OpenCReports 0.8.14 Manual

Zoltan Boszérményi

OpenCReports 0.8.14 Manual
Zoltan Boszérményi
Copyright © 2019-2025 Zoltan Bdszorményi

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the licenseisincluded in the section entitled "GNU Free Documentation
License".

Table of Contents

1. INtroduCtion N0 CONCEPLSeeetie ettt ettt et e et e ettt e e e et e e e e e e e ena s 1
1.1. The predecessor: RLIB ...t 1
D O o oS P P PPTUPPT 1

1.2.1. What iS & report gENEIAIOI?couuuneeiiiie et e et e et e et e e e e e eaa e eeees 1
1.2.2. XML based report deSCriplionoeeeeeieeeiiie e 1
1.2.3. Comprehensive APl fOr report Creationocceeveieeeiiinieieiie e 1
1.2.4. SIICL @XPIrESSION PAISENceeeeeneieeti ettt e ettt e e e et e et et et e e e eba e e e eaa s 2
1.2.5. EXPression OPtiMIZatiONueieereieieiie et e e e 2
1.2.6. REPOIt VariabIES ... 2
1.2.7. REPOI Breaks ... 2
1.2.8. Extensive and extensible set of fUNCLIONSovviviiiiiiiiii e 2
1.2.9. UTF-8 String handlinguiiiiiiiiiiiii e 2
1.2.10. High precision NUMENC dala tyPecevuneeeiriieeiiii et 2
1.2.11. Datetime and interval data tyPeSvuuevieiinieiiiii e 2
1.2.12. Automatic iNPUt data CONVEISIONcccuuuieiiiii it e et e e e e 3
1.2.13. Versatile field alignment and multi-row fieldsccoviiiiiiiiiiiiiiieees 3
1.2.24. MUIti-COIUMN TEPOTSeeeetieeeeei ettt ettt e e e e e s 3
1.2.15. Miscellaneous layout detailSoveieuiiieiii e 3
1.2.16. Multiple OULPUL TOMMELSceueneieiii e e 3
1.2.17. EXtensive et Of UNIt tESES ...ovuuniiiiii i 3
1.2.18. Standard LinuX dependenCiesveiiriieeiii e 3
1.3. OpenCRePOrts planned fEALUMNEScieeiie it 4
1.3.1. Graph and chart support in HTML and PDF OUEPULcccevuiiiiiiiiieiiiiieeees 4
1.3.2. Visual editor for report XML desCriptionsoocevuuieeiiiiiieeiiiieeeeeie e 4

2. Data SOUICES @NO QUENTES ... ceeiti ettt ettt ettt e ettt e e ettt e e e e e et e e e es b reeeenbneeeentnaeaees 5

2.1, DEEA SOUMCESvueetie ettt ettt ettt et et e e e et e r et e et e e e e e e e e 5
2.1.1. SQL based data SOUMCESueieeeiiieeei et e e et et e et e e e e e e eaeeeannas 5
2.1.2. File based dal@ SOUICESccuuuiiiiiii ettt et 6
2.1.3. Application data based datasOUrCecceuuieieriiieiii e 8
2.1.4. Application defined data SOUICESccovvunieiiiiiieeeeei e 8

A O 1 = 1= S SRR 8
221, SQL QUENTES ...ttt ettt 9
2.2.2. FIlE QUENTES ...t 9
2.2.3. DA QUETTES ...ttt ettt ettt 9
2.2.4. Relation DEWEEN QUEITES i 9

3. EXPressions in OPENCREPOISiirtteieiii ettt ettt ettt ettt e et e et eeenaas 11
I3 W [L oo (8o 1o o RO PP PP PPPPTI 11
3.2, CONSIANES ...ttt 11

321 SHNG HEEIAIS ..t 11
3.2.2. NUMENIC CONSLANTS ...evvteeeetiie ettt ettt e e et e e e e e e 12
3.2.3. BOOIEAN CONSLAIES ... ceeeeieeeeti e ettt sttt ettt et e e e e e e e e e enees 13
3.2.4, DAEiME CONSLANES ...ceeveiieeeiii ettt ettt e e e e e 13
3.2.5. CONSLANE EXPIESSIONSeeeerieeeeeti e et e ettt e et e et e e e et e e e e e e ena s 13

3.3. Delayed (precalculated) EXPIreSSIONSueeiiiiieeieiie et e e 13

o [L= 0] = £ PP PP TPPPPTRPPPI 14
AL 1deNtifiEr NAIMES ...t et 14
3.4.2. Query field Identifiersocouu i 14
3.4.3. User defined variableSoooiiiiiici e 14
3.4.4. Special purpose identifier domainsc.uuveiiiiiiieiiii e 14

3.5. Operators and fUNCLIONSuuiiiii et 18
T B = 107 VA0 = = (o PP PPT PP 18

OpenCReports 0.8.14 Manual

3.5.2. Boolean logic operators with two operandsccocceviiiiieiiie i, 19
3.5.3. Bitwise operators with two operandscceevviieiiiiiiii e 19
3.5.4. Equality and inequality compariSon OPEratorScc.uevureeeinieereeeiieraiieeaneens 19
3.5.5. Other COMPariSON OPEIGLOISuueeueeiiiieeiiee e e e e e e e e e e e e e et e e et eeanaeeees 19
3.5.6. BItWISE SNIfES ..uuiieiiiiiiiei e e 19
3.5.7. Addition and SUBLFACLiONuieiiiiiieiiiis e 19
3.5.8. Multiplication, division and modulo (remainder)ccooveviiieeiiiiiiiiieceeeenn, 20
3.5.9. POWEr-0f OPEIAIONieiiiiee e e e e e e e e e e e aaeen 20
3.5.10. FaCtorial OPEIGLOLuuieiiiieei e e e e e e e e e e e e e e e e et e e e e ean e eees 20
3.5.11. Unary plus and minus, logical and bitwise NOT, prefix increment and
0= o (= 11 o PSP 20
3.5.12. Postfix increment and deCcrementoovvvviiieiiiiiie e 20
3.5.13. Function calls and implicit multiplicationc..ccoeviiiiiiiin e, 20
B.5. 14, PalenthiESES .. eevviieeeii et 21
3.5.15. A note on token matching, precendence and Syntax errorscceeevvueeennnnnns 21
U 0 1o ST 23
g I g1 o [o ' PP 23
4.2, ArithmELIC FUNCHIONS ..vvu i e e e e e ert e e eraaeaees 23
2.0, @DS() weueeeii e e 23
A.2.2. GIV() oeeeeeie et et a e e e aee 23
G T - ox (o) - I) P 23
A A § 4o [TP 23
ST 1110 o [PN 23
T 1 11 TSP 24
A R (= 117 110 L=) 24
R TV o 11 U1) T 24
e BV |1 N 24
4.3, BIitWiSe FUNCLIONS ...eevi et e et e e e e e e e enens 24
A3 L. ANAQ) et 24
N 7 oo (PR 24
R TG T o () P 24
3 = | PPN 24
G S T o) PP 24
G T (o) I 24
4.4, Boolean 10giC FUNCLIONSiiiiiiii e e e e e e e e ean s 25
o I =T [PP 25
A 14 To (P 25
e T o () 25
4.5, CompPariSON FUNCHIONSuiiii e e e e e e e e e e e e e e e e e ranees 25
TN = o PP 25
o < P 25
I T o |1 SO 25
Y S = PSP 25
IS T |) PSP 25
Y T <) PP 25
4.6. Rounding and related fUNCLIONScovuiiiii e 26
3 o= PSP 26
i { [o) (S 26
G T 1T 1 26
0 A (T o (P 26
T 11T () 26
4.7. Exponential, logarithmic and related funCtionsccocoiiiiii i 26
5 TR = o P 26
= X 0 PP 26

OpenCReports 0.8.14 Manual

R T = 02§ PPN 26
B S o PP 26
ST oo | PR 26
B T o 0 S 26
B AR 1o 1. P 27
< T oo 1/) TP 27
e T o () 27
B (O T 4 1 P 27
4.8. TrigoONOMELIIC FUNCLIONSuiiii i e e e e e e aaas 27
N =o' = () PN 27
B.8.2. ASIN() tererrrunnieteeetee e e e e e e e e e e a e e et e et e aaraaat 27
G T o SO 27
B N o=) SRR 27
S T o 1) PPN 27
I T o= o (S 27
T A = o (S 27
ST T T o PR 27
S T - 11 PPN 28
4.9, SHING FUNCLIONSiiiiii e e e e e e et e e e et e e e e e eanas 28
e I I oo o { (N 28
e B 1) S SSSPRTT 28
e I T [0 Y=) TN 28
eI A 4 o | S PPPPRRN 28
e T o (0] o= ¢ (N 28
e T 4T 011) PPN 28
A.9.7. SHTEN() ceevniei e 28
e TV o o=) PPN 28
4.10. DAEiME FUNCLIONSeiieiiiee e e et e e e et e e e eaan e e eeaenns 28
g (O I o g To o = (=0) P 28
4.10.2. ChGEIMEOT() «.evvnieii e 29
0 T = = P 29
O o = 1=) 29
0T = PPN 29
B.10.6. M) .neeeeeeeeeiete e e e e e e e e rar e e e aaaaanrn 29
O o1 (PR 29
0 ST 1) P 29
4.10.9. gELIMEINSECS() +vuvvvneii et e e e e e e e e e e e e e e e et e e e eaas 29
0 (O 101 = V1 USRS 29
g 01 O 37 11 P 29
0 23 To L TSP 30
4.10.13. SEHIMEINSECS) +uuevvneiitieiiii et e e e e et e et e e e e e e e e et e e et e e et e e e eeaneeaen 30
O = (o 1Y S PPPRRN 30
0 ST (o | S SSPPPPUR 30
0T (o | { (U SSPPUPRR 30
0 A= (o 1o (S 30
O ST 11010 30
0 T £ (o o | USSP 30
0O R 30
0 Y 1 30
4.10.22. WIYO() +evvvrnnieeeeeteeitiiaseeeeeeeeaat s s e e e e e eesa e aa e e e e e e e et e e e e e aaa s 31
L0 T Y= 1 (USSP 31
4.11. Type agnOStiC FUNCLIONSvuiiii e e e e e e e e eaes 31
0 o o [PR 31
B o =) 31

OpenCReports 0.8.14 Manual

0 T PSPPI 31
O = ¥ o 31

4.12. Formatting and conNVErsion fUNCLIONSccuuiiiinieiiiicie e e e e 32
g 2 T {01 10 { (N 32
0 11 11 PPN 32
B 2 T) 32
V7 PSPPSR 32

4.13. MisSCEllan@OUS fUNCHIONSiiieiiiieiiei et e et e e e eaaens 32
g 35 I o (11 0 o 1 P 32
B = 1 (o () PP 33
T T = Y- | PR 33
3 B 01 0V | PPN 33
35 T 1 S 33
N TS o = = 11411 (S 33
R T = 1 o () PP 33
3 ST = o 1 PSSR 33
3 TN = OSSP 33
B (O A= 000 1= 4 ' T 34
g B = 1 o () P 34
I 35 2 41 1 SRR 34
B 30 1 T T o 1 PPN 34
B 30 T 1 PPN 34
1315, NMUIS() .eeeeeeeeet et e e e e e e e e e aaaaanaaa 34
B L o= YAV 1 (TN 34
g B A =2 To 4o) 34
g B S T 0117/ 11 3 PP 34
L I 1 =0~ - 1§ S 34
I O 1 =0~ - =2 (S 35

5. REPOI VaABBDIES ... e 36
5.1. Introduction to report VariableSoovuieiiii i 36
5.2, EXPression Variallescouuiiiiiiii et 36
5.2.1. Variables with iterative EXpreSSiONSciuveeieeieiiieei e e eee e e et e e e e 36
5.2.2. Expression variable eXampleSccuiiiiiiiiiii e 36

5.3. Variable types for SImple StatiStiCSovuuuiiiieii e cee e e e e e e e 36
5.3.1. Statistics variable eXampleSccuiiiiiiiiiii 37

5.4, CUSIOM VANTADIESviiiiii et e et e 37
5.5. Precalculated VariabIESiiiiiiii e 37
LS = o0 A o= 24 39
(S {0 1W o] o To o - - U 39
6.2. Report breaks in OPENCREPOMSciiiieiii e e e e e e e e e e e e e eees 39
6.3. Resetting a variable on break boundariescoccoieiiiiiii 39
L e 1 o) 39
0 o110 111 o 40
7.1, FOrmatting fUNCLIONSuuiiiieii e e e e e e e e e e e e e e eaeas 40
A o 1 4 A= o P 40
7.3. Legay fOrMat SIIINGS ..uuiiie e ee e e e e e e e e e e e e e e e e aaas 40
7.3.1. Format String fOr SIINGS ..vu.ivin e e e 40
7.3.2. Format string for NUMENIC VAIUESccvviiiiciii e 40
7.3.3. Format string for datetime ValUESc.ooviiiiiiii e e e e 41

7.4. New Style TOrmat SLHNGS .. cvvniiii e e e e e e e e e eaeas 41
7.4.1. New style format string for StHNGSocovuiiiieiii e e 41
7.4.2. New style format string for numeric dataccooveeiiiiiiiiiin i, 41
7.4.3. New style format string for monetary dataccooeeiiiiiiiiiin i, 41
7.4.4. New style format string for datetime valueSccoveiiii i 41

Vi

OpenCReports 0.8.14 Manual

7.4.5. New style format String EXampleSociviieiiiii e 41

7.5. Second generation new style format Stringsoveveiiiiiiiiii e 42
7.5.1. 2nd gen new style format string for StNGSccvoveiiieiiii e 42
7.5.2. 2nd gen new style format string for numeric data...........ccoocoieeiiiieiiiiciieeinns 42
7.5.3. 2nd gen new style format string for monetary datacooccoevevviveiiiieiiieeennnn. 42
7.5.4. 2nd gen new style format string for datetime valuesccccceeeeviiiiiiineennen, 42
7.5.5. 2nd gen new style format String eXamplesccoovvieiiiiiiii e 42

