OpenCReports may or may not produce the same output. Thisis due

to the incomplete and faulty implementation of follower queriesin RLIB.

13.6. N:1 follower queries

This example below exercises two N:1 (N-to-one) follower queries along with the main query. For

more information, see Follower queries.

13.6.1. Data

Datais created as follows in the same database using the same user asthe first example.

create table data (id serial unique, nane text);

create table nore_data (

id serial unique,

boss id int,

name text,

foreign key (boss_id) references data (id));

create table npar_data (

sk _id int,

name text,

foreign key (sk_id) references nore_data (id));

insert into data (nane)
val ues

(" Snow White'),

(' Batnman'),

(' G nderella'),

L hitps://sourceforge.net/projects/rlib/

240

https://sourceforge.net/projects/rlib/
https://sourceforge.net/projects/rlib/

Examples

(' Hansel '),
(‘Little Red Riding Hood'),
(' Robi n Hood');

insert into nore_data (boss_id, name)

val ues

(1, 'Doc'),
(1, " Dopey'),
(1, 'Sneezy'),
(1, 'Happy'),

(1, 'Bashful'),
(1, 'Sleepy'),

(1, "Gunmpy'),

(2, 'Robin'),

(3, 'Fairy Godnother'),
(3, "Mce"),

(3, 'Pidgeons'),
(4, '"Getel"),
(6, 'Little John');

insert into nmoar_data (sk_id, name)
val ues

(3, ' Coughy"),

(3, "Crippley’),

(9, '"Prince Charmng'),

(9, 'Shrek'),

(13, "WIIl Scarlet'),

(13, 'Brother Tuck');

The query that the N:1 followers in this report simulateis:

ocrpttest=> select * fromdata left outer join nore_data on
(data.id = nore_data. boss_id)

ocrpttest-> left outer join noar_data on (nore_data.id =
noar _dat a. sk_i d)

ocrpttest-> order by data.id, nore_data.id;

id | nane | id | boss_id | nane
sk_id | nane
e e e e e e o o - T S
F S —— S
1| Snow White | 1| 1| Doc
|
1| Snow White | 2 | 1 | Dopey
|
1| Snow White | 3| 1| Sneezy
3 | Coughy
1| Snow White | 3| 1| Sneezy
3| Crippley
1| Snow White | 4 | 1 | Happy
|
1| Snow White | 5| 1 | Bashfu
|
1| Snow White | 6 | 1| Sleepy
|
1| Snow White | 7 | 1| Gunpy
|
2 | Batnman | 8 | 2 | Robin

241

3 | G nderella | 9 | 3 | Fairy Godnot her
9 | Shrek
3 | G nderella | 9 | 3 | Fairy Godnot her
9 | Prince Charm ng
3 | G nderella | 10 | 3| Mce |
|
3 | Cinderella | 11 | 3 | Pidgeons
|
4 | Hansel | 12 | 4 | Getel |

5| Little Red Riding Hood | | | I

6 | Robin Hood | 13 | 6 | Little John |
13 | WII Scarl et

6 | Robin Hood | 13 | 6 | Little John |
13 | Brother Tuck
(17 rows)

13.6.2. C program code

The program code adds the three queries and establi shesthe foll ower links between them. Notethat the
match expressions can be anything, just likein SQL usingthe LEFT OUTER JON ON (...)
clause.

#i ncl ude <stdio. h>
#i ncl ude <opencreport. h>

int main(int argc, char **argv) {
opencreport *o = ocrpt_init();
struct ocrpt_input_connect paraneter conn_parans[] = {

{ .param nane = "dbnanme", .paramvalue = "ocrpttest" },
{ .paramnane = "user", .paramvalue = "ocrpt" },
{ NULL }
b
ocr pt _datasource *ds = ocrpt_datasource_add(o, "pgsql"
"postgresql", conn_parans);

ocrpt_query *gl = ocrpt_query_add_sql (ds, "ql", "select * from
data order by id;")

ocrpt_query *g2 = ocrpt_query_add_sql (ds, "q2", "select * from
nore_data order by id;");

ocrpt_query *g3 = ocrpt_query_add_sql (ds, "q3", "select * from
noar _data order by sk id;");

ocrpt _expr *match = ocrpt_expr_parse(o, "ql.id = g2.boss_id",
NULL) ;
ocrpt_query_add follower_n to 1(ql, g2, match);

ocrpt _expr *match2 = ocrpt_expr_parse(o, "g2.id = g3.sk_id",
NULL) ;
ocrpt _query_add follower_n to 1(q2, g3, match2);

if (locrpt_parse_xm (o, "exanple6.xm")) {
printf("XM. parse error\n");
ocrpt _free(o);
return O;

}

ocrpt _set output fornmat (o, OCRPT_QUTPUT_ PDF);

242

Examples

ocr pt _execut e(0);
ocr pt _spool (0);
ocrpt_free(o);

return O;

H

13.6.3. PHP program code

Here's the equivalent program code in PHP.

<?php
$0 = new OpenCReport();

$conn_parans = |
"dbnane" => "ocrpttest”,
"user" => "ocrpt"

1

$ds = $o->dat asource_add("pgsql ", "postgresqgl", $conn_parans);

$g1 = $ds->query_add("ql", "select * fromdata order by id;");

$9g2 = $ds->query_add("qg2", "select * fromnore_ data order by id;");
$g3 = $ds->query_add("qg3", "select * from noar_data order by
sk_id;");

$mat chl = $o- >expr_parse("ql.id = g2. boss_id");
$g1->add _follower _n_to 1($g2, $matchil);

$mat ch2 = $o- >expr_parse("qg2.id = g3.sk_id");
$g2->add_follower _n_to 1($93, $match2);

if (!%o->parse_xnl ("exanple6.xm ")) {
echo "XM. parse error” . PHP_EQ;
exit(0);

}

$0- >execut e();
$o- >spool ();

13.6.4. RLIB compatible PHP program code

Here's the equivalent program code in PHP, using the RLIB compatibility functions. Note that the
RLIB compatible API ismore limited as it expects a single field name matching.

<?php

$r =rlib_init();

rlib_add_datasource_postgres($r, "pgsql", "dbname=ocrpttest
user=ocrpt");

riib_add_query_as($r, "pgsqgl", "select * fromdata order by id;",
"q1")

riib_add_query_as($r, "pgsqgl", "select * fromnore_data order by
id;", "g2");

riib_add_query_as($r, "pgsqgl", "select * from noar_data order by
sk_id;", "q3");

rlib_add resultset follower n to 1(%r, "qg1", "id", "qg2"
"boss_id");

243

Examples

rlib_add_resultset_follower_n_to_1(%$r, "qg2", "id", "qg3", "sk_id");

if (!rlib_add_report($r, "exanple6.xm")) {
echo "XM. parse error” . PHP_EQ;
exit(0);

}

rlib_execute($r);
rlib_spool ($r);

13.6.5. Report description

The program code uses this file contents from exanpl e6. xm .

Note that when using multiple queries in the same report, column names may be identical.
Because of this, using quer ynamne. col umtmmnarre will indicate which one is needed. When using
col umnarne then it will mean the first query's column.

<?xm version="1.0"7?>

<I DCCTYPE report >

<OpenCReport >

<Report orientation="|andscape">

<Detai |l >
<Fi el dHeader s>
<Qut put >
<Li ne>
<literal wi dth="30">Boss nanme</literal >
<literal width="1"/>
<literal w dth="30">Sidekick nane</literal >
<literal width="1"/>
<literal wi dth="30">Si dekick's sidekick name</
literal >
</ Li ne>
</ Qut put >

</ Fi el dHeader s>
<Fi el dDet ai | s>
<Qut put >
<Li ne>
<field value="ql. nane" w dt h="30"
align="left" />
<literal wdth="1"/>
<field value="qg2. nane" w dt h="30"
align="left" />
<literal wdth="1"/>
<field val ue="q3. name" w dt h="30"
align="left" />

</ Li ne>
</ Qut put >
</ Fi el dDet ai | s>
</Detail >
</ Report >

</ OpenCReport >

244

Examples

13.6.6. Report PDF result

Note that compared to RLIB?, OpenCReports likely do not produce the same output. This is due
to the incomplete and faulty implementation of follower queries in RLIB. OpenCReports faithfully
implements LEFT OUTER JO N.

13.7. N:1 follower queries (RLIB compatibility

limits)

This example below exercises two N:1 (N-to-one) follower queries along with the main query. For
more information, see Follower queries.

13.7.1. Data

The same data is used asin the previous example.

The query that the RLIB compatible method for N:1 followersin this report simulatesis:

ocrpttest=> sel ect

ocrpttest-> |eft
ocrpttest->
ocrpttest->

* from data

outer join lateral
where data.id =
or der

(select * fromnore_data
nor e_dat a. boss_id
by nore data.id Iimt 1) x on (true)

ocrpttest-> left outer join lateral (select * from noar_data
ocrpttest-> where x.id = noar_data.sk id
ocrpttest-> order by noar _data.sk id limt 1) y on (true);
id | name | id | boss_id | name |
sk_id | name
T TN ey B R S
Fom e - S
1| Snow Wiite | 1] 1| Doc |
|
2 | Batnan | 8| 2 | Robin |
|
3 | Cnderella | 9| 3 | Fairy Godnot her |
9 | Prince Charm ng
4 | Hansel | 12 | 4| Getel |
|
5| Little Red Riding Hood | | | |
|
6 | Robin Hood | 13 | 6 | Little John |
13 | WII Scarlet
(6 rows)

2 https://sourceforge.net/projects/rliby

245

https://sourceforge.net/projects/rlib/
https://sourceforge.net/projects/rlib/

Examples

Note the amount of hoops the SQL query has to jump through to implement the LI M T 1 clause
on both lateral derived queriesthat resultsin limiting the number of rows to the main query's number
of rows.