7.6. The swiss army knife of formattingc.cooiiiiiiiii e 42
LS == o0 £ Q1Y Lo L=] o1 o o 44
8.1. XML desCription SITUCLUIEcvviiiii e e e e e e e e e e e e e e et e eean e eaes 44
8.1.1. Notes about XML syntax and attribUteScc.veiiiiiiiiiiciiii e 45

8.2. OPENCREPOIT BlEMENLivtiiii e e e e e e e e et e e e e ean s 45
8.2.1. SIZE UNIt @LITDULEui e e e e e 45
8.2.2. NO qUETY SNOW NODGA .. .cvvueiiiiieii e e e e e e e e e e e e eens 46
8.2.3. Report height after 1Stuiviiiiii e 46
8.2.4. Follower MatCh SINGIEuiii i 47
ST = o= To g I o] £ PP 47
8.2.6. ROUNAING MOE ... ceviiiii e e e e e e aens 47
BL2.7. LOCAIE ..ottt 47
8.2.8. Trandation SEIINGS ... ccvuiiiiieiie e e 47

8.3, PaNS ... 48
8.4, DBLASOUITESceuetieeteet e e ettt e et et e et et et et e en e e en e e e et e e e e e ea e et e enaennnas 48
8.4.1. MariaDB (MySQL) database CONNECLIONcocvvieiiiieiiiie e 48
8.4.2. PostgreSQL database CONNECLIONc.uuiviviieiii e e e 49
8.4.3. ODBC databhase CONNECLIONccuuuieeiiiieeeiiiie et et e et e e et eeeaen s 50
8.4.4, CSV Il HABSOUICEuuiiiiiii e 51
8.4.5. JSON fil€ daLASOUICEeeevvn ettt e e e e eeeae e aees 51
8.4.6. XML file dataSOUICEvuuieiiiii et e eeaaes 51
8.4.7. Spreadsheet file dataSOUrCeoeivniiiiii e 51
I AN = VAo T = < 011 oY 52
8.4.9. COMMON dataSOUICe PrOPEILIEScvvtiiieieeii e e e e et e et e e e e e e e e et e e eanaeees 53

ST 1 = =< 53
8.5.1. SQL queries for SQL dataSOUICESuueviuneeiiieeeieeeiieee e e e e e e e e 53
8.5.2. Queries for file based dataSOUrCESuveviiiiiiii e, 53
8.5.3. Queries for array based datasOuUrCeScc.uveviiiiiiiiieiii e, 54
8.5.4. FOIOWEr QUENESvniii e e 55

8.0, REPOI PAITS vttt e 56
8.6.1. Part @triDULEScceevieieiii e 56
8.6.2. Part SUDSECHIONScuuiiiiiii e e 59

A == B 0 PP 59
8.7.1. Part row atribULESiiiiii i 60

8.8, Part COIUMIN ..ui et e e et e e et e e et e e e b s 60
8.8.1. Part column attribULESooeeeiiiii e 61

LS TR T = o 0] PP 62
8.9.1. REPOIT GIIDULES ... ceveciii e e e e e e e 63
8.9.2. REPOIT SUDSECHIONS ... cvviciii i e e e e e eaaees 68

300 T I o L= I (= oo o A 70
8.10.1. Loaded Report attribULESccvuiiii e 70

B.LL. ValADIES .. e aaaa 71
812, ValADIE ... e 71
8.12.1. Variahle @tribULEScevuieiiiii e 71

ST T 2] (== (PP 77
814, BrEaAK ...ttt 77
8.14.1. Break attribDULES .. .cccvvieeiiii e 78

Vii

OpenCReports 0.8.14 Manual

8.14.2. Break SUBSECHIONSvvuiiiiiii e 78
8.14.3. A complete break examplevviiiiiiiii 79

ST ST @ 1F 11 o 1 | PP 81
8.15.1. OULPUL GHITDULESiiii e e e e e e e aens 81
8.15.2. OULPUL SUDSECLIONScevueiii e e e e e e e e e e e e e e e e e e eeen 81

S0 G T = PP 82
8.16.1. LiN€ atriDULES ...evvieiiiii e 82
8.16.2. LiNE SUDSECIIONS ...evuieiiiiiieeeiii ettt e et e et et e e e et e e e et s e e e eninneeeees 84

ST A == 1= 1 1< o PP 84
8.17.1. Text element atribDULESooeiii e 85

8.18. HOMZONTAILINE ...t et e e et e e 91
8.18.1. HorizontalLing atribBULEScccvvniiiiii e 91

S T T 1 7= (= 92
8.19.1. IMage @ITDULESiiee e e e e 93

8.20. IMBOE ENA ...ee it 94
8.21. BarCOUE El@MENTuuiieiiiii et e aaaa 95
8.21.1. Barcode element attribULESuviviiiiiieiiiie e 95

L2272 ©Co Fo T o 1= ot Tor- 1] o NS 97
9. High level Clanguage APl TEfErENCecovniii e 98
N == o [] = PP 98
9.2, HIGh [EVEL € AP ..o e e e e e as 98
9.2.1. Report handler initializationooviiiiiiiii e 98
9.2.2. Load areport XML desCriptionceceuuieiiieiiiieciee e e e e e e e e 98
9.2.3. Parse report XML description from abufferccoocooiiiiiiiiiii e, 99
0.2.4. Set report OULPUL FOMMELvueiieie e e e e 99
9.2.5. Get report output format as enum OF SIFNGevveeeiiiee e 99
9.2.6. Set report OULPUL ParaMELEYveiieiiiii e e e 99
0.2.7. RUN thE FEPOMT ... et e e e e e aaaas 100
0.2.8. DUMP rEPONt TESUIL ...ovueiei e e e e e e e e e eaa s 100
IS R CTc g (= oJo == U | A 100
0.2.10. Get repOrt CONTENT LY P 1vuiviiieiie et e e 101
9.2.11. Report handler destructioncc.veiiiiiiiii e 101
0.2.12. Get [iBrary VEISIONuuiiiiiiie e e e e e e 101

10. Low level C language APl FEFErENCEu i e e 102
TO.1 LOW TEVEL C AP it e e e e et e e e e e aees 102
10.1.1. Numeric behavior related fuNCLioNSoovvviiiiiiiiii e, 102
10.1.2. Locale related fUNCLIONScccevuiieiiiii e 102
10.1.3. Data source and query related fUNCHONSoevveeiiieiiii e 103
10.1.4. Expression related fUNCHIONSovviiiiii e 111
10.1.5. Column data or expression result related functionsccccceeeviiiieiiineeinns 115
10.1.6. Variable related fUNCLIONSiiiiiiiiee e 117
10.1.7. Break related fUNCLIONSuiiieiii e 119
10.1.8. Function related fUNCLIONSiiiiiiiicci e e 121
10.1.9. Report part and report related fUNCLIONSc.oviviiiiii e 122
10.1.10. Layout related fUNCHONSoeiiiiii e e 124
10.1.11. Callback related fUNCLIONSoiviiiiieeeiii e 144
10.1.12. Environment related fUNCLIONSoiiiiiiiiiieiiiie e 146
10.1.13. File handling related fUNCLIONSccovuieiiicii e 147
10.1.14. Color related fUNCLIONSuuiiiiiii e 148
10.1.15. Paper sizerelated fUNCLIONScovuiiii e e 148
10.1.16. Memory handling related funCtionSccoevviiiiiii i, 149
10.1.17. List related fUNCLIONSccuuuiiiiiiiciee e 151
10.1.18. String related fUNCLIONScovniiiiici e 153

11. Implement a datasource INPUL AFIVEriiii i e e e 155

OpenCReports 0.8.14 Manual

11.1. Datasource input driver registration APlooiiiiiiiiii e 155
11.1.1. Register a datasource input driVercccouiiiiiiieiiii e e 155
11.1.2. Get a datasource iNPUE driVErcoouiiiiiiic e 155

11.2. Datasource input driver detailScoouiiiiiiiiiii e 155
11.2.1. Datasource input driver iNterfatecoceuuviiiiiieii e 155

11.3. Helper functions to implement a datasource input driverccooeeviieiiiieeiiieeiinns 157
11.3.1. Get the parent pointer of a dataSOUrCecc.uvevivnieiiiieiiieeie e, 157
11.3.2. Get the name Of & dataSOUICeoovevviiiiiiii e 157
11.3.3. Get the input driver pointer of a datasourcec.ccuveviiieiiiieiiiiiecie e, 157
11.3.4. Set the private pointer of a dataSoUrCevvvvvnieiiieeiiiieciii e 157
11.3.5. Get the private pointer of @ dataSOUrCecc.veviiieiiiiieiie e 157
11.3.6. AllOCEEE @ QUETY SLIUCIUIE ... cevieiiieeiii e ceie e e e e e e e e e e e e ea e eaes 157
11.3.7. Get the QUENY NAIMEcvvi i e e e e e e e eaa s 157
11.3.8. Get the datasource pointer Of A QUENYcvveeiiiieiii e e 157
11.3.9. Set the private pointer Of @ QUENYovvvniiiiiciie e 157
11.3.10. Get the private pointer of @ QUENYcevueeiiieiiiieeie e 158
11.3.11. Set current row of aquery all NULLoooviiiiiiiin e, 158
11.3.12. Set acolumn value Of @ QUENYcovviiiiici e e 158

12. PHP [anguage APl FEfErENCE ... cvve e e e e e e e e e een 159

12.1. The OpenCRePorts PHP MOAUIEcovuiiiii e 159

12.2. The OPENCREPOI ClaSScvuiiiiiieii e i et e e e e e e e e e aanas 159

12.3. High [evel PHP AP ...t e s 161
12.3.1. CONSITUCTON ...ttt e et et e e e e e e e e e e e e e e en e nnnas 162
12.3.2. Load areport XML desCriptioncocvuuieiiieiii e 162
12.3.3. Set report OULPUL FOrMELveeei e e 162
12.3.4. Get report OULPUL TOIMELoee e e e e s 162
12.3.5. Get report output fFOrmMat NAIMEuevieiee e 163
12.3.6. Set report OULPUL ParaMELENvveiee i e e e e 163
I A =1 B 11 = oo o A 164
12.3.8. DUMP FEPOI FESUIL .. ovvieii e e e e e e eaes 164
e R €= (= oo o f = V| A 164
12.3.10. Get report CONTENE LY .. vuieiie e aaas 164
12.3.11. Get liBrary VEISION ... cccuuiiii e 164

12.4. LOW [EVEl PHP AP oottt e 164
12.4.1. Numeric behavior related Mmethodsuvvviiiiiiiiiiiii e 165
12.4.2. Locale related MEthOOSooevviiiiiii e 165
12.4.3. Data source and query related methodscooeeviiiiiiiiin i, 166
12.4.4. Expression related Methodsccovviiiiiiiiiii e, 167
12.4.5. Layout part related MethodSoovvviiiiiiiii e 168
12.4.6. Calback related MEthOdSuviiiiiiiieie e 169
12.4.7. Environment related methodsciiiiiiiiiiiiiiii e 170
12.4.8. Add "m" domain variablecooooiiiiiiiiii 170
12.4.9. Result related MEthOOScovvviieiiii e 170
12.4.10. Path related MEthOOScvvuiiiiiiiieei e 170
12.4.11. Color related MEthOOSuiiiiiiiieei e e 171

12.5. The OpenCREePOr\DatasOUrCE ClaSSucivuiiiiiieeii e e e e e e e e e e e e e e e 171
12.5.1. Free @ dataSOUICEuuueiiiii e e ettt e et e et e e et e e e eae s 171
12.5.2. Add a query to the datasourCecoceuviiiiiiiii e e 171
12.5.3. Set datasource ENCOAINGvevuieiiiiii e e e e e e e e e 172

12.6. The OpenCREPOMQUENY ClaSSuiiiieiiii e e e e e e e e e e e eaeeees 172
12.6.1. Get result for a qUErY'S CUMTENE FOW ...cuvveiineiiiieeieeei e et e e e e e e e eaneens 172
12.6.2. Start Navigation fOr @ QUENYcovueiiiiieii e e e e e 173
12.6.3. Navigate t0 the NEXE FOWccvviiiiii i e e e e 173
12.6.4. Navigate Use PrevioUS/NEXE FOWciuuiviieieiiieeii e e e e e e e e e e e eanaeeeen 173

OpenCReports 0.8.14 Manual

12.6.5. Add a query FOlLOWEScovuniiiiii e 173
12.6.6. Add an N:1 query TOlIOWErcouiiiniiii e 173
12.6.7. FIOE @ QUETY ..oenieiiiiit ettt et e 174
12.7. The OpenCRePOrt\QUENYRESUIL ClaSSuuiiiiiiiiii e e 174
12.7.1. Get number of columnsfor aquery resultc.ccooveiiiiiiiiii e, 174
12.7.2. Get the nth column name for aquery resultccoveviiiiiiin i, 174
12.7.3. Get the nth column result for aquery resultcooeoiiiiiiiiiiineiin e, 174
12.8. The OpenCREPOMEXPr ClaSSuiiviiieiiie e e e e 174
12.8.1. Free an EXPrESSION ...cvuueiiieiii et e et e e e e e et e e e e e et e e et e e et e e st e e et e eaneenes 176
12.8.2. Get the original eXPresSion StHNGovv e e e e 176
12.8.3. PriNt @n EXPrESSIONivieieiiie aan s 176
12.8.4. Get the number of expression tree NOAESoevvveiiiieiiiiicii e 176
12.8.5. RESOIVE @N EXPrESSION . .cvuiiiiieiiiee e et e e e e e e e e et e e e e e e aanas 176
12.8.6. OptimiZE aN EXPIrESSIONu.iivieiiieeeiti et e e e e e e e et e e et e et e e et e e eeaens 176
12.8.7. Evaluate an EXPreESSIONu.iiieieeiieeei e e e e e e e e e e e e e e e et e ean e eaes 176
12.8.8. Get the result Of an EXPrESSIONcuuiiiiiieiiieeeiie e e 176
12.8.9. Set expression result to aString Valuecouviviiiiiii e 177
12.8.10. Set expression result to along valuecc.viviiiiiiiiiii e 177
12.8.11. Set expression result to adouble valuecooevvieiiiiii e, 177
12.8.12. Set expression result to a numeric value from stringcoceeveviiveeinnennnnn. 177
12.8.13. Get number of operands Of @ EXPreSSIONocvvvneeiieeeiiieeiieeeieeree e eeens 177
12.8.14. Get nth operands' result Of @ EeXPreSSioNocvvveeeiieeiiiierie e, 177
12.8.15. Compare the expression's current and previous resultSceeevvveveevnneennnn. 178
12.8.16. Initialize eXpression rESUISoiiviiiiie e 178
12.8.17. Get string value Of an EXPreSSiONcvueciiiieiiii e e e e e 178
12.8.18. Get long value of an EXPreESSIONvvvveeeiiieiiie e e e e e e e e 178
12.8.19. Get double value of an EXPreSSiONccvvvieiiiieeiiieein e e e e 178
12.8.20. Get numeric value of an expression as astringooevvveiiiiereineeiineeeieeennnn 178
12.8.21. Set nth result of an expressionto astring valuecoooevvevieiiieiiineeineeennn. 178
12.8.22. Set nth result of an expressionto alongvalueoocoovviiiiiiiiieiien e, 179
12.8.23. Set nth result of an expressionto adouble valueccocceeeiiiiiiineennnn.. 179
12.8.24. Set iterative start flag of an eXpreSsioncocvvveviiieiiii i 179
12.8.25. Set expression to delayedovviiiiiiii e 179
12.9. The OpenCREPOMRESUIL ClaSSc.vuiiiiiieiii e e e e e e 179
12.9.1. Free aresult ODJECEcovuiiii e 180
12.9.2. Copy @reSUlt ODJECEivviciii e e e 180
12.9.3. Print aresult ODJECEcveii e 180
12.9.4. Get result 0bject VAIUB LYPEucvve i 180
12.9.5. Detect whether result object value iSNULLccoovviiiiiiiiiiiiiii e 180
12.9.6. Detect whether result object value isastringcccoeevviviiiiniiiin e, 180
12.9.7. Detect whether result object valueisanumberccoooiiiiiiiiinenn 181
12.9.8. Get string value of aresult objectcooeviiiii i 181
12.9.9. Get numeric value of aresult object asastringcoccceveviiiiiiiiiviiin e, 181
12.10. The OpenCREPOM\PArt ClaSSciuuieiii e e e e e e eeans 181
12.10.1. Get the Next rePort PaItcceveiiii i e 183
12.10.2. Create a New rePOrt PaIt FOWveieieieieiieee et a e 183
12.10.3. Get the first report Part FOWcocvuvieiiiieiiiie e e e e e e e e aes 183
12.10.4. Add iteration callback for the partcccoviiiiiiiii e 184
12.10.5. Check whether two parts are identicalcoooeeiieviiiiiii e, 184
12.10.6. Set or get number of part ItErationNSvvvviiieiiie e 184
12.10.7. Set or get part FONt NAMEovviiie e 184
12.10.8. Set or get part TONt SIZE ... covvniiiii i 184
12.10.9. SEt OF gt PAPEN LY . euiiiiiit it 185
12.10.10. Set or get part OrieNtationcceuiiiiieiiiieie e e e e 185

OpenCReports 0.8.14 Manual

12.10.11. Set or get part tOP MAIGINceve i ee e e e e e e e aaes 185
12.10.12. Set or get part bottom Marginoveviiieiiiieii e 185
12.10.13. Set or get part [eft Marginoooeeiiiiii i 185
12.10.14. Set or get part right Margincooeviiiiiiiie e 186
12.10.15. Set Or get part SUPPIESSION ...vvuueiiteeiiieeeieeeit e eaieeeeteeete e et eereeeaneeeens 186
12.10.16. Set or get suppression of the page header on the first pagecccoeeeeeneies 186
12.10.17. Get the part's page headerccocoviiiiiii i, 186
12.10.18. Set the report object for the part's page headerccoeevviiiiiiiiiinennnnn. 187
12.10.19. Get the part's page fOOtErccvuniiiii e 187
12.10.20. Set the report object for the part's page footerccooevviiiiiiiiiiiiccineeenn. 187
12.11. The OpenCREPOIMAROW ClaSSuiiiviieiiiieiiii e e e e e e e e e e e 187
12.11.1. Get the NEXE Pt FOW ...uviieicii e e e e 188
12.11.2. Create a new part column for the rowccooevviiiiiiiiiiin e, 188
12.11.3. Get first column Of @ Part FOWcccevuieiiiieiiiiieii e e 188
12.11.4. Set or get suppression for the Part FoWcooeeveeeiiiieiin e 188
12.11.5. Set or get new page for the Part FOWccocvvieiiiiiiiii e 188
12.11.6. Set or get layout type for the part rowccoceeveeiiiiiiiicciecece e, 189
12.12. The OpenCREPOr\COIUMN ClaSSuuiiii i e e e e e e e eees 189
12.12.1. GEt NEXE COIUMMN ...ttt e e e e et s e e eaeeneeeanes 190
12.12.2. Create anew report in the ColuMNccoooiiiiiii e 190
12.12.3. Get first report of apart COlUMNcoiiiiiiii e 190
12.12.4. Set or get part ColUMN SUPPIESSION .. cevueiiinieeiiieeeieeeiie e e e e e e e e eanaas 191
12.12.5. Set or get part column Width ..o 191
12.12.6. Set or get part column heightooeiiiiiii e 191
12.12.7. Set or get border Widthcoooiiiii 191
12.12.8. Set or get Border ColOrooiviiiiiie e 192
12.12.9. Set or get number of detail ColUMNScccovviiiiiiiiii e 192
12.12.10. Set or get column paddingoovevviiiiiiiei e 192
12.13. The OpenCREPOIM\REPOI ClaSScvvueiiiiciii e e e e e eaens 192
12.13.1. Get the NEXE FEPOIuiieiicie e e e e e 195
12.13.2. Create a new report variableoviiiiiiiii i 195
12.13.3. Create a new custom report variablecccoeevviiiiiiiiin e 196
12.13.4. Get the first variable of areportcooeviiiiii i 196
12.13.5. Parse and expression for the reportccveviiiieiii e 196
12.13.6. Get the error after afailed expression Parsingc.c.oevevviieeeneviineeeneeennnn 196
12.13.7. Resolve variables of the reportovvviiiiii i, 197
12.13.8. Evaluate variables of the reportcooeviieiii i, 197
12.13.9. Create a New rePort Breakcoceuuiiiiiiiiiie e 197
12.13.10. Get areport break by itSNAMEcocvvviiiiiii e, 197
12.13.11. Get the first report breakcooveviiiiii 197
12.13.12. Resolve breaks of the reportcocovieiiiiiii e, 197
12.13.13. Get the current row number of the main queryc..coooveiiiiiinieiieeeennnn, 198
12.13.14. Add a"report start” callbackcocoviveiiiiiiii 198
12.13.15. Add a"report done" callbackcooviiiiiiiii 198
12.13.16. Add a"new row" callbackcoovviiiiiiiiiiii 198
12.13.17. Add an "iteration done" callbackccooevviiiiiiiiii 198
12.13.18. Add a "precalculation done"’ callbackc.cccoveiiiiiiiiiiiin 199
12.13.19. Check whether two report objects arethe sameccoceeeeviieiinevin e, 199
12.13.20. Set the report'S Main QUETY ...c.uuveinieiii e eee e e e e e e e e e e e e e e e aanas 199
12.13.21. Set the report's main query by nameocooveiiiiiiiiieie e, 199
12.13.22. Set or get the report SUPPIrESSIONccvvueeieeieiiieeiie e e e e e e e e eanaes 199
12.13.23. Set or get number of iterations for the reportccocoviiiiii i, 200
12.13.24. Set or get the font name for the report ..o, 200
12.13.25. Set or get the font size for the reportccooevveiiieiiiii e, 200

Xi

OpenCReports 0.8.14 Manual

12.13.26. Set or get the report heightoovniii i 200
12.13.27. Set or get the report's field header priorotyc.ccoeeeviiiiii i, 201
12.13.28. Get output sections of the rePOItcceuiiiiiiiii e 201
12.14. The OpenCReport\Variable Classcocvuiiiiiiiiiie e 201
12.14.1. Get the base expression of avariablecccoooeiiiiiiiiii 202
12.14.2. Get the ignore expression of avariableccooeeiiiiiiiiiin i, 202
12.14.3. Get the first intermediary expression of avariableccoeeiiiiinennnnn. 202
12.14.4. Get the second intermediary expression of avariablec.cccoevviiviennn, 202
12.14.5. Get the result expression of avariableccceveviiiiiiiiiii e 203
12.14.6. Get the variable tyPeucvie e 203
12.14.7. Get the variable precalculated flagcccovvveiiiiiiiiii e, 203
12.14.8. Resolve expressions of avariablecoeeviiiiiii i, 203
12.14.9. Evaluate expressions of avariablecccoooiiiiiiii i, 203
12.14.10. Get the next variable of the same reportcoocoveveiiiiiiiii e, 203
12.15. The OpenCReport\REPOMBreak Classcccuvviiiiiiiiiiiie e 203
12.15.1. GeL NEXE BIEAK ...vvvvii i 204
12.15.2. Add abreakfield t0 @ breakcooeveeuiiiiiiiii e 204
12.15.3. Check Breakfieldsoiieiiiieeii i 204
12.15.4. Reset variables associated with abreakccccoevveviiiiiiiiii, 204
12.15.5. Add a "trigger” callback to abreakcccoeeviiiiiiiiii 205
12.15.6. Get the name of abreakccoviiiiiii i 205
12.15.7. Get output Sections of a breakccuvveiiiiiiiii i 205
12.16. The OpenCREPOr\OULPUL ClaSScivueiii e e e e e e e e 205
12.16.1. Set or get suppression of the outpUt SECLIONcevvvveiiiiieiieei e 206
12.16.2. Add @ (TEXE) [INE .evneei e 206
12.16.3. Add ahorizontal 1INeccoeuuiiiiiiiiiie e 206
T S N (o B o T T 0= T 206
12.16.5. Add @barCodeccovvuiiiiiiiiee e 206
12.16.6. Add an image end Markerccooouiiiiiiiiii e 207
12.16.7. Get the first OULPUL ElEMENTcovniiiiiee e 207
12.17. The OpenCREPOM\LINE ClaSScouviiiii e 207
12.17.1. Set or get the font name for the lineccoooviii i, 208
12.17.2. Set or get thefont size for the lineccooiiiiiiiin e, 208
12.17.3. Set or get the font's bold flag for the lineccooooiiiiii i 209
12.17.4. Set or get the font'sitalic flag for thelineccoooooi i 209
12.17.5. Set or get [iNe SUPPIESSIONcvvuiiiiieiieeei e ee e e e e e e e e et e e e eanas 209
12.17.6. Set or get text color for the line ... 209
12.17.7. Set or get background color for the lineccooeviiiiiiiiin e, 210
12.17.8. Add atext element to the liNecoooviiiiiiiiii e 210
12.17.9. Add an image element to the linecoi i, 210
12.17.10. Get the first [ine €lementcouviiiiiiiiiii e 210
12.18. The OpenCReport\HorizontalLine Classocvviiiiiiiiiii e 210
12.18.1. Set the INe WIdthccoveiie e 211
12.18.2. Set or get the [ine alignmeNtcoovuiiiiiei e 212
12.18.3. Set or get the [ine INAENtationcc.veiiiiiiiii e 212
12.18.4. Setor get the line length ..o, 212
12.18.5. Set or get the lINESfoNt SIZEcovviiiiii i, 212
12.18.6. Set or get the suppression flag for thelinecooeviiviiiiii i, 213
12.18.7. Set or get the liNe COlOrivinii e 213
12.19. The OpenCRePOrt\Mage Classuviiiiiiii e 213
12.19.1. Set or get the file name of the imagecovvvii i, 214
12.19.2. Set or get the suppression flag for theimageoooeviviiiii i, 215
12.19.3. Set or get the IMAgE LYPE c.vvviiie e 215
12.19.4. Set or get the image Widthcooi i, 215