13.7.2. C program code

The program code is identical to the previous example, except that it uses a different report XML
description.

#i ncl ude <stdio. h>
#i ncl ude <opencreport. h>

int main(int argc, char **argv) {
opencreport *o = ocrpt_init();
struct ocrpt_input_connect _paraneter conn_parans[] = {

{ .param nane = "dbnane", .paramyvalue = "ocrpttest"” },
{ .paramnanme = "user", .paramvalue = "ocrpt" },
{ NULL }
b
ocr pt _dat asource *ds = ocrpt_dat asource_add(o, "pgsql"
"postgresqgl ™, conn_pararnms);

ocrpt_query *gl = ocrpt_query_add_sql (ds, "ql", "select * from
data order by id;");

ocrpt_query *g2 = ocrpt_query_add_sql (ds, "qg2", "select * from
nore_data order by id;");

ocrpt_query *q3 = ocrpt_query_add_sql (ds, "q3", "select * from
noar _data order by sk _id;");

ocrpt _expr *match = ocrpt_expr_parse(o, "ql.id = g2.boss_id",
NULL) ;
ocrpt_query_add follower_n_to _1(ql, g2, match);

ocrpt _expr *match2 = ocrpt_expr_parse(o, "g2.id = g3.sk_id",
NULL) ;
ocrpt_query_add follower_n_to_1(g2, g3, match2);

if (locrpt_parse_xm (o, "exanple7.xm")) {
printf("XM. parse error\n");
ocrpt_free(o);
return O;

}

ocrpt _set_output_format (o, OCRPT_OUTPUT_PDF);
ocr pt _execute(0);

ocr pt _spool (0);

ocrpt_free(o);

return O;

H
13.7.3. PHP program code

Here's the equivalent program code in PHP.

<?php
$0 = new OpenCReport();
$conn_parans = |

"dbname" => "ocrpttest”,

246

Examples

"user" => "ocrpt"”

I

$ds = $o- >dat asource_add("pgsql ", "postgresqgl", $conn_parans);

$ql = $ds->query_add("ql", "select * fromdata order by id;");

$q2 = $ds->query_add("qg2", "select * fromnore_data order by id;");
$g3 = $ds->query_add("qg3", "select * from noar_data order by
sk_id;");

$mat chl = $o- >expr_parse("ql.id = g2. boss_id");
$g1- >add_foll ower_n_to_1($g2, $matchil);

$mat ch2 = $o- >expr_parse("qg2.id = g3.sk_id");
$g2- >add_fol l ower_n_to_1($93, $match2);

if (!%o->parse_xnl ("exanmple7.xm ")) {
echo "XM. parse error” . PHP_EQ;
exit(0);

}

$o- >execut e();
$0- >spool ();

13.7.4. RLIB compatible PHP program code

Here's the eguivalent program code in PHP, using the RLIB compatibility functions. Note that the
RLIB compatible API is more limited as it expects a single field name matching.

<?php
$r =rlib_init();
rlib_add_datasource_postgres($r, "pgsql", "dbnanme=ocrpttest
user =ocrpt");
rlib_add_query_as($r, "pgsqgl", "select * fromdata order by id;",
"q1");
rlib_add query as($r, "pgsql", "select * fromnore data order by
id;", "q2");
rlib_add query as($r, "pgsql", "select * from noar_data order by
sk_id;", "q3");
rlib add resultset follower_n to 1(%r, "qgl1", "id", "qg2"
"boss_id");
rlib add resultset follower_n to 1(%r, "g2", "id", "g3", "sk_id");
if ('rlib_add_report($r, "exanmple7.xm ")) {
echo "XM. parse error" . PHP_EQ;
exit(0);

}

rlib_execute($r);
rlib_spool ($r);

13.7.5. Report description

The program code uses this file contents from exanpl e7. xn . It isdifferent in one detail from the
previous example: the toplevel XML nodeis <Repor t > instead of <OpenCRepor t >. Thisresults
inthe RLIB compatibility flag to be enabled automatically. See the Follower match single attribute or
the equivalent callsin the C and PHP APl documentation.

247

Examples

<?xm version="1.0"?>
<I DOCTYPE report >
<Report orientation="|andscape">

<Detai | >
<Fi el dHeader s>
<Qut put >
<Li ne>
<literal w dth="30">Boss nane</literal >
<literal width="1"/>
<literal w dth="30">Sidekick nane</literal >
<literal width="1"/>
<literal wi dth="30">Si dekick's sidekick name</
literal >
</ Li ne>
</ Qut put >

</ Fi el dHeader s>
<Fi el dDet ai | s>
<Qut put >
<Li ne>
<field val ue="ql. name" w dt h="30"
align="left" />
<literal wdth="1"/>
<field val ue="qg2. nanme" w dt h="230"
align="left" />
<literal wdth="1"/>
<field val ue="q3. name" w dt h="30"
align="left" />

</ Li ne>
</ Qut put >
</ Fi el dDet ai | s>
</Detail >
</ Report >

13.7.6. Report PDF result

Note that compared to RLIB®, OpenCReports likely do not produce the same output. This is due
to the incomplete and faulty implementation of follower queries in RLIB. OpenCReports faithfully
implements LEFT OUTER JO N with limiting the number of dependent matching rows to 1 that
approximates the RLIB behaviour.

3 https://sourceforge.net/projects/rliby

248

https://sourceforge.net/projects/rlib/
https://sourceforge.net/projects/rlib/

Chapter 14. GNU Free Documentation
License

GN\U Free Docunentation License
Version 1.3, 3 Novenber 2008

Copyright (C 2000, 2001, 2002, 2007, 2008 Free Software
Foundati on, Inc.

<https://fsf.org/>
Everyone is permtted to copy and distribute verbati mcopies
of this license docunent, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a nmanual, textbook, or other

functional and useful docunent "free" in the sense of freedom to

assure everyone the effective freedomto copy and redistribute it,

with or without nodifying it, either comercially or
nonconmerci al |l y.

Secondarily, this License preserves for the author and publisher a
way

to get credit for their work, while not being considered
responsi bl e

for nodifications nade by others.

This License is a kind of "copyleft", which neans that derivative

wor ks of the docunent must thenselves be free in the same sense
It

conpl ements the GNU General Public License, which is a copyleft

i cense designed for free software.

We have designed this License in order to use it for nanuals for
free

software, because free software needs free docunmentation: a free
program shoul d come with manual s providing the sane freedons that
t he

software does. But this License is not limted to software
manual s;

it can be used for any textual work, regardl ess of subject matter
or

whet her it is published as a printed book. W recomend this
Li cense

principally for works whose purpose is instruction or reference.

1. APPLI CABI LI TY AND DEFI NI TI ONS

This License applies to any nmanual or other work, in any medi um
t hat
contains a notice placed by the copyright holder saying it can be
di stributed under the terns of this License. Such a notice grants
a
wor |l d-wi de, royalty-free license, unlinmted in duration, to use
t hat

249

GNU Free Documentation License

wor k under the conditions stated herein. The "Docunment", Dbel ow,
refers to any such manual or work. Any menber of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, nodify or distribute the work in a way requiring perm ssion
under copyright | aw.

A "Modified Version" of the Docunent neans any work containing the
Docurment or a portion of it, either copied verbatim or with
nodi fications and/or translated i nto another |anguage.

A "Secondary Section" is a naned appendix or a front-matter section
of
t he Docunment that deals exclusively with the relationship of the
publishers or authors of the Document to the Docunent's overal
subject (or to related matters) and contains nothing that could
fall
directly within that overall subject. (Thus, if the Docunment is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historica
connection with the subject or with related matters, or of |egal
conmmer ci al, phil osophical, ethical or political position regarding
t hem

The "l nvariant Sections" are certain Secondary Sections whose
titles
are designated, as being those of Invariant Sections, in the notice
that says that the Docunment is rel eased under this License. If a
section does not fit the above definition of Secondary then it is
not
allowed to be designated as Invariant. The Docunment may contain
zero
I nvariant Sections. |If the Docunent does not identify any
I nvari ant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are
listed,

as Front-Cover Texts or Back-Cover Texts, in the notice that says
t hat

the Docunment is released under this License. A Front-Cover Text
mey

be at nost 5 words, and a Back-Cover Text may be at npbst 25 words.

A "Transparent™ copy of the Docunent neans a machi ne-readabl e copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the docunent
straightforwardly with generic text editors or (for inages conposed
of
pi xel s) generic paint prograns or (for draw ngs) sone w dely
avai |l abl e
drawi ng editor, and that is suitable for input to text formatters
or
for automatic translation to a variety of formats suitable for
i nput
to text formatters. A copy made in an otherw se Transparent file
format whose markup, or absence of markup, has been arranged to
t hwar t

250

GNU Free Documentation License

or di scourage subsequent nodification by readers is not
Transparent.

An image format is not Transparent if used for any substantia
anmount

of text. A copy that is not "Transparent"” is called "Opaque"

Exampl es of suitable formats for Transparent copies include plain

ASCI | wi thout markup, Texinfo input format, LaTeX input format,
SGWL

or XML using a publicly available DTD, and standard-conform ng
simpl e

HTM., Post Script or PDF designed for human nodification. Exanples
of

transparent image formats include PNG XCF and JPG (Opaque formats
i nclude proprietary formats that can be read and edited only by
proprietary word processors, SGWL or XM for which the DID and/ or
processing tools are not generally available, and the
machi ne- generated HTM., Post Script or PDF produced by some word
processors for output purposes only.

The "Titl e Page" neans, for a printed book, the title page itself,
pl us such foll owi ng pages as are needed to hold, legibly, the
mat eri al
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page"
nmeans
the text near the nost prom nent appearance of the work's title,
precedi ng the begi nning of the body of the text.