Xii

OpenCReports 0.8.14 Manual

12.19.5. Set or get theimage heightcccooiii i, 215
12.19.6. Set or get the image alignmENtcoovviiiiii e 216
12.19.7. Set or get the image background colorccoveviiiiiii i, 216
12.19.8. Set or get the image "text Width"cooiiiiiiii 216
12.20. The OpenCREPOM\TEXL ClaSScvviiiii e e 216
12.20.1. Set lIteral VAIUE .. .cceeveieeeee et 219
12.20.2. Set or get eXPreSSiON VAIUEvvvniiiiieeii e eee e e e e e e s e e e eane e 219
12.20.3. Set or get delayed flag for the field eXpressioncooveviveviiiivineceieeennn, 219
12.20.4. Set or get the format string for the field expressionccocoevviiiiiineennn.n, 219
12.20.5. Set or get the trandation flag for the field expressionc.ccceveveveennnnn. 220
12.20.6. Set or get the field Width ..., 220
12.20.7. Set or get the field alignmentccooeviiiiiiiiii e 220
12.20.8. Set or get the field teXt COlOruuiiiviiiii e 220
12.20.9. Set or get the field background COlOrccovvviiiiiii e, 221
12.20.10. Set or get the field fONt NAMEoiiiiii e 221
12.20.11. Set or get the field fONt SIZEecovviiiiiiii e 221
12.20.12. Set or get the fidld'sbold flagccooevviiiiiiiii 221
12.20.13. Set or get the field'sitalic flagcooevvveiiiiiiii e, 222
12.20.14. Set or get the field'S Nkoooiiiiii e 222
12.20.15. Set or get the field'smemo flagc.covvveviiiiiii i, 222
12.20.16. Set or get the field's "hyphenate” flagccovveviiiiiii i, 222
12.20.17. Set or get the field's "wrap at characters' flagccooevviiiiiiiiiiineennn, 223
12.20.18. Set or get the field's maximum number of lines..........cooceviiiiiiiiiineine, 223
12.21. The OpenCREePOrt\BarCOOE ClaSSccuuiiiiiieiiii e e e e e e 223
12.21.1. Set or get the barcode Valuecoeiiiiiiii i 224
12.21.2. Set or get the barcode value delayedccoevvieiiiiiii e, 225
12.21.3. Set or get the barcode SUPPrESSIONccuueiviiiiiieeii e e e e e 225
12.21.4. Set or get the barcode tyPev.cvviiiii e 225
12.21.5. Set or get the barcode Widthcoooiiiiiiiiii e, 226
12.21.6. Set or get the barcode heightcccooviiiiiiii e, 226
12.21.7. Set or get the barcode image line Colorc.ovvvviiiiiiiiiie e, 226
12.21.8. Set or get the barcode image background colorccooviiiiiiiiiiiiiiecs 226
12.22. The OpenCReporf\OUtpUtElement Classoooviiiiii i 227
12.23. The OpenCReport\LineElement Classcocvvieiiiiiiii e 227
12.24. RLIB compatibility APl ... oo e 228
2 I 1 = T W = oo PR 228
12.24.2. DESLIOY @ TEPOIT ..veeii ittt eaas 228
12.24.3. Get liBrary VEISIONuuiiiiiiii e 228
12.24.4. Add a MySQL/MariaDB dafaSOUrCeccuueiiunieiieeiiieeieeeeeeeieeeaeeeens 228
12.24.5. Add aMySQL/MariaDB datasource from an INI groupccc.ccvvveevvnennnn. 229
12.24.6. Add a PostgreSQL dataSOUrCEc.uueveuneiiiieeieeeieeeie e e e e e e e eanaeenen 229
12.24.7. Add an ODBC dal@SOUICEuuureiiiiiieiiiiie et e et e et e e e e e 229
12.24.8. Add an array dafaSOUICEuvvuneiiiieeie e e ee e e e e e e e e e e e eaneees 230
12.24.9. Add an XML dataSOUrCeuueeeerinieeeiiiieeeiii e e e eeii s e e et eeeeri e e eerenaeeeens 230
12.24.10. Add @ CSV dALESOUICEuueiiiiieeieiiie et e e e e et e e e eai e e eannns 230
12.24. 11, AQG @ QUETY .eeeiieeeii ettt e et e et s e e et e e e et e e e e aaee 231
12.24.12. Add a resultset FOIOWETcovvviiiiiiie e 231
12.24.13. Add aresultset N:L fOllOWErc.vuniiiiiiiiiii e 231
12.24.14. Set datasource eNCOINGuoevuuieiiiieeiii e e e e e e e e e 231
12.24.15. Add @ report XIMLcieieiieiiiii et 232
12.24.16. Add areport XML from buffercoooviiiiiii e, 232
12.24.17. Add @ search Pathccoovniiii e 232
12.24.18. SELIOCAIE ...uciieii e 232
12.24.19. Satup translationcoeeiuiiiiii e 232

OpenCReports 0.8.14 Manual

12.24.20. Set OULPUL TOMMELoeeeie e e e ens 232
12.24.21. Add a custom report fUNCLIONccovuiiiiiii e 233
12.24.22. Set OULPUL €NCOINGvvvniii e e e e e e e e ees 233
12.24.23. Add a report Parameterveiiieeie e 233
12.24.24, Set an OULPUL ParaimMEBLeNvvuieiiiie ettt e et e e e e e e e aees 233
12.24.25. Refresh array qUENY CONTENEScvuiiiiieiiieeie e e e e e e eaaas 234
12.24.26. Add an event callbackcoooviiiiiiiiiiii 234
12.24.27. EXECULE the FEPOMTcevteiii e e et e e e e eanas 234
12.24.28. DUMP the report OULPULcevuneieiieii e ee e e e e e e e e e e e ean s 234
12.24.29. GEL CONENE LY . euiii ittt e e e e 234
12.24.30. Set radixX CharaCterviiiiiiiiiiie e 235
12.24.31. Compile and evaluate an EXPreSSiONccvevuieerieeeiiieeeiieeeieeeiee e eeannnes 235
12.24.32. Add graph background regionccooeeuiieiiiieiiie e 235
12.24.33. Clear graph background regionccooeiiiiiiiiiiiiiicee e 235
12.24.34. Set graph MINOT tICKcvvu i e e e 235
12.24.35. Set graph minor tick by [0CatIoNcccviiiiiiiii e, 236

T e o o) =R 237
13.1. SIMPIE repOrt EXAMPIE .. cevn e 237
35 I R I - - RSP 237
13.1.2. C PrOgram COUEcevniiiiieeee et e e e e e e e e e e e e e e et e e et e e e eaaaas 237
13.1.3. PHP Program COOEceuuuiiiieeiiiee e e et e e e e e e e e e e e et e e e e eees 238
13.1.4. RLIB compatible PHP program COdecceuieiiieiiiieiiii e 238

JCT IR == oo o =S o] o)) o 238
13.1.6. REPOIt PDF rESUIL ... e e e e e e 240

13.2. Simple report example with data accessin Codecoevviiiiiiiiiiii i 240
2 T D - - LSS 240
13.2.2. C PrOgram COUE ... ccvuiiiiieeie e et e e e e e e e e e e e et e e e e e e e aaaas 240
13.2.3. PHP Program COUEcevuiiiiieeiieee et e e e et e e e e et e e e e eees 241
13.2.4. RLIB compatible PHP program COdecccuviveiiieiii e 242
13.2.5. REPOIt AESCIIPLION . .ovuiiii e e e e e e aanas 242
13.2.6. REPOIt PDF rESUILciiiciii e e e e e e 243

13.3. Colors, images, horizontal lines and foNtScccoeviiiiiiiiiii e, 243
G N I D - - LSO 243
13.3.2. C Program COUEcvvuiiiiieeee e et e e e e e e e e e et e et e e e e e e e eaanas 244
13.3.3. PHP Program COUEceuuiiiiiieiii e ettt e e e e e e e e et e e e e eaes 245
13.3.4. RLIB compatible PHP program COdecoeuiveiiieiiii e 245
13.3.5. REPOIt AESCIIPLION . .cevviiii e e e e e aaaas 245
13.3.6. REPOIt PDF rESUILieiiiii e e e e e e e 247

13.4. Report variables and Breaks ..o 247
I T D - - RSP PT 247
13.4.2. C Program COUE ... ccvuiiiiieei e e et e e e e e e e e e et e e et e e eeaaaas 248
13.4.3. PHP Program COOEcvuuuiiiieeiii et e et e e e e e e e e e e e e et e e e e eees 248
13.4.4. RLIB compatible PHP program COdeccovviieiiieiiiieeiiieeee e 249
13.4.5. REPOIt AESCIIPLION . .ovuiiiii e e e e e e aaaas 249
13.4.6. REPOIt PDF rESUILceiiiiiii e e e e e e 251

13.5. FOIOWEr QUENES . .oviciii e e e e e e e e et e e e e e e e aanaaes 251
ST I D - - LSRN 251
13.5.2. C PrOgram COUE ... ccvuiiiiieeie e e et e e e e e e e e e e e e et e e et e e e eaaaas 252
13.5.3. PHP Program COOEccuuiiiiieeiii e et e e e e e e e e e et e e e e eaes 253
13.5.4. RLIB compatible PHP program COdecceuiiiiiieiiiieiiii e, 254
13.5.5. REPOIt AESCIIPLION . .ovuiiiiicii e e r e e e e 254
13.5.6. REPOIt PDF rESUILciiiiii e e e e e 255

13.6. N:L fOllOWEN QUENES . ouvniii e e e e e e e e e e e e e e e et e eanaees 255
GG T N D - - LU 255

Xiv

OpenCReports 0.8.14 Manual

13.6.2. C Program COUEcvuiiiiiieeiie e e et e e e e e e e e e e et e e e e e e e eaaaas 257
13.6.3. PHP Program COUEcouuiiiiiieiii et e e e e e e e e e e e eaes 258
13.6.4. RLIB compatible PHP program COdeccuviiiiiiiiiiiieiii e 259
13.6.5. REPOIt AESCIIPLION . .ovuiiiiicii e e e e e e e 259
13.6.6. REPOIt PDF rESUILciiiicii e e e e e 260

13.7. N:1 follower queries (RLIB compatibility imits)cooevviiiiiiiiiiiiieeee e, 260
I T 250 T 7 - S 260
13.7.2. C PrOgram COUE ... cevuiiii i eeie e et e e e e e e e e e e et e et e e e e eaaaas 261
13.7.3. PHP Program COUEcovuiiiiieeii ettt e e e e e e e et e e e eees 262
13.7.4. RLIB compatible PHP program COdecouviiiiiiiiiiieiie e 262
13.7.5. REPOIt AESCIIPLION . .ovuiiii e e e e e aaaas 263
13.7.6. REPOIt PDF rESUILieiici e e e e e e e 264

14. GNU Free Documentation LICENSEciuuueieiiiii et e e e s 265

XV

Chapter 1. Introduction and concepts
1.1. The predecessor: RLIB

Theideatowrite OpenCReports1 started with my getting acqauinted with RLI B2in 2005 and worki ng with
it (and onit) for avery long time, with the original implementorsfinally losing interest in developing RL1B
further. This was around 2018. Even the original documentation site for RLIB was retired. But thanks to
the Internet Archive, it may still be read®

To overcome some of the shortcomings seen in RLIB, its ideas were used for a completely new
implementation with high level of compatibility to the original.

RLIB isareport generator library, so is OpenCReports. In this documentation, alot of references contain
comparisonsto RLIB.

The name OpenCReports came from the fact that it's implemented in the C programming language in an
open way, and using a free software license.

1.2. Concepts

1.2.1.

1.2.2.

1.2.3.

What is a report generator?

A report generator uses a tabular data source, which contains rows and columns of data. The columns
have labels or names. (An SQL database query is such a tabular data source.) It also uses some kind of
description that specifieshow to display the data. Theinput dataistransformed into various output formats,
some for human viewing, some for further machine processing. Such output formats may be PDF, HTML,
XML, plain text or CSV.

XML based report description

The XML file format is widely used. It can describe structured data in a hierarchy with names for its
sections or "nodes".

OpenCReports uses an RLIB-compatible report description with extensions. See Report XML description
and the RLIB documentation®

Comprehensive API for report creation

The Low level C API allows creating a report purely via program code. The High level C API alows
loading an XML report description that contains all details about the report, including database access.
Mixing the high and low level APIs allows a balance anywhere between the two extremes. For example,
load the report description, which contains the complete layout, and pass database access details via
program code. As a comparison, RLIB's API and report description allowed neither extremes: it relied on
the report description to provide the layout, with data access and other supplementary details controlled
from programming code.

1 https://github.com/zboszor/OpenCReports

2 https://sourceforge.net/projects/rlib/

8 https://web.archive.org/web/20131116192438/http://newrlib.sicom.com/~rlib/index.php/Main_Page
4 https://web.archive.org/web/20131116192438/http://newrlib.sicom.com/~rlib/index.php/Main_Page

https://github.com/zboszor/OpenCReports
https://sourceforge.net/projects/rlib/
https://web.archive.org/web/20131116192438/http://newrlib.sicom.com/~rlib/index.php/Main_Page
https://web.archive.org/web/20131116192438/http://newrlib.sicom.com/~rlib/index.php/Main_Page
https://github.com/zboszor/OpenCReports
https://sourceforge.net/projects/rlib/
https://web.archive.org/web/20131116192438/http://newrlib.sicom.com/~rlib/index.php/Main_Page
https://web.archive.org/web/20131116192438/http://newrlib.sicom.com/~rlib/index.php/Main_Page

Introduction and concepts

1.2.4.

1.2.5.

1.2.6.

1.2.7.

1.2.8.

1.2.9.

Strict expression parser

OpenCReports uses aFlex/Bison based expression parser. The expression grammar doesn't allow incorrect
expressions. See the Expressions chapter.

Expression optimization

OpenCReports does some expressi on optimization to reduce runtime cost of computing expression val ues.
For example, in a* 2/ 3 the part 2/ 3 is two constants in a division. This is precomputed into a single
constant as an optimization. Naturally, only mathematically valid optimizations are performed.

Report variables

OpenCReports supports standard report variables for cal culating sums, minimum, maximum and average
values or custom defined ones. See Report variables

Report variables can also be used as manual expression optimization. A common subexpression can be
moved to a report variable from multiple expressions, which in turn is computed once, and its result is
used in the expressions referencing it.

Report breaks

A report break isaform of data grouping based on value changes. A break (break boundary) occurs when
the value of awatched expression changes from one data row to the next. OpenCReports supports report
breaks defined on arbitrary expressions. Report variables can reset their value on break boundaries. See
Report breaks and Breaks.

Extensive and extensible set of functions

OpenCReports has many operators and functions to be used in expressions. See Operators and functions
in the Expressions chapter.

Custom functions can aso be added to a report by programming code. Custom functions may override
stock functions.

UTF-8 string handling

OpenCReports exclusively uses UTF-8 for strings. Input data must be in UTF-8 and output formats also
use UTF-8. Thisallowstext from different languages appear in the samereport, provided that an applicable
font isavailable.

1.2.10. High precision numeric data type

OpenCReports uses a high precision numeric data type. This allows scientific computation or monetary
calculations even with late stage hyperinflati on® prices. See Numeric constantsin the Expressions chapter
and the Numeric behavior related functions part in the Low level C API chapter.

1.2.11. Datetime and interval data types

OpenCReports handles both timestamp and timeinterval datatypes. Thelatter allowsadding or subtracting
a custom time period to and from timestamp data. See Datetime constants in the Expressions chapter.

s https://en.wikipedia.org/wiki/Hyperinflation

https://en.wikipedia.org/wiki/Hyperinflation
https://en.wikipedia.org/wiki/Hyperinflation

Introduction and concepts

1.2.12. Automatic input data conversion

For maximum portability, databases provide their data in strings. They aso indicate the column type.
OpenCReports detects the columns' data type and applies the conversion automatically.

1.2.13. Versatile field alignment and multi-row fields

In the report output, fields may have a fixed width in which they are displayed. Some field values are
longer than the field width. When displaying them in a single row, fields may be left-, right- or center-
aligned to show the interesting part of the value or for visual reasons.

Fieldslonger than the designated width may be wrapped either at word or character boundaries. Thisway,
they become multi-row fields. Multi-row fieldsare also called "memo" fields. Such fieldsmay wrap lines at
word boundaries or break words at some character. Multi-row fields have configurable line number limits.
Memo fields can break over to the next column or to the next page. Hyphenation is done automatically
when using character wrapping. Memo fields may also use justified alignment.

1.2.14. Multi-column reports

OpenCReports supports both single- and multi-column layout in its PDF output format. Other output
formats may only use single-column layout.

1.2.15. Miscellaneous layout details

OpenCReports implements an RLIB compatibility mode for sizing report layout details, which uses amix
of units, mostly based on character widths (making it dependent on the font size used) mixed with points
(1/72th inch) for some report elements.

OpenCReports also has a new, consistent size calculation method where everything is measured in points
(1/72th inch).

OpenCReports supports both fixed and proportiona fonts even with using the RLIB compatible size
Settings.

1.2.16. Multiple output formats

OpenCReports supports several output formats; PDF, HTML, CSV, TXT, XML and JSON.

1.2.17. Extensive set of unit tests

The unit tests ensure that OpenCReports' features keep working when adding new features or fixes. Units
tests exercise many aspects of the high and low level API, report description handling, runtime behavior
and output generation.

1.2.18. Standard Linux dependencies

OpenCReports uses LibXML2%, utf8proc’, MPFR®, libpaper®, libcsvl®, yajl't, Cairo'®, Pango'®,
librsvg2', gdk-pixbuf22®, PostgreSQL 6, MariaDB’ and unixODBC8,

6 https://gitlab.gnome.org/ GNOM E/libxml 2/-/wikis/home
! https://juliastrings.github.io/utf8proc/
8 https://www.mpfr.org

https://gitlab.gnome.org/GNOME/libxml2/-/wikis/home
https://juliastrings.github.io/utf8proc/
https://www.mpfr.org
http://packages.qa.debian.org/libp/libpaper.html
https://github.com/rgamble/libcsv
http://lloyd.github.com/yajl/
https://www.cairographics.org
https://pango.gnome.org
https://wiki.gnome.org/Projects/LibRsvg
https://gitlab.gnome.org/GNOME/gdk-pixbuf
https://www.postgresql.org
https://mariadb.com
http://www.unixodbc.org
https://gitlab.gnome.org/GNOME/libxml2/-/wikis/home
https://juliastrings.github.io/utf8proc/
https://www.mpfr.org

Introduction and concepts

For running the unit tests, Ghostscript'® and conpar e from Imagemagick®® are also needed.

xm i nt,xsltproc andf op areused to generate the documentation.

1.3. OpenCReports planned features
1.3.1. Graph and chart support in HTML and PDF output

Currently Gantt chart and various graph types (like barchart, pie chart and their various subtypes) are not
supported.

1.3.2. Visual editor for report XML descriptions

There are other report generators on the market with nice GUIs to create the report visually.

° http://packages.qa.debian.org/libp/libpaper.html
10 https://github.com/rgamble/libcsv

Y http://l1oyd.github.comlyajl/

12 https://www.cairographics.org

13 https://pango.gnome.org

14 https:/Awiki.gnome.org/Projects/LibRsvg

15 https:/gitl ab.gnome.org/ GNOM E/gdk-pixbuf
16 nttps://www.postgresql.org

7 https://mariadb.com

18 http:/Avww.unixodbc.org

19 https://www.ghostscript.com

2 https://imagemagick.org

https://www.ghostscript.com
https://imagemagick.org
http://packages.qa.debian.org/libp/libpaper.html
https://github.com/rgamble/libcsv
http://lloyd.github.com/yajl/
https://www.cairographics.org
https://pango.gnome.org
https://wiki.gnome.org/Projects/LibRsvg
https://gitlab.gnome.org/GNOME/gdk-pixbuf
https://www.postgresql.org
https://mariadb.com
http://www.unixodbc.org
https://www.ghostscript.com
https://imagemagick.org

Chapter 2. Data sources and queries

2.1. Data sources

OpenCReport separates data access into two entities: a data source driver and a query.
OpenCReports supports diverse data sources:

» SQL based data sources

File based data sources

Application data based data source

Application defined data sources

2.1.1. SQL based data sources

SQL isthe acronym for Standard Query Language. Many database software comply with the standard to
acertain extent. The standard is occasionally revised, and a certain database software version compliesto
a specific version of the standard to a certain extent.

In general, database software are designed to store massive amounts of data and retrieve it as fast as
possible. Database software and its data can be accessed through anetwork connection (even if it'sinstalled

in the same machine) or a faster local connection if both the database server and client are installed on
the same computer.

The SQL based data sources OpenCReports natively supports are:
« MariaDB! and MySQL?
« PostgreSQL3

» Any SQL database server with a compliant ODBC* driver

2.1.1.1. MariaDB/MySQL data source

MariaDB®isafork of MySQL6 developing inadifferent direction but still maintaining strong compatibility
with each other. The database client library is compatible with both, therefore OpenCReports supports
both with the same driver.

2.1.1.2. PostgreSQL data source

PostgreSQL7 (in their own words) is The World's Most Advanced Open Source Relational Database.
OpenCReports supports using PostgreSQL..

L https://mariadb.org/

2 https://www.mysgl.com/

8 https://www.postgresqgl.org/

4 https://learn.microsoft.com/en-us/sgl/odbc/mi crosoft-open-database-connectivity-odbc
S https://mariadb.org/

6 https://www.mysgl.com/

7 https://www.postgresqgl.org/

https://mariadb.org/
https://www.mysql.com/
https://www.postgresql.org/
https://learn.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://mariadb.org/
https://www.mysql.com/
https://www.postgresql.org/
https://mariadb.org/
https://www.mysql.com/
https://www.postgresql.org/
https://learn.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://mariadb.org/
https://www.mysql.com/
https://www.postgresql.org/

Data sources and queries

The PostgreSQL datasourcedriver in OpenCReportsis especially economic with memory by usingaW TH
HOLD cur sor & and the PostgreSQL specific FETCH count ° SQL statement to retrieve a specified
number of rowsin one round, as opposed to retrieving every row in one round that most database software
supports.

This makes the report run slower for longer query results compared to other databases, but allows
generating the report from extremely large datasets when other databases may fail due to memory
exhaustion.

2.1.1.3. ODBC data source

OpenCReports supports using ageneric ODBC connection to any database serversusing acompliant client
driver. OpenCReports uses a standard ODBC manager library, so it is able to use any ODBC DSN (Data
Source Name) configured for the system or the user.

2.1.1.4. Special note for SQL datasources

The database client libraries for MariaDB, PostgreSQL and ODBC return all the query rows from the
database server at once by default. As such, it is possible that a long query result doesn't fit into the
computer memory.

The report needsto traverse the query result twice to pre-compute "delayed" val ues (see precal culated and
Precalculated variables), so it needs to be able to rewind the data set once it was read to the end.

The alternative API in MariaDB to load the rows one by one doesn't allow rewinding, so it's not usable
for the report's purposes.

Itisonly PostgreSQL that allows using an SQL cursor as a standalone entity, i.e. outside SQL procedures
asdefined by the SQL standard. This PostgreSQL extension to the standard allows saving memory in such
away that it allows processing very long query results. Behind the scenes, aW TH HOLD cursor is used
and 1024 rows are loaded in one go from the server.

2.1.2. File based data sources

The file based data sources OpenCReports supports are:
« Comma-separated values™® ak.a CSV

« eXtensible Markup Language®! ak.a. XM

« JavaScript Object Notation*? ak.a. JSON
 gspreadsheet formats, like XL S, XLSX and ODS

The XM and JSON file types expect the data presented in a certain structure syntax. The semantics is
application defined. The expected format for these file types are described below.

2.1.2.1. CSV file type

CSV ("Comma Separated Values") isasimpletabul ated file format. Every line must have the same number
of columns, the values are separated by commas. The first line in the file contains the column names.

8 https://www.postgresql .org/docs/current/sgl-declare.html
° https://www.postgresqgl.org/docs/current/sgl-fetch.html
10 https://en.wikipedia.org/wiki/Commarseparated_values
Y https://en.wikipedia.orgiwiki/X ML

12 https://en.wikipedia.org/wiki/JSON

https://www.postgresql.org/docs/current/sql-declare.html
https://www.postgresql.org/docs/current/sql-declare.html
https://www.postgresql.org/docs/current/sql-fetch.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/JSON
https://www.postgresql.org/docs/current/sql-declare.html
https://www.postgresql.org/docs/current/sql-fetch.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/JSON

Data sources and queries

Using only the CSV file, the data type cannot be determined. Because of this, every column is assumed
to be a string, regardless if the values themselves are quoted or not in the file. Data conversion functions
must be used, see for example Section 4.12.4, Section 4.10.16 and Section 4.10.10.

Using either report XML description or programming code, an optional set of typeindicators may be added

along with the CSV input file, so the explicit conversion functions may be omitted from expressions using
the data.

2.1.2.2. JSON file type

A JSON fileis expected in this format:

{
"“colums": ["col namel", ...],
"coltypes": ["type", ...],
"rows": [
{ "col nanel": valuel, ... 1},
]
}

The JSON fileis expected to list the column namesin astring array called col umes.

The column types are optionaly listed in the string array called col t ypes. If they are listed, the
col t ypes array must have the same number of strings as the col urms array. The type names are
st ri ng, nunber or dat et i ne. If the column type array is missing, then all data values are assumed
to be strings and data conversion functions must be used, see for example Section 4.12.4, Section 4.10.16
and Section 4.10.10.

The datarows are listed in a JSON array called r ows and column data values for each row arein aJSON
collection with data names from the col umtms and data types from the col t ypes arrays.

The sections col umms, col t ypes and r ows may appear in any order.

Whenthecol t ypes part is missing from the JSON input file, then using either report XML description
or programming code, an optional set of type indicators may be added along with the JISON input file, so
the explicit conversion functions may be omitted from expressions using the data.

2.1.2.3. XML file type

An XML file datasource is expected in this format:

<?xm version="1.0"?>
<dat a>
<r ows>

<r ow>

<col >val ue</ col >

</ row>
</ rows>
<fields>

<field>col uml</field>

</fields>

Data sources and queries

<col types>
<col >t ypel</col >

</ col types>
</ dat a>

The XML section names <dat a>, <r ows> and <f i el ds> are the same as they were in RLIB for its
XML data source. The order of <r ows> and <f i el ds> is not important. But the order of field names
in<fi el ds> must match the column value order in each <r ow>.

The optional section <coltypes> is hew in OpenCReports. If it's present, then it must list the datatypesin
thesameorder assection<f i el ds>. Thetypesmay best ri ng, nunber ordat et i ne. If thissection
is not present, all values are assumed to be strings and data conversion functions must be used, see for
example Section 4.12.4, Section 4.10.16 and Section 4.10.10.

When the col t ypes part is missing from the XML input file, then using either report XML description
or programming code, an optional set of type indicators may be added along with the XML input file, so
the explicit conversion functions may be omitted from expressions using the data.

2.1.2.4. Spreadsheet file types

2.1.3.

2.1.4.

OpenCReports also supports various spreadsheet formats as datasources. For that, it relies on the Python
pandas module and the supporting modules for the actual spreadsheet file format. Such Python modules
are x| r d for the older Microsoft XLS format, pyopenx! for the newer Microsoft XLSX format, and
odf py for LibreOffice ODS format. Other modules may also be used to support other spreadsheet file
formats.

Application data based datasource

Applications may also have internal datathat can be used as input for OpenCReports.

OpenCReports supports using two-dimensional C arrays as directly accessible application data. Such
arrays must be declared as

char *array[ROA5] [COLUWNS]

or converted to it if using OpenCReports from a different language. Each element is a pointer to a zero-
terminated C string. The first row contains the names of columns.

Optionally, a set of type indicators may be supplied, similarly to the File based data sources.

Application defined data sources

OpenCReports allows application defined datasource drivers that may even override built-in datasource
drivers.

An application defined data source may be any of the previously listed types: SQL, file or data based.

2.2. Queries

Queries are the actual providers of tabular data. They use specific data source drivers.

Queries have unique names associated with them. This allows using multiple queries that have identical
field (or column) names. See Section 3.4.2

Data sources and queries

2.2.1.

2.2.2.

2.2.3.

2.2.4.

SQL queries

An SQL query uses an SQL data source. An SQL query provides tabular data in rows and columns. The
columns have names. One row of datais made up from individual valuesin columns.

Examples:
SELECT * FROM t abl el;
SELECT col uml1, colum?2 FROM t abl el;

For more information, read the specific database server documentation you intend to use.