The "publisher” neans any person or entity that distributes copies
of
t he Docurment to the public.

A section "Entitled XYZ' neans a named subunit of the Docunent
whose

title either is precisely XYZ or contains XYZ in parentheses
fol |l owi ng

text that translates XYZ in another |anguage. (Here XYZ stands for
a

specific section nane nentioned bel ow, such as "Acknow edgenents"”,
"Dedi cations", "Endorsenments", or "History".) To "Preserve the
Title"

of such a section when you nodify the Docunent means that it
remains a

section "Entitled XYZ" according to this definition

The Docurent may include Warranty Disclaimers next to the notice
whi ch

states that this License applies to the Docunent. These Warranty
Di sclainmers are considered to be included by reference in this

Li cense, but only as regards disclaimng warranties: any other

i mplication that these Warranty Di sclainers may have is void and
has

no effect on the meaning of this License.

2. VERBATI M COPYI NG

You may copy and distribute the Docunment in any nedium either

251

GNU Free Documentation License

commercially or noncommercially, provided that this License, the
copyright notices, and the |license notice saying this License
applies

to the Docunent are reproduced in all copies, and that you add no
ot her conditions whatsoever to those of this License. You may not
use

techni cal measures to obstruct or control the reading or further
copyi ng of the copies you make or distribute. However, you may
accept

conpensation in exchange for copies. |If you distribute a |arge
enough

nunber of copies you nmust also follow the conditions in section 3.

You may al so |l end copies, under the same conditions stated above,
and
you may publicly display copies.

3. COPYI NG | N QUANTI TY

If you publish printed copies (or copies in media that comonly
have
printed covers) of the Document, nunbering nore than 100, and the
Docurent's |icense notice requires Cover Texts, you nust enclose
t he
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts
on
t he back cover. Both covers nmust also clearly and legibly identify
you as the publisher of these copies. The front cover nust present
the full title with all words of the title equally prom nent and
visible. You may add other material on the covers in addition.
Copying with changes limted to the covers, as |long as they
preserve
the title of the Document and satisfy these conditions, can be
treated
as verbatimcopying in other respects.

If the required texts for either cover are too volumnous to fit
| egi bly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto

adj acent

pages.

If you publish or distribute Opaque copies of the Docunent
nunberi ng
nore than 100, you mnust either include a machi ne-readabl e
Tr anspar ent
copy along with each Opaque copy, or state in or with each Opaque
copy
a conputer-network |ocation fromwhich the general network-using
public has access to downl oad using public-standard network
pr ot ocol s
a conpl ete Transparent copy of the Document, free of added
mat eri al
If you use the latter option, you nust take reasonably prudent
st eps,
when you begin distribution of Opaque copies in quantity, to ensure

252

GNU Free Documentation License

that this Transparent copy will remain thus accessible at the
st at ed

location until at |east one year after the last time you distribute
an

Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of
t he

Docurrent wel | before redistributing any |arge nunmber of copies, to
give them a chance to provide you with an updated version of the
Docunent .

4. MODI FI CATI ONS

You may copy and distribute a Mddified Version of the Docunent
under

the conditions of sections 2 and 3 above, provided that you rel ease

the Modified Version under precisely this License, with the
Modi fi ed

Version filling the role of the Docunent, thus |icensing

di stribution

and nodification of the Mdified Version to whoever possesses a
copy

of it. In addition, you nust do these things in the Mdified
Ver si on:

A. Use in the Title Page (and on the covers, if any) atitle
di stinct
fromthat of the Docurment, and fromthose of previous versions
(whi ch should, if there were any, be listed in the History
section
of the Document). You may use the sanme title as a previous
version
if the original publisher of that version gives perm ssion.
B. List on the Title Page, as authors, one or nore persons or
entities
responsi ble for authorship of the nodifications in the Mdified
Version, together with at |east five of the principal authors of
t he
Docurent (all of its principal authors, if it has fewer than
five),
unl ess they release you fromthis requirenent.
C. State on the Title page the nane of the publisher of the
Modi fi ed Version, as the publisher
D. Preserve all the copyright notices of the Docunent.
E. Add an appropriate copyright notice for your nodifications
adj acent to the other copyright notices.
F. Include, inmmedi ately after the copyright notices, a |license
notice
giving the public perm ssion to use the Mdified Version under
t he
terms of this License, in the formshown in the Addendum bel ow.
G Preserve in that license notice the full lists of Invariant
Sect i ons
and required Cover Texts given in the Docunment's |icense notice.
H Include an unaltered copy of this License.

253

GNU Free Documentation License

I. Preserve the section Entitled "Hi story", Preserve its Title, and
add
toit an itemstating at least the title, year, new authors, and
publ i sher of the Modified Version as given on the Title Page.
| f
there is no section Entitled "Hi story” in the Docunent, create
one
stating the title, year, authors, and publisher of the Docunent
as
given on its Title Page, then add an item describing the
Modi fi ed
Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Docunent for
public access to a Transparent copy of the Docunent, and
i kew se
the network | ocations given in the Docunment for previous
ver si ons
it was based on. These may be placed in the "Hi story" section
You may onmit a network |location for a work that was published at
| east four years before the Docunment itself, or if the origina
publ i sher of the version it refers to gives perm ssion
K. For any section Entitled "Acknow edgenments” or "Dedications"”,
Preserve the Title of the section, and preserve in the section
al |
t he substance and tone of each of the contributor
acknow edgenent s
and/ or dedications given therein
L. Preserve all the Invariant Sections of the Docunent,
unaltered in their text and in their titles. Section nunbers
or the equival ent are not considered part of the section titles.
M Delete any section Entitled "Endorsenents”. Such a section
may not be included in the Mdified Version
N. Do not retitle any existing section to be Entitled
"Endor sement s"
or to conflict intitle with any Invariant Section
O Preserve any Warranty Discl ai mers.

If the Modified Version includes new front-matter sections or
appendi ces that qualify as Secondary Sections and contain no
mat eri al
copied fromthe Docunent, you may at your option designate some or
al |
of these sections as invariant. To do this, add their titles to
t he
list of Invariant Sections in the Mddified Version's |license
noti ce.
These titles nmust be distinct fromany other section titles.

You may add a section Entitled "Endorsenments”, provided it contains
not hi ng but endorsements of your Mbdified Version by various
parties--for exanmple, statenents of peer review or that the text
has

been approved by an organi zation as the authoritative definition of
a

st andar d.

You may add a passage of up to five words as a Front-Cover Text,
and a

254

GNU Free Documentation License

passage of up to 25 words as a Back-Cover Text, to the end of the
list

of Cover Texts in the Mdified Version. Only one passage of
Front - Cover Text and one of Back-Cover Text nmay be added by (or

t hrough arrangements made by) any one entity. |[|f the Docunent
al r eady

i ncludes a cover text for the same cover, previously added by you
or

by arrangenent nade by the same entity you are acting on behal f of,

you may not add another; but you may replace the old one, on
explicit

perm ssion fromthe previous publisher that added the ol d one.

The aut hor (s) and publisher(s) of the Docunent do not by this
Li cense

gi ve perm ssion to use their names for publicity for or to assert
or

i mply endorsenent of any Mbdified Version

5. COMBI NI NG DOCUMENTS

You may conbi ne the Docunent with other docunents rel eased under
this
Li cense, under the terns defined in section 4 above for nodified
versions, provided that you include in the conmbination all of the
I nvariant Sections of all of the original docunments, unnodified,
and
list themall as Invariant Sections of your conbined work in its
license notice, and that you preserve all their Warranty
Di scl ai ners.

The conbi ned work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single

copy. If there are nultiple Invariant Sections with the sane nane
but

different contents, nake the title of each such section unique by

adding at the end of it, in parentheses, the nane of the origina

aut hor or publisher of that section if known, or else a unique
nunber .

Make the same adjustnent to the section titles in the list of

I nvariant Sections in the |license notice of the conbined work.

In the combination, you nust conbine any sections Entitled
"Hi story"
in the various original docunents, formng one section Entitled

"Hi story"; l|ikew se conbine any sections Entitled

" Acknowl edgenent s",

and any sections Entitled "Dedications”. You nust delete al
sections

Entitl ed "Endorsenents”.

6. COLLECTI ONS OF DOCUMENTS

You may make a collection consisting of the Docunent and ot her
docunents rel eased under this License, and replace the individua
copies of this License in the various docunments with a single copy

255

GNU Free Documentation License

that is included in the collection, provided that you follow the
rul es

of this License for verbati mcopying of each of the docunents in
al |

ot her respects.

You may extract a single docunent fromsuch a collection, and
distribute it individually under this License, provided you insert
a

copy of this License into the extracted docunment, and follow this
License in all other respects regarding verbati mcopying of that
docunent .

7. AGGREGATI ON W TH | NDEPENDENT WORKS

A conpilation of the Docunment or its derivatives with other
separate

and i ndependent docunents or works, in or on a volune of a storage
or

distribution medium is called an "aggregate" if the copyright
resulting fromthe conpilation is not used to limt the |ega
rights

of the conpilation's users beyond what the individual works permt.

VWhen the Docunent is included in an aggregate, this License does
not

apply to the other works in the aggregate which are not thensel ves
derivative works of the Docunent.

If the Cover Text requirenment of section 3 is applicable to these
copi es of the Document, then if the Document is |ess than one half
of

the entire aggregate, the Docunent's Cover Texts may be placed on
covers that bracket the Docunent within the aggregate, or the

el ectroni c equi val ent of covers if the Docunent is in electronic
form

O herw se they nmust appear on printed covers that bracket the whole
aggr egat e.