File queries

File queries specify thefile name and path on the computer. OpenCReportsthen loadsthefileinto memory
and processes it to present data on the report.

Data queries

Data queries pass the internal data. OpenCReports processesit to present data on the report.

Relation between queries

Reports may use one or more queries. If a report uses more queries, one of them must be the report's
primary query.

Supplementary queries are either followers of the primary query, or independent queries

2.2.4.1. Follower queries

Supplementary queries may be associated with the primary query as so called follower queries. Any query
may be afollower to the primary query.

There are two kinds of follower queries:
* regular, or basic follower queries, and

» socaled N:1 (N-to-one) followers

2.2.4.1.1. Regular follower queries

A follower query isrun aong the primary query and their rows are laid out side by side. The first row of
the follower query is assigned the first row of the primary query. The second row of the follower query is
assigned to the second row of the primary query, and so on. The number of rows of the complete data set
isdetermined by the primary query. If thefollower query runs out of rows before the primary, the columns
values will be presented as empty data, i.e. SQL NULLSs.

Thisissimilar tousing LEFT OUTER JO N and using ROANUMin Oracle or ther ow_number () SQL
function in PostgreSQL as the matching value between the primary query and the follower query.

2.2.4.1.2. N:1 follower queries

An N:1 follower query, for al intents and purposes, is the right side query ina LEFT QUTER JO N
query, with the primary query on the left side. Rows of the main query and the follower query are matched
according to a specified boolean expression.

Data sources and queries

2.2.4.1.3. Note on follower queries

One of the use cases of follower queriesisto use datafrom different datasources. Nowadays, with foreign
gueries standardized in SQL and more database servers implementing it in a performant manner, its use
caseismorelimited. Still, using datafrom different file based datasources, or using from an SQL database
server and from afile based datasource at the same time is possible with OpenCReports.

2.2.4.2. Independent queries

Multiple queriesmay bedeclared for areport. If aquery isneither set asafollower for apreviously declared
guery, nor set as the report's main query, then it is an independent query.

Independent queries will stay on their first row during the report run, so they can be considered constant.

Therefore, column references of independent queries may be used in expressions that would need a
constant value.

10

Chapter 3. Expressions in
OpenCReports

3.1. Introduction

The previous section described Data sources and Queries which provide raw data. Raw data can be used
asis, or can be processed further for the purposes of the report. Thisis where expressions comein.

There are three main data typesin OpenCReports: nuneri ¢, stri ng, anddat et i me. OpenCReports
automatically detectsthe type of raw data supplied by Queries for SQL and some file based Data sources,
and the application can supply extra data to indicate column data types.

Expressions can use and result in any of these types.

A nuneri ¢ expression'sresult isanumber. It uses high numeric precision. Most functions and operators
deal with numbers.

For historic record, RLIB was designed for the US and for slower computers. It used afixed point numeric
representation. For the US, with its strong currency and prices expressed in low numbers, this was an
acceptable design decision at the time. But for countries, where currencies are afew orders of magnitude
weaker and conversely, the prices are similarly higher, the fixed point numeric value range was easily
overflown (especialy in report variables that added values), leading to wrong datain the report output.

Another potential problem with fixed point numeric representation is that converting numbers from the
input data to this internal representation always rounds down. The numeric error (i.e. the difference
between floating point values and fixed point values) can be demonstrated even with small data sets that
add up percentages.

OpenCReports uses high precision floating point values. Technically, it's 256-bit precision GNU MPFR
numerics by default, and the precision can be modified by the application if needed. This allows handling
very large and very small numbers and directly consuming the SQL nuneri ¢ and deci nal types
or arbitrary precision, or using bcrmat h numerics in PHP. This also allows scientific computation or
monetary calculations even with late stage hyperinflati on' prices.

A string expression's result is arbitrary text. Strings can be concatenated or otherwise processed by
string functions.

A dat et i me expression may store a date, atime (with or without timezone) or both. Also, it may store
atimeinterval, eg. 2 nont hs that can be added to or subtracted from another dat et i ne value.

There is afurther data type: er r or . Errors usually occur if there is an error in processing, e.g. when a
function argument does not match its expected parameter datatype. The er r or typeisaspecia case of
strings. it stores a string literal, the error message. As opposed to the string data type, an er r or cannot
be processed further by passing them as function arguments or operator operands. Instead, the first error
is propagated up from subexpressions to the final result of the expression.

3.2. Constants
3.2.1. String literals

String literals in OpenCReports can be either single or double quoted. Some examples:

1 https://en.wikipedia.org/wiki/Hyperinflation

11

https://en.wikipedia.org/wiki/Hyperinflation
https://en.wikipedia.org/wiki/Hyperinflation

Expressions in OpenCReports

3.2.2.

"appl e"

"appl e’

"I’ve eaten an apple"
"This an "apple".’

The values of these strings are:

appl e

appl e

|"ve eaten an apple
This an "appl e".

We can see how the other quoting character can be used as part of the string value.

String literals can a so use BASIC language style double quoting to embed a single quoting character used
for quoting the string itself:

"appl e
"appl e’ ’ pear’
"appl e’’’ pear’
“apple"""
"appl e"" pear"
“appl e""""pear"

The values of these strings are:

appl e’
appl e’ pear
appl e’ ' pear
appl e"
appl e" pear
appl e" " pear

String literals can also use C language string continuation if there's at least one whitespace character
(space, TAB or new line) between doubled quoting characters. String continuation can also switch quoting
characters without whitespace between quoting.

"appl e" "pear"
"appl e" ' pear’
"appl e"’ pear’

Thevalue of al these stringsis:

appl epear

Numeric constants

Numeric constants can beinteger or fractional numberswith or without the so called e-notation or scientific
notation. Some examples:

1

1.234
le4d

le-4

1. 234e-5

12

Expressions in OpenCReports

3.2.3.

3.2.4.

3.2.5.

E-notation means that that number preceding the letter "€" or "E" is multiplied by ten to the power of the
number after the letter "€" or "E", the latter being an integer value. The values of the above examples are:

1

1.234
10000

0. 0001

0. 00001234

Numbers greater than 0 and less than 1 can be written with or without the leading zero.

0.123
. 123

Technically, there are no negative numeric constants. Instead, the number and the unary minus operator

(seeUnary operators) areinitially handled separately. Then the expression optimizer mergesthem, creating
the negative numeric constant.

Boolean constants

Boolean constants eval utate to numeric constans 1 and 0. The boolean constants are:
yes
no

true
fal se

Datetime constants

There are no datetime constants per se, athough expressions like st odt (' 1980-06- 30
16: 00: 00") orinterval (' 2 nonths') (i.e function callswith constant arguments that result in
adat et i me value) areimplicitly turned into constants by the expression optimizer.

Constant expressions

Constant expressions are ones that only contain constant values (of any type) and operators or functions.

3.3. Delayed (precalculated) expressions

Reports internally go through the data set twice, the second run generates the report output. The data
set does not (must not) change between the two runs. This makes it possible to use so called delayed or
precalculated values. A precal cul ated expression keeps the value computed for the last row of the data set
during the first run. The second run uses this value.

By default, expressions are not precal culated. Let's call non-precal culated expressions and values normal.

Expressions need to be explicitly marked as precalculated. Marking expressions as precalculated is
possible viathe report XML description, or by the OpenCReports API. See Precalculated value in XML,
Section 10.1.4.19, and Section 12.8.25.

OpenCReports allows mixing normal and precal culated values in the same expression. For example, if a
normal expression references Precalculated variables, the result would be intuitively expected.

13

Expressions in OpenCReports

3.4. Identifiers

3.4.1.

3.4.2.

3.4.3.

3.4.4.

Expressions may reference query column names, environment variables, internal variables and user
defined Report variables. These references are called identifiers. Their values are evaluated during the
report execution.

Identifier names

Identifiers arein the format domai n. i denti fi er where the domain name or the dot are optional .

OpenCReportsuses UTF-8 encoding evenin identifier names. National or accented charactersare accepted
inidentifiers.

Vaid names for domai n and i denti fi er may start with an underscore or UTF-8 letters and may
contain underscore, UTF-8 letters and numbers in subsegquent characters.

Query field identifiers

Any valid identifier is by default a query column reference, with or without the domain name. Examples:

field _nane

fiel d_nanmeb

nmyqueryl. field _nane
oszl op_név

| ekérdezés. oszl op_név

In the above example, oszl op_név meansfi el d_nane, and | ekér dezés. oszl op_név means
qguery. fi el d_nane in Hungarian. The accented characters are a courtesy of UTF-8.

Query field identifiers in expressions are resolved by matching them against query names (used as the
domain) and their field names.

If the domain name is specified, a query matching the domain name name must be declared for the report,
either as the primary query, a follower query, or an independent query. That query must have a column
name that matches the identifier name.

If the domain name is not specified, the field name references are matched against all the queries of the
report in the order of their declaration. The first query with a matching column name will be used for
that reference.

For exceptions (and exceptions from under the exceptions!), see below.

User defined variables

Domain v signifies user defined report variables, which can be used to shortcut expressions. Example:
v.nmy_variabl e

For details, see Report variables and Variable node.

Special purpose identifier domains

Some domain names carry special meaning for the report.

14

Expressions in OpenCReports

3.4.4.1. Environment variables

Domain mindicates the domain of environment variables.

The nature of environment variables depends on the languange binding. For example in C, it's the
environment variables in the operating system. In PHP, the identifier name isfirst matched against global
PHP variables, and if not found, against the operating system environment variables. Example:

m current _date

Since such a setting is controlled outside the report, and for the duration of running the report, its value
cannot (or shouldn't) change, environment variabl e references are optimized into constants at the beginning
of the report execution.

Environment variables can't change during report execution in single threaded applications, but they can
in multi-threaded ones. By optimizing environment variables into constants in expressions instead of
guerying the environment every timethe same expression is evaluated, potential dataraces (that may result
in inconsistent results) are eliminated.

3.4.4.2. Internal report variables
Domainr indicates the domain of internal report variables.

3.4.4.2.1. Current page number
r. pageno

The current page of the report is maintained by the report layout during the report run. For example, if an
expression is evaluated on page 4 of the report, and happensto reference the current page number variable,
then this variable will have the value 4 in the resullt.

PDF output supports pagination. Other output formats do not. For them the value of thisvariableis 1.

3.4.4.2.2. Total number of pages
r.tot pages
This variable carries the total number of pagesin the report. Its value is maintained by the report.

Only the PDF output format supports pagination. For output formats not supporting pagination, the value
of thisvariableis 1 throughout the report.

Thisvariableisinherently precal culated. Expressionslike thiswill intuitively produce the expected result:
printf("Page: % / %", r.pageno, r.totpages)
For example, on the 3rd page of a 5-page report, the value would be:
Page: 3/ 5
3.4.4.2.3. Line number
r.lineno
This variable gives the current row (line) number in the data set.

It can be thought as an alias to the Query row number function which does the same by default. But
functions may be overridden by user defined functions, while this variable will always work as described.

15

Expressions in OpenCReports

3.4.4.2.4. Detail count

r.detail cnt

Thisvariableworkssimilarly to the Line number variable and Query row number function, except it restarts
from 1 when afield header is emitted on the report. See Detail node.

With the default behaviour of the field header regarding breaks (see Report field header priority attribute),
i.e. when field header is printed on the top of every page, r . det ai | cnt works as a per page line count
value.

When the report field header priority is set to low, the effect may be more emphasized because the value
of this variable is reset more often.

3.4.4.2.5. Field value

r.val ue

Data on the report is represented by field description. Along with the data expression, supplementary
expressions are used for metadata that make up the displaying of the value. Such supplementary expression
exist for the foreground and background colors, the formatting of the value, and others.

The supplementary expressions may reference the field value, without having to type out the field
expression multiple times.

Using r . val ue aso helps reducing the report runtime because the value expression is not computed
multiple times. Thisisamanual optimization.

Referencingr . val ue isonly possible for supplementary expressionsin the samefield description. This
variable cannot cross-reference other field descriptions, or anything not in the same scope. For thispurpose,
there are user Report variables.

3.4.4.2.6. Report output format value
r.format

This variable returns the current output format name as a string. For example: PDF, HTM_, etc.

3.4.4.2.7. Expression self reference
r.self

This variable references the previous result of the expression. It is used in iterative expressions, like in
user-defined Report variables. It can aso be used in any user defined expression.

3.4.4.2.8. Subexpressions of user-defined variables

r. baseexpr

r.ignoreexpr

r.internedexpr

r.interned2expr

These variables are references for the four subexpressions that potentially make up a user-defined custom
variable. The expressionsin order are: base expression, the row ignoring expression and two intermediary
EXpressions.

16

Expressions in OpenCReports

Actualy, there's a fifth subexpression that exists in every user defined variable, namely the result
expression. It's reference is simply the user variable reference, see User defined variables and Custom
variable attributes.

They are evaluated in this order:
* r. baseexpr

The base expression must not reference any of the others of r . i gnor eexpr, r. i nt er medexpr,
andr. i ntermed2expr.

* r.ignoreexpr

The data row ignoring expression must not referencer . i nt er nedexpr andr . i nt er ned2expr,
but it can referencer . baseexpr .

e r.internedexpr

The first intermediary expression can referencer . baseexpr andr . i gnor eexpr, but it must not
referencer . i nt er med2expr.

e r.interned2expr

The second intermediary expression can reference any of r. baseexpr, r. i gnoreexpr, and
r.internedexpr.

» The result expression, which has no internal variable name. It can reference al of r . baseexpr,
r.ignoreexpr,r.internedexpr andr.interned2expr.

For example, a running average over a data series needs two intermediary expressions: one for the sum
of the values, the other for the number of values in the series. The result is the sum of values divided by
the number of values.

Their usage is only valid when declaring a custom user defined variable.

3.4.4.3. Quoted and dot-prefixed identifiers

Both donai n andi denti fi er names may be quoted or unquoted. Quoting names allow using semi-
reserved and reserved words asidentifiersand also allow specia charactersinidentifier names. Examples:

query.field_nanmel

query. "fiel d_nane2"

query."field with space in the nane"
"query2".field_nane3

"query2"."and"

3.4.4.4. Dot-prefixed identifiers

A dot-prefixed identifier is one where the domain nameis not specified, but the identifier nameis prefixed
with adot. Examples:

.field_name
M"field _nane"

The boolean constants are semi-reserved words. They can be used asidentifierswith dot-prefixed identifier
names without a domain name and without quoting:

17

Expressions in OpenCReports

.yes
. ho

.true
.fal se
yes. no

The above unquoted identifiers are equivalent with these quoted ones bel ow:

."yes"
."no"
."true”
."fal se"
"yes"."no"

Operator names are reserved words, e.g. and and or . They cannot be used with dot-prefixed operator
names without quoting, as it would cause an expression syntax error. But they can be used as quoted
identifiers, in case you would want to use such a query hame and column name;

n andn
. n or n
n andn . n or n

3.4.4.5. Quoted special purpose identifier domains

When identifier domains are quoted, they lose their special meaning and the identifiers become query field
identifiers. Of course, in this case, such a query name must exist and the query must have a field name
specified in the identifier. Examples:

"nm'.current _date
"r".totpages
"v".ny_variable

3.5. Operators and functions

3.5.1.

OpenCReports expressions can use severa operators and functions. The operator precedence is mostly
as expected from the C programming language. One notable exception is implicit multiplication. The
precedence classes are as below, in increasing order of precedence.

Note that all of the operators are implemented internally as a function call to the equivalent function.

Since every function may be overridden by user functions, the operators may work differently than the
documentation.

Ternary operator

The ternary operator works asin the C, PHP and other languages:

expressionl ? expression2 : expression3

It'sevaluated asfollows: if the value of numericexpr essi onlist r ue (i.e. non-zero), thentheresultis
the expr essi on2, otherwise it'sexpr essi on3. Type of expr essi on2 and expr essi on3 may

differ, i.e. the result type will be the type of the underlying expression but it can result in runtime errors.

Internally, it'simplemented using theiif() function.

18

Expressions in OpenCReports

3.5.2.

3.5.3.

3.5.4.

Boolean logic operators with two operands

Logic OR can bewrittenas| | oror.Exampleea || b
Logic AND can be written as & or and. Logic AND has precedence over OR. Example: a && b

Internaly, they are implemented using the Boolean AND and Boolean OR functions.

Bitwise operators with two operands

The bitwise operatorsin this precedence class and in their increasing order of precedence are: bitwise OR
(]) and bitwise AND (&).

Equality and inequality comparison operators

The equality comparison operator can be written as = or ==.

Theinequality comparison operator can be written as<> or ! =.

3.5.4.1. Equality and inequality comparison operators on vectors

3.5.5.

Vector equality and inequality comparisons have the same precedence as scalar comparisons. These are
not vectors in the mathematical sense, but a comma separated list of scalarsinside brackets ([... 1),
with op being any of the equality or inequality comparison operators.

[expal, expa2, ...] op [expbl, expb2, ...]
Such comparisons are expanded into alogic operator form:
(expal op expbl) and (expa2 op expb2) and ...

Please, note that because of the mechanical conversion from the vector form to the expanded logic operator
form, the following two lines have different meaning:

not ([expal, expa2, ...] =] expbl, expb2, ... 1)
[expal, expa2, ...] !'=1] expbl, expb2, ...]

Other comparison operators

Lessthan (<), less-or-equal (<=), greater-than (>) and greater-or-equal (>=).

3.5.5.1. Other comparison operators on vectors

3.5.6.

3.5.7.

Vector comparisons using <, >, etc. operators have the same precedence astheir scalar counterpart. These
are also expanded into the logic form, see Section 3.5.4.1 above.

Bitwise shifts

Bitwise shift left (a >> b) and bitwise shift right (a << b).

Addition and subtraction

a + banda - b.

19

Expressions in OpenCReports

3.5.8. Multiplication, division and modulo (remainder)

a* b,a/ banda %b.

3.5.9. Power-of operator

a ™ b works as a-to-the-power-of-b.

3.5.10. Factorial operator

al , the'!" sign used as postfix operator.

3.5.11. Unary plus and minus, logical and bitwise NOT,
prefix increment and decrement

Unary plus(+a), unary minus (- a), logical NOT (! a, """ used asprefix operator), bitwise NOT (~a), prefix
increment (++a) and prefix decrement (- - a).

3.5.12. Postfix increment and decrement

Postfix increment (a++) and decrement (a- -).

3.5.13. Function calls and implicit multiplication

Function calls execute a function on operands: f unct i on(operand[, ...]).A functionnameisa
singleword known by OpenCReports at thetime of parsing, either asabuilt-in function, or auser-supplied
one. The function name cannot have aleading dot or be a domain-qualified identifier.

Implicit multiplication is when two distinct operands are in juxtaposition, in other words they are written
side by side without any whitespace. In this case, there is an implied multiplication between them that
acts with higher precedence than regular multiplication or division. Implicit multiplication is applicable
in these situations:

« A numeric constant juxtaposed with an identifier, the numeric constant is the on the left side.

2X

* A numeric constant juxtaposed with an expression inside parentheses. The constant can be on either
side of the expression.

2(a+b)
(ath) 2

» Anidentifier juxtaposed with an expression inside parentheses, the identifier is on the left side of the
expression.

x(a+b)
Thisisonly treated as implicit multiplication if the following conditions are met:

« thex identifier is not afunction name at the time of parsing

20

Expressions in OpenCReports

« thereisasingle expression inside the parentheses

If any of the conditions below are true, the expression is treated as a function call:
¢ X isaknown function name

« thereisno expression inside the parentheses

» aseries of comma delimited expressions is inside the parentheses

The function call validity is checked against the number of operands, with a potentia parser error. If
there's an ambiguity between function names and identifiers provided by data sources, it can be avoided
by using dot-prefixed or dot-prefixed and quoted identifiers, or fully qualified identifiers in the form
of query.identifier.

» An expression inside parentheses juxtaposed with an identifier on the right side.
(atb)a

» Two expressions inside parentheses juxtaposed with each other.
(atb) (c+d)

Implicit multiplication is NOT applicable in these situations, besides the exceptions aready explained
above:

* Anidentifier juxtaposed with a numeric constant, the numeric constant is the on the right side.
X2

Since an identifier name may include digits as the second and subsequent characters, the numeric
constant, or at least its integer part is ssmply recognized as part of the identifier name itself according
to the token matching. This can also result in syntax errors when not handled with care.

» Anidentifier juxtaposed with another identifier.
ab

The reason is the same as in the preceding case: there is only a single identifier according to token
matching.

3.5.14. Parentheses

Parenthesized expressions are always computed first.

3.5.15. A note on token matching, precendence and
syntax errors

Expression parsing works on two levels: token matching and applying grammar. Token matching breaks
up the expression string into tokens in a greedy way: without whitepace delimiters, the longest possible
token is chosen.

This may lead to slight confusion when coupled with implicit multiplication. For example, the expression
2e- 1e isbroken up into two tokens: 2e- 1 juxtaposed with e. Thefirst token isinterpreted as a numeric
constant using e-notation (so that it will mean2 * 107 (- 1)) and the second istheidentifier e, leading

21

Expressions in OpenCReports

tothemeaning 0. 2 * e. Thisisunambiguous for the computer, but can be somewhat confusing to the
the user reading or writing expressions. To avoid any confusion, don't use implicit multiplication and use
whitespace and parentheses gratituously.

Expression parsing handles precedence and whitespaces. For example, these below do not mean exactly
the same:

at++ + ++b
at+++++b

The former is obvious, but the latter may be alittle surprising: (a++) ++ + b. Thisishow the lexer or
token matching works, i.e. it matches the longest applicable token first.

If a and b are numbers, then the result of both expressionsisa + b + 2, but the way it's arrived at
is different.

However, the ++ (increment) and - - (decrement) operators may be interpreted differently for other types.
For example, if both a and b are of the dat et i me type, then the result also depends on whether one of
them is an interval datetime, and the other (regular) datetime value has valid time or not. To make the
expression unambiguous, whitespace and/or parenthesis should be used.

Another ambiguous example:
a++b

The above may beinterpreted asa + +b but since no whitespace is used, the tokenizer isfreeto interpret
itasa++ b, because ++ islonger than +, so the former is matched first as an operator token. Thisis a
syntax error and expression parsing throws an error for it.

22

Chapter 4. Functions

4.1. Introduction

This section lists the functions supported by OpenCReports in topics, and a phabetically in their topic.
Most functions below operate in this way, unless noted otherwise:

» numeric and bitwise functions with more than two operands take their first operand and perform the
same operation using the second, third, etc. operands repeatedly.

« if any of the operandsisan error (resulting from runtime processing of a subexpression), then the result
will use the exact error of the first operand that is an error.

« if any of the operandsis NULL (e.g. the data source is SQL and the field value is SQL NULL) then
the result will also be NULL.

» Boolean logic functions treat their operands with O being false and anything else (even fractions less
than 0.5) astrue.

* Bitwise functions treat their operands as 64-bit numeric values, with rounding if they are fractions.

* String arithmetics operate on UTF-8 encoded strings and count in number of UTF-8 characters instead
of byte length.

4.2. Arithmetic functions

4.2.1.

4.2.2.

4.2.3.

4.2.4.

4.2.5.

abs()

Absolute value. It takes one numeric operand. Operator | . . . | isashortcut for this function.

div()

Division. It takes two or more numeric operands. The way it worksis: take the first operand and divide it
by the second and subsequent operands in sequence. Operator / is ashortcut for this function.

factorial()

Factorial function. It takes one numeric operand. The postfix operator ! isthe aliasfor thisfunction.

fmod ()

Theresult tothevalueof x - ny (x andy being its two numeric operands), rounded according to the
report's rounding mode, where n is the integer quotient of x divided by y, n is rounded toward zero. It
takes two numeric operands.

mod ()

Andliasof r enai nder () . It takes two numeric operands. Operator %is a shortcut for this function.

23

Functions

4.2.6.

4.2.7.

4.2.8.

4.2.9.

mul()

Multiplication. It takes two or more numeric operands. Operator * is a shortcut for this function.

remainder()
Theresult to the valueof x - ny (x and y being its two numeric operands), rounded according to the

report's rounding mode, where n is the integer quotient of x divided by y, n is rounded toward to the
nearest integer. It takes two numeric operands.

uminus()

Unary minus. Changes the sign of its numeric operand from positive to negative, or vice versa. It takes
one numeric operand. Operator unary - isashortcut of this function.

uplus()

Unary plus. Leaves the sign of its numeric operand as is. It takes one numeric operand. Operator unary
+ isashortcut of this function.

4.3. Bitwise functions

4.3.1.

4.3.2.

4.3.3.

4.3.4.

4.3.5.

4.3.6.

and()

Bitwise AND. It takes two or more numeric operands. Operator & is a shortcut for this function.

not()

Bitwise NOT. It takes one numeric operand. It returns the bit-by-bit negated value of its operand. Prefix
operator ~ is ashortcut for this function.

or()

Bitwise OR. It takes two or more numeric operands. Operator | isa shortcut for this function.

shl()

Bitwise shift left. It takes two numeric operands. Shifts the first operand left with the number of bits
specified by the second operand. The operand << is a shortcut for this function.

shr()

Bitwise shift right. It takes two numeric operands. Shifts the first operand right with the number of bits
specified by the second operand. The operand >> is a shortcut for this function.

xor()

Bitwise exclusive OR. It takes two or more numeric operands.

24

Functions

4.4. Boolean logic functions

4.4.1.

4.4.2.

4.4.3.

land ()

Boolean logic AND. It takes two or more numeric operands that are treated as boolean logic values. The
function is executed until the result is fully determined, i.e. it stops at the first false value. Operator &&
isashortcut for this function.

Inot()

Boolean logic NOT. It takes one humeric operand. It returns the negated boolean value of its operand.
Prefix operator ! isashortcut for this function.

lor()

Boolean logic OR. It takes two or more numeric operands that are treated as boolean logic values. The
function is executed until the result is fully determined, i.e. it stops at the first true value. Operator | | is
ashortcut for this function.

4.5. Comparison functions

4.5.1.

4.5.2.

4.5.3.

4.5.4.

4.5.5.

4.5.6.

eq()

Equal. It takes two operands of the same type: numeric, string or datetime. The result is numeric value 1
or O, if the two operands are equal or non-equal, respectively. The operators = and == are shortcuts for
this function.

ge()

Greater-or-equal. It takes two operands of the same type, which can be either numeric, string or datetime.
The operator >= isashortcut for this function.

gt()

Greater-than. It takes two operands of the same type, which can be either numeric, string or datetime. The
operator > is a shortcut for this function.

le()

Less-or-equal. It takes two operands of the same type, which can be either numeric, string or datetime.
The operator <= isashortcut for this function.

1t()

Lessthan. It takes two operands of the same type, which can be either numeric, string or datetime. The
operator < isashortcut for this function.

ne()

Not equal. It takes two operands of the same type, which can be either numeric, string or datetime. The
operator ! = and <> are shortcuts for this function.

25

Functions

4.6. Rounding and related functions

4.6.1. ceil()

Rounds its operand to the next higher or equal integer. It takes one numeric operand.
4.6.2. floor()

Rounds its operand to the next lower or equal integer. It takes one numeric operand.
4.6.3. rint()

Rounds its operand using the report's rounding mode. It takes one numeric operand.

4.6.4. round()

Rounds its operand to the nearest representable integer, rounding halfway cases away from zero. It takes
one numeric operand.