8. TRANSLATI ON

Translation is considered a kind of nodification, so you may
distribute translations of the Docunent under the ternms of section
4.
Repl aci ng I nvariant Sections with translations requires speci al
perm ssion fromtheir copyright holders, but you may include
transl ations of sone or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Docurent, and any Warranty Disclainers, provided that you al so
i ncl ude
the original English version of this License and the origina
ver si ons
of those notices and disclainers. In case of a disagreenent
bet ween
the translation and the original version of this License or a
notice

256

GNU Free Documentation License

or disclaimer, the original version will prevail.

If a section in the Docunent is Entitled "Acknow edgenents"”,

"Dedi cations", or "History", the requirenment (section 4) to
Preserve

its Title (section 1) will typically require changing the actua

title.

9. TERM NATI ON

You may not copy, nodify, sublicense, or distribute the Docunent
except as expressly provided under this License. Any attenpt
otherwi se to copy, nodify, sublicense, or distribute it is void,
and

will automatically term nate your rights under this License

However, if you cease all violation of this License, then your
i cense
froma particular copyright holder is reinstated (a) provisionally,
unl ess and until the copyright holder explicitly and finally
term nates your l|icense, and (b) permanently, if the copyright
hol der
fails to notify you of the violation by some reasonabl e neans pri or
to
60 days after the cessation

Mor eover, your license froma particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
viol ati on by some reasonable neans, this is the first time you have
recei ved notice of violation of this License (for any work) from

t hat

copyri ght holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Term nation of your rights under this section does not term nate
t he

licenses of parties who have received copies or rights fromyou
under

this License. |If your rights have been term nated and not

per manent |y

reinstated, receipt of a copy of sonme or all of the sane materia
does

not give you any rights to use it.

10. FUTURE REVI SIONS OF THI S LI CENSE

The Free Software Foundati on may publish new, revised versions of
t he
G\U Free Docunentation License fromtinme to tinme. Such new
ver si ons
will be simlar in spirit to the present version, but may differ in
detail to address new problens or concerns. See
https://ww. gnu. org/licenses/.

Each version of the License is given a distinguishing version
numnber .

257

GNU Free Documentation License

If the Docunent specifies that a particular nunbered version of
this
Li cense

of
following the ternms and conditions either of that specified version
or
of any later version that has been published (not as a draft) by
t he
Free Software Foundation. |f the Docunment does not specify a
version
nunber of this License, you may choose any version ever published
(not
as a draft) by the Free Software Foundation. |If the Docunent
specifies that a proxy can decide which future versions of this
Li cense can be used, that proxy's public statenent of acceptance of
a
versi on permanently authorizes you to choose that version for the
Docunent .

or any later version" applies to it, you have the option

11. RELI CENSI NG

"Massive Miultiauthor Collaboration Site" (or "MMC Site") neans any

Wrld Wde Wb server that publishes copyrightable works and al so
provi des prom nent facilities for anybody to edit those works. A
public wi ki that anybody can edit is an exanple of such a server.
A

"Massive Multiauthor Collaboration” (or "MVMC') contained in the
site

means any set of copyrightable works thus published on the MVC
site.

"CC-BY-SA" neans the Creative Commons Attribution-Share Alike 3.0
i cense published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Franci sco,
California, as well as future copyleft versions of that |icense
publ i shed by that sane organization

"I ncorporate” means to publish or republish a Document, in whole or
in
part, as part of another Document.

An MMC is "eligible for relicensing” if it is licensed under this
License, and if all works that were first published under this
Li cense
somewhere other than this MMC, and subsequently incorporated in
whol e or
in part into the MMC, (1) had no cover texts or invariant sections,
and
(2) were thus incorporated prior to Novenber 1, 2008.

The operator of an MMC Site may republish an MMC contained in the
site

under CC-BY-SA on the same site at any tine before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM How to use this License for your docunents

258

GNU Free Documentation License

To use this License in a docunment you have witten, include a copy
of

the License in the docunment and put the follow ng copyright and
license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Perm ssion is granted to copy, distribute and/or nodify this
docunent

under the terns of the GNU Free Docunentation License, Version

1.3

or any later version published by the Free Software Foundation

with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts.

A copy of the license is included in the section entitled "G\NU

Free Docunentation License".

If you have Invariant Sections, Front-Cover Texts and Back- Cover
Text s,
repl ace the "with... Texts.

line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front - Cover Texts being LIST, and with the Back-Cover Texts
bei ng LI ST.

If you have Invariant Sections w thout Cover Texts, or sone other
conbi nati on of the three, merge those two alternatives to suit the
situation.

I f your docunent contains nontrivial exanples of program code, we
recommend rel easi ng these exanples in parallel under your choice of
free software |icense, such as the GNU General Public License,

to permit their use in free software.

259

	OpenCReports 0.8.14 Manual
	Table of Contents
	Chapter 1. Introduction and concepts
	1.1. The predecessor: RLIB
	1.2. Concepts
	1.2.1. What is a report generator?
	1.2.2. XML based report description
	1.2.3. Comprehensive API for report creation
	1.2.4. Strict expression parser
	1.2.5. Expression optimization
	1.2.6. Report variables
	1.2.7. Report breaks
	1.2.8. Extensive and extensible set of functions
	1.2.9. UTF-8 string handling
	1.2.10. High precision numeric data type
	1.2.11. Datetime and interval data types
	1.2.12. Automatic input data conversion
	1.2.13. Versatile field alignment and multi-row fields
	1.2.14. Multi-column reports
	1.2.15. Miscellaneous layout details
	1.2.16. Multiple output formats
	1.2.17. Extensive set of unit tests
	1.2.18. Standard Linux dependencies

	1.3. OpenCReports planned features
	1.3.1. Graph and chart support in HTML and PDF output
	1.3.2. Visual editor for report XML descriptions

	Chapter 2. Data sources and queries
	2.1. Data sources
	2.1.1. SQL based data sources
	2.1.1.1. MariaDB/MySQL data source
	2.1.1.2. PostgreSQL data source
	2.1.1.3. ODBC data source
	2.1.1.4. Special note for SQL datasources

	2.1.2. File based data sources
	2.1.2.1. CSV file type
	2.1.2.2. JSON file type
	2.1.2.3. XML file type
	2.1.2.4. Spreadsheet file types

	2.1.3. Application data based datasource
	2.1.4. Application defined data sources

	2.2. Queries
	2.2.1. SQL queries
	2.2.2. File queries
	2.2.3. Data queries
	2.2.4. Relation between queries
	2.2.4.1. Follower queries
	2.2.4.1.1. Regular follower queries
	2.2.4.1.2. N:1 follower queries
	2.2.4.1.3. Note on follower queries

	2.2.4.2. Independent queries

	Chapter 3. Expressions in OpenCReports
	3.1. Introduction
	3.2. Constants
	3.2.1. String literals
	3.2.2. Numeric constants
	3.2.3. Boolean constants
	3.2.4. Datetime constants
	3.2.5. Constant expressions

	3.3. Delayed (precalculated) expressions
	3.4. Identifiers
	3.4.1. Identifier names
	3.4.2. Query field identifiers
	3.4.3. User defined variables
	3.4.4. Special purpose identifier domains
	3.4.4.1. Environment variables
	3.4.4.2. Internal report variables
	3.4.4.2.1. Current page number
	3.4.4.2.2. Total number of pages
	3.4.4.2.3. Line number
	3.4.4.2.4. Detail count
	3.4.4.2.5. Field value
	3.4.4.2.6. Report output format value
	3.4.4.2.7. Expression self reference
	3.4.4.2.8. Subexpressions of user-defined variables

	3.4.4.3. Quoted and dot-prefixed identifiers
	3.4.4.4. Dot-prefixed identifiers
	3.4.4.5. Quoted special purpose identifier domains

	3.5. Operators and functions
	3.5.1. Ternary operator
	3.5.2. Boolean logic operators with two operands
	3.5.3. Bitwise operators with two operands
	3.5.4. Equality and inequality comparison operators
	3.5.4.1. Equality and inequality comparison operators on vectors

	3.5.5. Other comparison operators
	3.5.5.1. Other comparison operators on vectors

	3.5.6. Bitwise shifts
	3.5.7. Addition and subtraction
	3.5.8. Multiplication, division and modulo (remainder)
	3.5.9. Power-of operator
	3.5.10. Factorial operator
	3.5.11. Unary plus and minus, logical and bitwise NOT, prefix increment and decrement
	3.5.12. Postfix increment and decrement
	3.5.13. Function calls and implicit multiplication
	3.5.14. Parentheses
	3.5.15. A note on token matching, precendence and syntax errors

	Chapter 4. Functions
	4.1. Introduction
	4.2. Arithmetic functions
	4.2.1. abs()
	4.2.2. div()
	4.2.3. factorial()
	4.2.4. fmod()
	4.2.5. mod()
	4.2.6. mul()
	4.2.7. remainder()
	4.2.8. uminus()
	4.2.9. uplus()

	4.3. Bitwise functions
	4.3.1. and()
	4.3.2. not()
	4.3.3. or()
	4.3.4. shl()
	4.3.5. shr()
	4.3.6. xor()

	4.4. Boolean logic functions
	4.4.1. land()
	4.4.2. lnot()
	4.4.3. lor()

	4.5. Comparison functions
	4.5.1. eq()
	4.5.2. ge()
	4.5.3. gt()
	4.5.4. le()
	4.5.5. lt()
	4.5.6. ne()

	4.6. Rounding and related functions
	4.6.1. ceil()
	4.6.2. floor()
	4.6.3. rint()
	4.6.4. round()
	4.6.5. trunc()

	4.7. Exponential, logarithmic and related functions
	4.7.1. exp()
	4.7.2. exp10()
	4.7.3. exp2()
	4.7.4. ln()
	4.7.5. log()
	4.7.6. log10()
	4.7.7. log2()
	4.7.8. pow()
	4.7.9. sqr()
	4.7.10. sqrt()

	4.8. Trigonometric functions
	4.8.1. acos()
	4.8.2. asin()
	4.8.3. atan()
	4.8.4. cos()
	4.8.5. cot()
	4.8.6. csc()
	4.8.7. sec()
	4.8.8. sin()
	4.8.9. tan()

	4.9. String functions
	4.9.1. concat()
	4.9.2. left()
	4.9.3. lower()
	4.9.4. mid()
	4.9.5. proper()
	4.9.6. right()
	4.9.7. strlen()
	4.9.8. upper()

	4.10. Datetime functions
	4.10.1. chgdateof()
	4.10.2. chgtimeof()
	4.10.3. date()
	4.10.4. dateof()
	4.10.5. day()
	4.10.6. dim()
	4.10.7. dtos()
	4.10.8. dtosf()
	4.10.9. gettimeinsecs()
	4.10.10. interval()
	4.10.11. month()
	4.10.12. now()
	4.10.13. settimeinsecs()
	4.10.14. stdwiy()
	4.10.15. stod()
	4.10.16. stodt()
	4.10.17. stodtsql()
	4.10.18. timeof()
	4.10.19. tstod()
	4.10.20. wiy()
	4.10.21. wiy1()
	4.10.22. wiyo()
	4.10.23. year()

	4.11. Type agnostic functions
	4.11.1. add()
	4.11.2. dec()
	4.11.3. inc()
	4.11.4. sub()

	4.12. Formatting and conversion functions
	4.12.1. format()
	4.12.2. printf()
	4.12.3. str()
	4.12.4. val()

	4.13. Miscellaneous functions
	4.13.1. brrownum()
	4.13.2. error()
	4.13.3. eval()
	4.13.4. fxpval()
	4.13.5. iif()
	4.13.6. isdatetime()
	4.13.7. iserror()
	4.13.8. isnan()
	4.13.9. isnull()
	4.13.10. isnumeric()
	4.13.11. isstring()
	4.13.12. null()
	4.13.13. nulldt()
	4.13.14. nulln()
	4.13.15. nulls()
	4.13.16. prevval()
	4.13.17. random()
	4.13.18. rownum()
	4.13.19. translate()
	4.13.20. translate2()

	Chapter 5. Report variables
	5.1. Introduction to report variables
	5.2. Expression variables
	5.2.1. Variables with iterative expressions
	5.2.2. Expression variable examples

	5.3. Variable types for simple statistics
	5.3.1. Statistics variable examples

	5.4. Custom variables
	5.5. Precalculated variables

	Chapter 6. Report breaks
	6.1. Grouping data
	6.2. Report breaks in OpenCReports
	6.3. Resetting a variable on break boundaries
	6.4. Example

	Chapter 7. Formatting
	7.1. Formatting functions
	7.2. Format strings
	7.3. Legacy format strings
	7.3.1. Format string for strings
	7.3.2. Format string for numeric values
	7.3.3. Format string for datetime values

	7.4. New style format strings
	7.4.1. New style format string for strings
	7.4.2. New style format string for numeric data
	7.4.3. New style format string for monetary data
	7.4.4. New style format string for datetime values
	7.4.5. New style format string examples

	7.5. Second generation new style format strings
	7.5.1. 2nd gen new style format string for strings
	7.5.2. 2nd gen new style format string for numeric data
	7.5.3. 2nd gen new style format string for monetary data
	7.5.4. 2nd gen new style format string for datetime values
	7.5.5. 2nd gen new style format string examples

	7.6. The swiss army knife of formatting

	Chapter 8. Report XML description
	8.1. XML description structure
	8.1.1. Notes about XML syntax and attributes

	8.2. OpenCReport element
	8.2.1. Size unit attribute
	8.2.2. No query show NoData
	8.2.3. Report height after last
	8.2.4. Follower match single
	8.2.5. Precision bits
	8.2.6. Rounding mode
	8.2.7. Locale
	8.2.8. Translation settings

	8.3. Paths
	8.4. Datasources
	8.4.1. MariaDB (MySQL) database connection
	8.4.2. PostgreSQL database connection
	8.4.3. ODBC database connection
	8.4.4. CSV file datasource
	8.4.5. JSON file datasource
	8.4.6. XML file datasource
	8.4.7. Spreadsheet file datasource
	8.4.8. Array datasource
	8.4.9. Common datasource properties
	8.4.9.1. Encoding

	8.5. Queries
	8.5.1. SQL queries for SQL datasources
	8.5.2. Queries for file based datasources
	8.5.3. Queries for array based datasources
	8.5.4. Follower queries
	8.5.4.1. Regular follower queries
	8.5.4.2. N:1 follower queries

	8.6. Report parts
	8.6.1. Part attributes
	8.6.1.1. Font name
	8.6.1.2. Font size
	8.6.1.3. Size unit
	8.6.1.4. No query show NoData attribute
	8.6.1.5. Report height after last attribute
	8.6.1.6. Orientation
	8.6.1.7. Margin settings
	8.6.1.8. Paper type
	8.6.1.9. Iterations
	8.6.1.10. Suppress
	8.6.1.11. Suppress page header on the first page

	8.6.2. Part subsections
	8.6.2.1. Page header
	8.6.2.2. Page footer
	8.6.2.3. Part row

	8.7. Part row
	8.7.1. Part row attributes
	8.7.1.1. Layout
	8.7.1.2. New page
	8.7.1.3. Suppress

	8.8. Part column
	8.8.1. Part column attributes
	8.8.1.1. Width
	8.8.1.2. Height
	8.8.1.3. Border width
	8.8.1.4. Border color
	8.8.1.5. Detail columns
	8.8.1.6. Column padding
	8.8.1.7. Suppress

	8.9. Report
	8.9.1. Report attributes
	8.9.1.1. Font name
	8.9.1.2. Font size
	8.9.1.3. Size unit
	8.9.1.4. No query show NoData attribute
	8.9.1.5. Report height after last attribute
	8.9.1.6. Orientation
	8.9.1.7. Margin settings
	8.9.1.8. Paper type
	8.9.1.9. Height
	8.9.1.9.1. Report height in OpenCReports mode
	8.9.1.9.2. Report height in RLIB compatibility mode

	8.9.1.10. Iterations
	8.9.1.11. Suppress
	8.9.1.12. Suppress page header on the first page
	8.9.1.13. Query
	8.9.1.14. Field header priority
	8.9.1.15. Border width
	8.9.1.16. Border color
	8.9.1.17. Detail columns
	8.9.1.18. Column padding

	8.9.2. Report subsections
	8.9.2.1. Page header
	8.9.2.2. Page footer
	8.9.2.3. Report header
	8.9.2.4. Report footer
	8.9.2.5. Variables
	8.9.2.6. Breaks
	8.9.2.7. Detail
	8.9.2.8. Alternate output for no data

	8.10. Loaded report
	8.10.1. Loaded Report attributes
	8.10.1.1. File name
	8.10.1.2. Query
	8.10.1.3. Iterations

	8.11. Variables
	8.12. Variable
	8.12.1. Variable attributes
	8.12.1.1. Name
	8.12.1.2. Value
	8.12.1.3. Type
	8.12.1.3.1. Complete variable examples

	8.12.1.4. Custom variable attributes
	8.12.1.4.1. Custom variable example

	8.12.1.5. Reset on break
	8.12.1.6. Precalculate (delayed)

	8.13. Breaks
	8.14. Break
	8.14.1. Break attributes
	8.14.1.1. Name
	8.14.1.2. Header on new page
	8.14.1.3. Suppress break header and footer for blank break fields

	8.14.2. Break subsections
	8.14.2.1. BreakHeader
	8.14.2.2. BreakFooter
	8.14.2.3. BreakFields
	8.14.2.3.1. BreakField

	8.14.3. A complete break example

	8.15. Output
	8.15.1. Output attributes
	8.15.1.1. Suppress

	8.15.2. Output subsections
	8.15.2.1. Line
	8.15.2.2. HorizontalLine
	8.15.2.3. Image
	8.15.2.4. Barcode
	8.15.2.5. Image end

	8.16. Line
	8.16.1. Line attributes
	8.16.1.1. Font name
	8.16.1.2. Font size
	8.16.1.3. Bold font
	8.16.1.4. Italic font
	8.16.1.5. Suppress
	8.16.1.6. Text color
	8.16.1.7. Background color

	8.16.2. Line subsections
	8.16.2.1. Text element
	8.16.2.2. Image element
	8.16.2.3. Barcode element

	8.17. Text element
	8.17.1. Text element attributes
	8.17.1.1. Value
	8.17.1.2. Delayed (precalculated) value
	8.17.1.3. Format string
	8.17.1.3.1. Format attribute examples

	8.17.1.4. Width
	8.17.1.5. Alignment
	8.17.1.6. Text color
	8.17.1.7. Background color
	8.17.1.8. Font name
	8.17.1.9. Font size
	8.17.1.10. Bold font
	8.17.1.11. Italic font
	8.17.1.12. Web link
	8.17.1.13. Multi-line (memo) field
	8.17.1.14. Multi-line field hyphenation
	8.17.1.15. Multi-line field wrapping
	8.17.1.16. Multi-line field row limit
	8.17.1.17. Translation
	8.17.1.18. Column number

	8.18. HorizontalLine
	8.18.1. HorizontalLine attributes
	8.18.1.1. Line width
	8.18.1.2. Line alignment
	8.18.1.3. Indentation
	8.18.1.4. Length
	8.18.1.5. Font size
	8.18.1.6. Suppress
	8.18.1.7. Line color

	8.19. Image
	8.19.1. Image attributes
	8.19.1.1. File name
	8.19.1.2. Suppress
	8.19.1.3. Type
	8.19.1.4. Width
	8.19.1.5. Height
	8.19.1.6. Text width
	8.19.1.7. Background color
	8.19.1.8. Alignment

	8.20. Image end
	8.21. Barcode element
	8.21.1. Barcode element attributes
	8.21.1.1. Suppress
	8.21.1.2. Value
	8.21.1.3. Delayed (precalculated) value
	8.21.1.4. Barcode type
	8.21.1.5. Width
	8.21.1.6. Height
	8.21.1.7. Barcode color
	8.21.1.8. Barcode background color

	8.22. Color specification

	Chapter 9. High level C language API reference
	9.1. Header file
	9.2. High level C API
	9.2.1. Report handler initialization
	9.2.2. Load a report XML description
	9.2.3. Parse report XML description from a buffer
	9.2.4. Set report output format
	9.2.5. Get report output format as enum or string
	9.2.6. Set report output parameter
	9.2.7. Run the report
	9.2.8. Dump report result
	9.2.9. Get report result
	9.2.10. Get report content type
	9.2.11. Report handler destruction
	9.2.12. Get library version

	Chapter 10. Low level C language API reference
	10.1. Low level C API
	10.1.1. Numeric behavior related functions
	10.1.1.1. Set numeric precision
	10.1.1.2. Get numeric precision
	10.1.1.3. Set rounding mode

	10.1.2. Locale related functions
	10.1.2.1. Set up translation
	10.1.2.2. Set up translation (delayed variant)
	10.1.2.3. Set report locale
	10.1.2.4. Set report locale (delayed variant)
	10.1.2.5. Print monetary data in the report locale

	10.1.3. Data source and query related functions
	10.1.3.1. Add a datasource
	10.1.3.1.1. MariaDB connection parameters
	10.1.3.1.2. PostgreSQL connection parameters
	10.1.3.1.3. ODBC connection parameters
	10.1.3.1.4. Spreadsheet connection parameters

	10.1.3.2. Find a datasource
	10.1.3.3. Set the encoding of a datasource
	10.1.3.4. Free a datasource
	10.1.3.5. Add a direct data based query
	10.1.3.6. Add a symbolic data based query
	10.1.3.7. Add a file based query
	10.1.3.8. Add an SQL statement based query
	10.1.3.9. Test whether a datasource is direct data based
	10.1.3.10. Test whether a datasource is direct data based
	10.1.3.11. Test whether a datasource is file based
	10.1.3.12. Test whether a datasource is SQL based
	10.1.3.13. Find a query
	10.1.3.14. Get the current data row from a query
	10.1.3.15. Get column name
	10.1.3.16. Get column data
	10.1.3.17. Add a follower query
	10.1.3.18. Add an N:1 follower query
	10.1.3.19. Refresh query contents
	10.1.3.20. Free a query
	10.1.3.21. Start the main query
	10.1.3.22. Navigate to the next query row
	10.1.3.23. Navigate use previous/next row
	10.1.3.24. API specific data discovery function

	10.1.4. Expression related functions
	10.1.4.1. Parse an expression string
	10.1.4.2. Parse an expression string and bind it to a report
	10.1.4.3. Free an expression parse tree
	10.1.4.4. Get the original expression string
	10.1.4.5. Resolve expression references
	10.1.4.6. Optimize an expression
	10.1.4.7. Evaluate an expression
	10.1.4.8. Get expression result without evaluation
	10.1.4.9. Print an expression tree
	10.1.4.10. Print an expression tree with subexpressions and their results
	10.1.4.11. Count the number of expression nodes
	10.1.4.12. Initialize expression result type
	10.1.4.13. Set an error string as expression result
	10.1.4.14. Set start value flag for an iterative expression
	10.1.4.15. Get current value of an expression in base type
	10.1.4.16. Set current value of an expression in a base type
	10.1.4.17. Set nth value of an expression in a base type
	10.1.4.18. Compare the current of an expression with its previous value
	10.1.4.19. Set delayed flag of an expression
	10.1.4.20. Set field expression reference for an expression

	10.1.5. Column data or expression result related functions
	10.1.5.1. Create an expression result
	10.1.5.2. Get expression result type
	10.1.5.3. Copy an expression result
	10.1.5.4. Print an expression result
	10.1.5.5. Free an expression result
	10.1.5.6. Detect whether a column result is NULL
	10.1.5.7. Detect whether a column result is numeric
	10.1.5.8. Get the numeric value of a column result
	10.1.5.9. Detect whether a column result is string
	10.1.5.10. Get the string value of a column result
	10.1.5.11. Detect whether a column result is datetime
	10.1.5.12. Get the datetime value of a column result
	10.1.5.13. Detect whether a datetime column result is interval
	10.1.5.14. Detect whether a datetime column result has valid date
	10.1.5.15. Detect whether a datetime column result has valid time

	10.1.6. Variable related functions
	10.1.6.1. Create a basic variable
	10.1.6.2. Create a custom variable
	10.1.6.3. Get the variable type
	10.1.6.4. Get subexpressions of a variable
	10.1.6.5. Get precalculate flag for a variable
	10.1.6.6. Resolve a variable
	10.1.6.7. Evaluate a variable
	10.1.6.8. Iterate over variables of a report

	10.1.7. Break related functions
	10.1.7.1. Create a break
	10.1.7.2. Set attribute flag expressions for a break
	10.1.7.3. Get break using its name
	10.1.7.4. Get the name of a break
	10.1.7.5. Add a watched expression to a break
	10.1.7.6. Iterate over breaks of a report
	10.1.7.7. Resolve and optimize break fields
	10.1.7.8. Check whether the break triggers
	10.1.7.9. Check whether break field values are blank
	10.1.7.10. Reset variables for the break

	10.1.8. Function related functions
	10.1.8.1. Add a user defined function
	10.1.8.2. Find a named function
	10.1.8.3. Get number of operands for an expression (function)
	10.1.8.4. Get current value of a function operand

	10.1.9. Report part and report related functions
	10.1.9.1. Create a report part
	10.1.9.2. Create a row in a report part
	10.1.9.3. Create a column in report part row
	10.1.9.4. Create a new report in a part column
	10.1.9.5. Report part related iterators
	10.1.9.6. Set the main query for a report
	10.1.9.7. Get the current row number of the main query
	10.1.9.8. Resolve all report variables
	10.1.9.9. Evaluate all report variables
	10.1.9.10. Resolve all report breaks
	10.1.9.11. Resolve all report expressions
	10.1.9.12. Evaluate all report expressions

	10.1.10. Layout related functions
	10.1.10.1. Global layout options
	10.1.10.1.1. Set or get "size unit" option
	10.1.10.1.2. Set or get "no query show NoData" option
	10.1.10.1.3. Set or get "report height after last" option
	10.1.10.1.4. Set "follower match single" option
	10.1.10.1.5. Set or get "follower match single" option directly

	10.1.10.2. Report part options
	10.1.10.2.1. Set or get part iterations
	10.1.10.2.2. Set or get part font name
	10.1.10.2.3. Set or get part font size
	10.1.10.2.4. Set or get part paper type
	10.1.10.2.5. Set or get part paper's orientation
	10.1.10.2.6. Set or get part margins
	10.1.10.2.7. Set or get part suppression
	10.1.10.2.8. Set or get part's page header suppressed on the first page

	10.1.10.3. Part row options
	10.1.10.3.1. Set or get part row suppression
	10.1.10.3.2. Set or get part row new page
	10.1.10.3.3. Set or get part row layout mode

	10.1.10.4. Part column options
	10.1.10.4.1. Set or get part column suppression
	10.1.10.4.2. Set or get part column width
	10.1.10.4.3. Set or get part column height
	10.1.10.4.4. Set or get part column border width
	10.1.10.4.5. Set or get part column border color
	10.1.10.4.6. Set or get part column's number of detail columns
	10.1.10.4.7. Set or get part column's detail column padding

	10.1.10.5. Report options
	10.1.10.5.1. Set or get report suppression
	10.1.10.5.2. Set or get report iterations
	10.1.10.5.3. Set or get report font name
	10.1.10.5.4. Set or get report font size
	10.1.10.5.5. Set or get report height
	10.1.10.5.6. Set or get report's field header priority

	10.1.10.6. Get part layout sections
	10.1.10.7. Set report for part layout sections
	10.1.10.8. Get report layout sections
	10.1.10.8.1. Miscellaneous report layout and line element functions

	10.1.10.9. Get break layout sections
	10.1.10.10. Set output section global settings
	10.1.10.10.1. Set or get output section suppression

	10.1.10.11. Add a text line to an output section
	10.1.10.12. Text line settings
	10.1.10.12.1. Set or get line font name
	10.1.10.12.2. Set line font size
	10.1.10.12.3. Set or get line bold value
	10.1.10.12.4. Set or get line italic value
	10.1.10.12.5. Set or get line suppression
	10.1.10.12.6. Set or get line text color
	10.1.10.12.7. Set or get line background color

	10.1.10.13. Add a text element to a text line
	10.1.10.14. Text element settings
	10.1.10.14.1. Set text element literal value
	10.1.10.14.2. Set or get text element value
	10.1.10.14.3. Set or get text element value's delayed property
	10.1.10.14.4. Set or get text element format string
	10.1.10.14.5. Set or get text element translation
	10.1.10.14.6. Set or get text element field width
	10.1.10.14.7. Set or get text element alignment
	10.1.10.14.8. Set or get text element text color
	10.1.10.14.9. Set or get text element background color
	10.1.10.14.10. Set or get text element font name
	10.1.10.14.11. Set or get text element font size
	10.1.10.14.12. Set or get text element bold value
	10.1.10.14.13. Set or get text element italic value
	10.1.10.14.14. Set or get text element link URL
	10.1.10.14.15. Set or get text element multiline property
	10.1.10.14.16. Set or get text element "hyphenate" property
	10.1.10.14.17. Set or get text element "wrap at characters" property
	10.1.10.14.18. Set or get text element maximum lines

	10.1.10.15. Add a horizontal line to an output section
	10.1.10.16. Horizontal line settings
	10.1.10.16.1. Set or get horizontal line size (width)
	10.1.10.16.2. Set or get horizontal line alignment
	10.1.10.16.3. Set or get horizontal line indentation
	10.1.10.16.4. Set or get horizontal line length
	10.1.10.16.5. Set or get horizontal line font size
	10.1.10.16.6. Set or get horizontal line suppression
	10.1.10.16.7. Set or get horizontal line color

	10.1.10.17. Add a barcode to an output section
	10.1.10.18. Add a barcode to a text line
	10.1.10.19. Barcode settings
	10.1.10.19.1. Set or get barcode value
	10.1.10.19.2. Set or get barcode value delayed
	10.1.10.19.3. Set or get barcode suppression
	10.1.10.19.4. Set or get barcode type
	10.1.10.19.5. Set or get barcode width
	10.1.10.19.6. Set or get barcode width
	10.1.10.19.7. Set or get barcode line color
	10.1.10.19.8. Set or get barcode background color

	10.1.10.20. Add an image to an output section
	10.1.10.21. Add an image to a text line
	10.1.10.22. Image settings
	10.1.10.22.1. Set or get image value
	10.1.10.22.2. Set or get image suppression
	10.1.10.22.3. Set or get image type
	10.1.10.22.4. Set or get image width
	10.1.10.22.5. Set or get image height
	10.1.10.22.6. Set or get image alignment
	10.1.10.22.7. Set or get image background color
	10.1.10.22.8. Set or get image field width

	10.1.10.23. Add an image end marker to an output section

	10.1.11. Callback related functions
	10.1.11.1. Add a "part added" callback
	10.1.11.2. Add a "report added" callback
	10.1.11.3. Add an "all precalculations done" callback
	10.1.11.4. Add a "part iteration" callback
	10.1.11.5. Add a "report started" callback
	10.1.11.6. Add a "report done" callback
	10.1.11.7. Add a "new row" callback
	10.1.11.8. Add a "report iteration done" callback
	10.1.11.9. Add a "report precalculation done" callback
	10.1.11.10. Add a "break triggers" callback

	10.1.12. Environment related functions
	10.1.12.1. Indirect function to get an environment variable
	10.1.12.2. Set the environment query function
	10.1.12.3. C API environment query function
	10.1.12.4. Add an "m" domain variable

	10.1.13. File handling related functions
	10.1.13.1. Return a canonical file path
	10.1.13.2. Add search path
	10.1.13.3. Add search path (delayed variant)
	10.1.13.4. Resolve search paths
	10.1.13.5. Find a file

	10.1.14. Color related functions
	10.1.14.1. Find a color by its name

	10.1.15. Paper size related functions
	10.1.15.1. Get the system default paper
	10.1.15.2. Get the paper specified by name
	10.1.15.3. Set the global paper
	10.1.15.4. Set global paper specified by name
	10.1.15.5. Get currently set global paper
	10.1.15.6. Iterate over paper sizes

	10.1.16. Memory handling related functions
	10.1.16.1. Indirect function pointers
	10.1.16.2. Allocate memory
	10.1.16.3. Reallocate memory
	10.1.16.4. Reallocate array of memory
	10.1.16.5. Free memory
	10.1.16.6. Duplicate C string
	10.1.16.7. Duplicate C string up to the specified length
	10.1.16.8. Free a C string
	10.1.16.9. Set indirect allocation functions

	10.1.17. List related functions
	10.1.17.1. Get the list length
	10.1.17.2. Make a list from one element
	10.1.17.3. Make a list from multiple elements
	10.1.17.4. Get the last element of a list
	10.1.17.5. Get the nth element of a list
	10.1.17.6. Append a new element to a list
	10.1.17.7. Append to list using the last element
	10.1.17.8. Prepend a new element to a list
	10.1.17.9. Remove a data element from a list
	10.1.17.10. Remove a data element from a list and update the last link
	10.1.17.11. Get next link in the list
	10.1.17.12. Get the data element from a list
	10.1.17.13. Free a list
	10.1.17.14. Free a list and its data elements

	10.1.18. String related functions
	10.1.18.1. Create a new string
	10.1.18.2. Create a new string with specified allocated length
	10.1.18.3. Create a string from a formatted string with maximum length
	10.1.18.4. Create a string from a formatted string
	10.1.18.5. Resize a string
	10.1.18.6. Free a string
	10.1.18.7. Append a C string of the specified length to a string
	10.1.18.8. Append a binary string of the specified length to a string
	10.1.18.9. Append a C string of unspecified length to a string
	10.1.18.10. Append a byte to a string
	10.1.18.11. Append a formatted string to a string

	Chapter 11. Implement a datasource input driver
	11.1. Datasource input driver registration API
	11.1.1. Register a datasource input driver
	11.1.2. Get a datasource input driver

	11.2. Datasource input driver details
	11.2.1. Datasource input driver interface

	11.3. Helper functions to implement a datasource input driver
	11.3.1. Get the parent pointer of a datasource
	11.3.2. Get the name of a datasource
	11.3.3. Get the input driver pointer of a datasource
	11.3.4. Set the private pointer of a datasource
	11.3.5. Get the private pointer of a datasource
	11.3.6. Allocate a query structure
	11.3.7. Get the query name
	11.3.8. Get the datasource pointer of a query
	11.3.9. Set the private pointer of a query
	11.3.10. Get the private pointer of a query
	11.3.11. Set current row of a query all NULL
	11.3.12. Set a column value of a query

	Chapter 12. PHP language API reference
	12.1. The OpenCReports PHP module
	12.2. The OpenCReport class
	12.3. High level PHP API
	12.3.1. Constructor
	12.3.2. Load a report XML description
	12.3.3. Set report output format
	12.3.4. Get report output format
	12.3.5. Get report output format name
	12.3.6. Set report output parameter
	12.3.7. Run the report
	12.3.8. Dump report result
	12.3.9. Get report result
	12.3.10. Get report content type
	12.3.11. Get library version

	12.4. Low level PHP API
	12.4.1. Numeric behavior related methods
	12.4.1.1. Set numeric precision
	12.4.1.2. Get numeric precision
	12.4.1.3. Set rounding mode

	12.4.2. Locale related methods
	12.4.2.1. Set up translation
	12.4.2.2. Set report locale

	12.4.3. Data source and query related methods
	12.4.3.1. Add a datasource
	12.4.3.2. Get a named datasource
	12.4.3.3. Get a named query
	12.4.3.4. Refresh the internal representation of array queries

	12.4.4. Expression related methods
	12.4.4.1. Parse an expression
	12.4.4.2. Add a custom report function

	12.4.5. Layout part related methods
	12.4.5.1. Add a new report (layout) part
	12.4.5.2. Get first (layout) part
	12.4.5.3. Set paper type
	12.4.5.4. Set or get size unit
	12.4.5.5. Set or get "no query show NoData" property
	12.4.5.6. Set or get "report height after last" property
	12.4.5.7. Set or get "follower match single" property

	12.4.6. Callback related methods
	12.4.7. Environment related methods
	12.4.8. Add "m" domain variable
	12.4.9. Result related methods
	12.4.10. Path related methods
	12.4.10.1. Add a search path
	12.4.10.2. Canonicalize path
	12.4.10.3. Find a file

	12.4.11. Color related methods

	12.5. The OpenCReport\Datasource class
	12.5.1. Free a datasource
	12.5.2. Add a query to the datasource
	12.5.3. Set datasource encoding

	12.6. The OpenCReport\Query class
	12.6.1. Get result for a query's current row
	12.6.2. Start navigation for a query
	12.6.3. Navigate to the next row
	12.6.4. Navigate use previous/next row
	12.6.5. Add a query follower
	12.6.6. Add an N:1 query follower
	12.6.7. Free a query

	12.7. The OpenCReport\QueryResult class
	12.7.1. Get number of columns for a query result
	12.7.2. Get the nth column name for a query result
	12.7.3. Get the nth column result for a query result

	12.8. The OpenCReport\Expr class
	12.8.1. Free an expression
	12.8.2. Get the original expression string
	12.8.3. Print an expression
	12.8.4. Get the number of expression tree nodes
	12.8.5. Resolve an expression
	12.8.6. Optimize an expression
	12.8.7. Evaluate an expression
	12.8.8. Get the result of an expression
	12.8.9. Set expression result to a string value
	12.8.10. Set expression result to a long value
	12.8.11. Set expression result to a double value
	12.8.12. Set expression result to a numeric value from string
	12.8.13. Get number of operands of a expression
	12.8.14. Get nth operands' result of a expression
	12.8.15. Compare the expression's current and previous results
	12.8.16. Initialize expression results
	12.8.17. Get string value of an expression
	12.8.18. Get long value of an expression
	12.8.19. Get double value of an expression
	12.8.20. Get numeric value of an expression as a string
	12.8.21. Set nth result of an expression to a string value
	12.8.22. Set nth result of an expression to a long value
	12.8.23. Set nth result of an expression to a double value
	12.8.24. Set iterative start flag of an expression
	12.8.25. Set expression to delayed

	12.9. The OpenCReport\Result class
	12.9.1. Free a result object
	12.9.2. Copy a result object
	12.9.3. Print a result object
	12.9.4. Get result object value type
	12.9.5. Detect whether result object value is NULL
	12.9.6. Detect whether result object value is a string
	12.9.7. Detect whether result object value is a number
	12.9.8. Get string value of a result object
	12.9.9. Get numeric value of a result object as a string

	12.10. The OpenCReport\Part class
	12.10.1. Get the next report part
	12.10.2. Create a new report part row
	12.10.3. Get the first report part row
	12.10.4. Add iteration callback for the part
	12.10.5. Check whether two parts are identical
	12.10.6. Set or get number of part iterations
	12.10.7. Set or get part font name
	12.10.8. Set or get part font size
	12.10.9. Set or get paper type
	12.10.10. Set or get part orientation
	12.10.11. Set or get part top margin
	12.10.12. Set or get part bottom margin
	12.10.13. Set or get part left margin
	12.10.14. Set or get part right margin
	12.10.15. Set or get part suppression
	12.10.16. Set or get suppression of the page header on the first page
	12.10.17. Get the part's page header
	12.10.18. Set the report object for the part's page header
	12.10.19. Get the part's page footer
	12.10.20. Set the report object for the part's page footer

	12.11. The OpenCReport\Row class
	12.11.1. Get the next part row
	12.11.2. Create a new part column for the row
	12.11.3. Get first column of a part row
	12.11.4. Set or get suppression for the part row
	12.11.5. Set or get new page for the part row
	12.11.6. Set or get layout type for the part row

	12.12. The OpenCReport\Column class
	12.12.1. Get next column
	12.12.2. Create a new report in the column
	12.12.3. Get first report of a part column
	12.12.4. Set or get part column suppression
	12.12.5. Set or get part column width
	12.12.6. Set or get part column height
	12.12.7. Set or get border width
	12.12.8. Set or get border color
	12.12.9. Set or get number of detail columns
	12.12.10. Set or get column padding

	12.13. The OpenCReport\Report class
	12.13.1. Get the next report
	12.13.2. Create a new report variable
	12.13.3. Create a new custom report variable
	12.13.4. Get the first variable of a report
	12.13.5. Parse and expression for the report
	12.13.6. Get the error after a failed expression parsing
	12.13.7. Resolve variables of the report
	12.13.8. Evaluate variables of the report
	12.13.9. Create a new report break
	12.13.10. Get a report break by its name
	12.13.11. Get the first report break
	12.13.12. Resolve breaks of the report
	12.13.13. Get the current row number of the main query
	12.13.14. Add a "report start" callback
	12.13.15. Add a "report done" callback
	12.13.16. Add a "new row" callback
	12.13.17. Add an "iteration done" callback
	12.13.18. Add a "precalculation done" callback
	12.13.19. Check whether two report objects are the same
	12.13.20. Set the report's main query
	12.13.21. Set the report's main query by name
	12.13.22. Set or get the report suppression
	12.13.23. Set or get number of iterations for the report
	12.13.24. Set or get the font name for the report
	12.13.25. Set or get the font size for the report
	12.13.26. Set or get the report height
	12.13.27. Set or get the report's field header prioroty
	12.13.28. Get output sections of the report

	12.14. The OpenCReport\Variable class
	12.14.1. Get the base expression of a variable
	12.14.2. Get the ignore expression of a variable
	12.14.3. Get the first intermediary expression of a variable
	12.14.4. Get the second intermediary expression of a variable
	12.14.5. Get the result expression of a variable
	12.14.6. Get the variable type
	12.14.7. Get the variable precalculated flag
	12.14.8. Resolve expressions of a variable
	12.14.9. Evaluate expressions of a variable
	12.14.10. Get the next variable of the same report

	12.15. The OpenCReport\ReportBreak class
	12.15.1. Get next break
	12.15.2. Add a breakfield to a break
	12.15.3. Check breakfields
	12.15.4. Reset variables associated with a break
	12.15.5. Add a "trigger" callback to a break
	12.15.6. Get the name of a break
	12.15.7. Get output sections of a break

	12.16. The OpenCReport\Output class
	12.16.1. Set or get suppression of the output section
	12.16.2. Add a (text) line
	12.16.3. Add a horizontal line
	12.16.4. Add an image
	12.16.5. Add a barcode
	12.16.6. Add an image end marker
	12.16.7. Get the first output element

	12.17. The OpenCReport\Line class
	12.17.1. Set or get the font name for the line
	12.17.2. Set or get the font size for the line
	12.17.3. Set or get the font's bold flag for the line
	12.17.4. Set or get the font's italic flag for the line
	12.17.5. Set or get line suppression
	12.17.6. Set or get text color for the line
	12.17.7. Set or get background color for the line
	12.17.8. Add a text element to the line
	12.17.9. Add an image element to the line
	12.17.10. Get the first line element

	12.18. The OpenCReport\HorizontalLine class
	12.18.1. Set the line width
	12.18.2. Set or get the line alignment
	12.18.3. Set or get the line indentation
	12.18.4. Set or get the line length
	12.18.5. Set or get the line's font size
	12.18.6. Set or get the suppression flag for the line
	12.18.7. Set or get the line color

	12.19. The OpenCReport\Image class
	12.19.1. Set or get the file name of the image
	12.19.2. Set or get the suppression flag for the image
	12.19.3. Set or get the image type
	12.19.4. Set or get the image width
	12.19.5. Set or get the image height
	12.19.6. Set or get the image alignment
	12.19.7. Set or get the image background color
	12.19.8. Set or get the image "text width"

	12.20. The OpenCReport\Text class
	12.20.1. Set literal value
	12.20.2. Set or get expression value
	12.20.3. Set or get delayed flag for the field expression
	12.20.4. Set or get the format string for the field expression
	12.20.5. Set or get the translation flag for the field expression
	12.20.6. Set or get the field width
	12.20.7. Set or get the field alignment
	12.20.8. Set or get the field text color
	12.20.9. Set or get the field background color
	12.20.10. Set or get the field font name
	12.20.11. Set or get the field font size
	12.20.12. Set or get the field's bold flag
	12.20.13. Set or get the field's italic flag
	12.20.14. Set or get the field's link
	12.20.15. Set or get the field's memo flag
	12.20.16. Set or get the field's "hyphenate" flag
	12.20.17. Set or get the field's "wrap at characters" flag
	12.20.18. Set or get the field's maximum number of lines

	12.21. The OpenCReport\Barcode class
	12.21.1. Set or get the barcode value
	12.21.2. Set or get the barcode value delayed
	12.21.3. Set or get the barcode suppression
	12.21.4. Set or get the barcode type
	12.21.5. Set or get the barcode width
	12.21.6. Set or get the barcode height
	12.21.7. Set or get the barcode image line color
	12.21.8. Set or get the barcode image background color

	12.22. The OpenCReport\OutputElement class
	12.23. The OpenCReport\LineElement class
	12.24. RLIB compatibility API
	12.24.1. Initialize a report
	12.24.2. Destroy a report
	12.24.3. Get library version
	12.24.4. Add a MySQL/MariaDB datasource
	12.24.5. Add a MySQL/MariaDB datasource from an INI group
	12.24.6. Add a PostgreSQL datasource
	12.24.7. Add an ODBC datasource
	12.24.8. Add an array datasource
	12.24.9. Add an XML datasource
	12.24.10. Add a CSV datasource
	12.24.11. Add a query
	12.24.12. Add a resultset follower
	12.24.13. Add a resultset N:1 follower
	12.24.14. Set datasource encoding
	12.24.15. Add a report XML
	12.24.16. Add a report XML from buffer
	12.24.17. Add a search path
	12.24.18. Set locale
	12.24.19. Setup translation
	12.24.20. Set output format
	12.24.21. Add a custom report function
	12.24.22. Set output encoding
	12.24.23. Add a report parameter
	12.24.24. Set an output parameter
	12.24.25. Refresh array query contents
	12.24.26. Add an event callback
	12.24.27. Execute the report
	12.24.28. Dump the report output
	12.24.29. Get content type
	12.24.30. Set radix character
	12.24.31. Compile and evaluate an expression
	12.24.32. Add graph background region
	12.24.33. Clear graph background region
	12.24.34. Set graph minor tick
	12.24.35. Set graph minor tick by location

	Chapter 13. Examples
	13.1. Simple report example
	13.1.1. Data
	13.1.2. C program code
	13.1.3. PHP program code
	13.1.4. RLIB compatible PHP program code
	13.1.5. Report description
	13.1.6. Report PDF result

	13.2. Simple report example with data access in code
	13.2.1. Data
	13.2.2. C program code
	13.2.3. PHP program code
	13.2.4. RLIB compatible PHP program code
	13.2.5. Report description
	13.2.6. Report PDF result

	13.3. Colors, images, horizontal lines and fonts
	13.3.1. Data
	13.3.2. C program code
	13.3.3. PHP program code
	13.3.4. RLIB compatible PHP program code
	13.3.5. Report description
	13.3.6. Report PDF result

	13.4. Report variables and breaks
	13.4.1. Data
	13.4.2. C program code
	13.4.3. PHP program code
	13.4.4. RLIB compatible PHP program code
	13.4.5. Report description
	13.4.6. Report PDF result

	13.5. Follower queries
	13.5.1. Data
	13.5.2. C program code
	13.5.3. PHP program code
	13.5.4. RLIB compatible PHP program code
	13.5.5. Report description
	13.5.6. Report PDF result

	13.6. N:1 follower queries
	13.6.1. Data
	13.6.2. C program code
	13.6.3. PHP program code
	13.6.4. RLIB compatible PHP program code
	13.6.5. Report description
	13.6.6. Report PDF result

	13.7. N:1 follower queries (RLIB compatibility limits)
	13.7.1. Data
	13.7.2. C program code
	13.7.3. PHP program code
	13.7.4. RLIB compatible PHP program code
	13.7.5. Report description
	13.7.6. Report PDF result

	Chapter 14. GNU Free Documentation License