4.6.5. trunc()

Rounds its operand to the next representable integer toward zero. It takes one numeric operand.

4.7. Exponential, logarithmic and related
functions

4.7.1. exp()

Natural exponential. It takes one numeric operand.

4.7.2. expl0()

Base-10 exponentidl. It takes one numeric operand.

4.7.3. exp2()

Base-2 exponential. It takes one numeric operand.

4.7.4.1n()

Aliasfor | og() .

4.7.5.1og()

Natural logarithm. It takes one numeric operand.

4.7.6.10910()

Base-10 logarithm. It takes one numeric operand.

26

Functions

4.7.7.1log2()

Base-2 logarithm. It takes one numeric operand.

4.7.8. pow()

This function raises the first operand to the power of its second operand. It takes two numeric operands.
Operator ~ is ashortcut for this function.

4.7.9. sqr()

Square. It takes one numeric operand.

4.7.10. sqrt()

Square root. It takes one numeric operand.

4.8. Trigonometric functions
4.8.1. acos()

Arc-cosine function. It takes one numeric operand.

4.8.2. asin()

Arc-sine function. It takes one numeric operand.

4.8.3. atan()

Arc-tangent function. It takes one numeric operand.

4.8.4. cos()

Cosine function. It takes one numeric operand.

4.8.5. cot()

Cotangent function. It takes one numeric operand.

4.8.6. csc()

Cosecant function. It takes one numeric operand.

4.8.7. sec()

Secant. It takes one numeric operand.

4.8.8. sin()

Sine. It takes one numeric operand.

27

Functions

4.8.9.

tan()

Tangent. It takes one numeric operand.

4.9. String functions

4.9.1.

4.9.2.

4.9.3.

4.9.4.

4.9.5.

4.9.6.

4.9.7.

4.9.8.

4.10.

concat()

Concatenate strings. It takes two or more string operands.

left()

Return the leftmost N characters of a string. It takes two operands, the first operand is a string, the second
is the string length, a numeric integer.

lower()

Convert to lowercase. It takes one string operand.

mid()

Return characters from the middle of the string. It takes three operands, the first operand is a string, the
second and third are numeric integer values, start offset and length, respectively. The offset is 1-based just

like in BASIC, with the offset value 0 being identical to 1. Negative offsets count from the right end of
thestring, i.e. mi d(s, - n, n) isequivalenttori ght (s, n).

proper()

Return the string converted lowecase, except the first letter of the first word, which will be uppercase.
This function takes one string operand.

right()

Return the rightmost N characters of astring. It takestwo operands, the first operand isastring, the second
isthe string length, a numeric integer.

strlen()

Return the number of charactersin the string. It takes one string operand.

upper()

Convert to uppercase. It takes one string operand.

Datetime functions

4.10.1. chgdateof()

Change the date part of the first operand to the date part of the second operand. It takes two datetime
operands.

28

Functions

4.10.2. chgtimeof()

Change the time part of the first operand to the date part of the second operand. It takes two datetime
operands.

4.10.3. date()

Return the current date. It takes zero operands.

4.10.4. dateof()

Return the date part. It takes one datetime operand.

4.10.5. day()

Return the day of month value as a number. It takes one datetime operand.

4.10.6. dim()

Returns the number of days in the month according to the year and month values of the operand. It takes
one datetime operand.

4.10.7. dtos()

Convert adatetime to string. The date part of the datetime is formatted according to the date format of the
currently set locale. It takes one datetime operand.

4.10.8. dtosf()

Convert a datetime to formatted string. It takes two operands, one datetime and one string. It takes the
second (string) operand as a format string and formats the datetime value according to the format string.
If the second operand is NULL or empty string, this function behaves like the dtos() function. Otherwise
it behaves like the format() function with the operands reversed.

4.10.9. gettimeinsecs|()

Convert the time part of the datetime to seconds elapsed from 00:00:00. It takes one datetime operand.

4.10.10. interval()

Convert the parameter(s) to an interval subtype of the datetime type. It takes either one string operand,
or SiX numeric operands.

In the first case, the string is parsed for interval values, like1l year or 2 nont hs, etc.,, and sets the
specific datetime part values.

In the second case, the six numeric operands are the values for the datetime parts, in the order of years,
months, days, hours, minutes and seconds.

4.10.11. month()

Return the month value of a datetime. It takes one datetime operand.

29

Functions

4.10.12. now()

Return the current timestamp in a datetime value. It takes zero operands.

The "current timestamp" is determined at the beginning of generating the report. This function returnsthe
same stable value for the lifetime of the report.

4.10.13. settimeinsecs()

Return a datetime with the time part of a datetime changed to the specified seconds after 00:00:00. It takes
two operands, the first operand is a datetime, the second is a numeric integer.

4.10.14. stdwiy()

Return the 1SO-8601 week number of a datetime as a decimal number, range 01 to 53, where week 1 is
the first week that has at least 4 days in the new year. It takes one datetime operand.

4.10.15. stod()

Aliasfor st odt ().

4.10.16. stodt()

Convert a string to a datetime value. It takes one string operand.

Thisfunctionissmart enough to recognize local e specific and standard | SO-8601 formats. It handleswhole
datetime, date-only and time-only values in the string.

4.10.17. stodtsql()

Aliasfor st odt ().

4.10.18. timeof()

Return time part of the datetime operand. It takes one datetime operand.

4.10.19. tstod()

Aliasfor st odt ().

4.10.20. wiy()

Return the week number of the operand as adecimal number, range 00 to 53, starting with the first Sunday
asthefirst day of week O1. It takes one datetime operand.

4.10.21. wiyl()

Return the week number of the operand as adecimal number, range 00 to 53, starting with thefirst Monday
asthefirst day of week O1. It takes one datetime operand.

30

Functions

4.10.22. wiyo()

This function returns the week number of the first operand as a decimal number, range 00 to 53, starting
with the specified day number as the first day. (0 = Sunday, 1 = Monday, 2 = Tuesday, ...) It takes two
operands, the first is a datetime, the second is a numeric integer.

4.10.23. year()

Return the year value of the operand as a numeric value. It takes one datetime operand.

4.11. Type agnostic functions
4.11.1. add()

Add the operands. It takes two or more operands of different types and returns the sensible result for cases
that make sense. It throws an error for invalid cases. Operator + is a shortcut for this function.

For numer i ¢ arguments, it's the arithmetic addition.
For st ri ng arguments, it is equivalent to concatenation, i.e. the concat() function.
Certain combinations of dat et i me and nuner i ¢ arguments make sense.

e normal dat eti ne and nuner i ¢ added together results in the dat et i e value increased by the
specified number of seconds or days, depending on whether the dat et i e value has valid time part
or not, respectively

« the interval subtype of dat eti me and numer i ¢ added together results in the dat et i me value
increased by the specified number of seconds

» normal dat et i nme and the interval subtype of the dat et i ne added together results in the normal
dat et i me value increased by the specified time interval

 two intervals added together resultsin the first interval increased by the second interval

4.11.2. dec()

Decrement by one. It takes one numeric or datetime operand. The operator - - isthe shortcut for it, either
as prefix or postfix operator.

4.11.3.inc()

Increment by one. It takes one numeric or datetime operand. The operator ++ is the shortcut for it, either
as prefix or postfix operator.

4.11.4. sub()

Subtract the second, etc. operands from the first. It takes two or more operands of different types and
returns the sensible result for cases that make sense. It throws an error for invalid cases. Operator - isa
shortcut for this function.

For nuner i ¢ arguments, it's ssmply the arithmetic subtraction.

31

Functions

For st ri ng arguments, it throws an error.
Certain combinations of dat et i me and numner i ¢ arguments make sense.

e anuneri c value subtracted from anormal dat et i ne resultsinthedat et i me value decreased by
the specified number of seconds or days, depending on whether the dat et i me value has valid time
part or not, respectively

» anuneri ¢ value subtracted from the interval subtype of dat et i nme resultsinthedat et i e value
decreased by the specified number of seconds

* aninterval value subtracted from anormal dat et i me value results in the normal dat et i ne value
decreased by the specified time interval

* two intervals subtracted resultsin thefirst interval decreased by the second interval

4.12. Formatting and conversion functions
4.12.1. format()

It takes two operands, the first operand is of any type, the second operand isastring. Thisfunction formats
the first value according to the second operand as a format string. If the first operand doesn't match the
expected type in the format string, an error is returned.

It an RLIB compatibility function and is a special case of thepri nt f () function. See Formatting data.

4.12.2. printf()

This function takes one or more operands. The first operand is a string and used as the format string.
Subsequent operands have to be of the expected type according to the format string, otherwise an error is
returned. If everything is correct, it returns the formatted data as a string. See Formatting data.

4.12.3. str()

It takes three numeric operands. The first operand is converted to a string with the length and number of
decimal digits specified by the second and the third operands, respectively.

4.12.4. val()

Numeric value. It takes one numeric or string operand.

If a string value is passed, and it can be converted to a numeric value successfully, then it returns the
converted numeric vaue.

The value of a numeric operand is passed through asis.

4.13. Miscellaneous functions
4.13.1. brrownum()

Current row number of a break since its last break boundary. The row number restarts from 1 at every
break boundary. It takes one string operand, the name of the break.

32

Functions

4.13.2. error()

Return an artificially generated error. It takes one string operand, the error message. Used by unit tests
but it may be useful in some other cases.

4.13.3. eval()

Parse an expression string. If it's correct, it is inserted into the parent expression in place of the function
cal. If thereisasyntax error, the error is re-thrown for the main expression. It takes one string operand.

Thisis a pseudo-function. The grammar detects its use and converts the embedded expression string into
aregular subexpression, likeif it wasinside parenthesisin the parent expression contents. This alowsthe
subexpression to be optimized in the parent expression context.

Fox example, theexpression3 * eval (' 1 + 2') isoptimized into the numeric constant 9.

Note, that the grammar transformation only takes place if there is no user defined function with the same
name. In this case, the user defined function is used.

4.13.4. fxpval()

Move the decimal separator to the left by the specified number of digits. It takes two operands. The first
operand may either be a string containing a numeric value, or a numeric. If it's a string, then it will be
converted to numeric first. The second operand is numeric.

Itisan RLIB compatibility function. The function dividesthe numeric value of thefirst operand with 10to
the power of the value of the second operand. One use caseisthat if the value of the first operand contains
pricesin cents, then f xpval (data, 2) putsthe decimal separator to the correct place.

4.13.5. iif()

Ternary function. It takes three operands of which the first one is numeric, the second and third operands
can beof any type. If thefirst operand isnon-zero (i.e.: "true") then it returns the second operand, otherwise
the third operand. The ternary operator expl ? exp2 : exp3 isashortcut for thisfunction.

4.13.6. isdatetime()

Returns numeric 1 if the operand is datetime, O otherwise. It takes one operand of any type.

4.13.7. iserror()

Returns numeric 1 if the operand is an error, 0 otherwise. It takes one operand of any type.

4.13.8. isnan()

Returns numeric 1 if the operand is numeric and it represents a NAN value (not-a-number), O otherwise.
It takes one operand of any type.

4.13.9. isnull()

Returns numeric 1 if the operand isNULL, O otherwise. It takes one operand of any type.

33

Functions

4.13.10. isnumeric()

Returns numeric 1 if the operand is a numeric value, 0 otherwise. It takes one operand of any type.

4.13.11. isstring()

Returns numeric 1 if the operand is a string value, 0 otherwise. It takes one operand of any type.

4.13.12. null()

Generate NULL value using the type of its operand. It takes one operand of any type.

4.13.13. nulldt()

Generate NULL of the datetime type. It takes zero operands.

4.13.14. nulin()

Generate NULL of the numeric type. It takes zero operands.

4.13.15. nulls()

Generate NULL of the string type. It takes zero operands.

4.13.16. prevval()

Return the previous value. It takes one operand of any type.

The interesting use case for this function is non-constant expressions. It returns the operand's previous
value, i.e. the value generated for the previous query row. If there is no previous value row, the result is
an error. Thisfunction allows showing values carried over from the previous page to be shown in aheader

section of the current page.

4.13.17. random()

Generate a pseudo-random numeric value between 0 and 1. It takes zero operands.

4.13.18. rownum()

Return the row number of aquery inthe report. It takes either zero operands or one string operand. If zero
operands are passed, it returns the current row number of the primary query. If astring operand is passed,

then it returns the current row number of the query with that name. See Queries.

4.13.19. translate()

Tranglate the operand. It takes one string operand.

Thisfunction returnsthetrand ated version of the string operand according to transl ation and | ocal e settings

usingdget t ext () from Gettext.

Functions

4.13.20. translate2()

Trandlate the operands using singular and plural variants and the number of the object in the statement.
It takes three operands. The first two operands are strings, for the singular and plural strings. The third
operand is the number that determines which translation form is used.

Thisfunction trandatesits operands according to the translation and locale settingsusing dnget t ext ()
from Gettext.

35

Chapter 5. Report variables

5.1. Introduction to report variables

In OpenCReports, there are afew variable types:
» expression variables, practically named aliases for Expressions

* pre-defined numeric operations for simple statistics, like summing, counting, or averaging a data series,
or finding the highest or lowest values in a data series

* custom variables where the data type and the operation on the data are user-defined

Variables may be reset at break boundaries. See Report breaks and the Reset on break attribute.

5.2. Expression variables

5.2.1.

5.2.2.

The value of an expression variable is calculated from the expression using current row of data from the
query.

This can be thought of asakind of shortcut. A variable may use along expression. Other expressions may
use the same long expression as a subexpression, i.e. part of themselves. Typing the same long expression
over and over iserror-prone. The variable allows typing the expression once, then the variable can be used
in other expressions. Thisnot only saveson typing. The expression value of thevariableiscalculated once,
and referencing the variable simply usesthe already cal culated val ue, thereby saving report execution time.

Variables with iterative expressions

An expression may be iterative, where the new value is derived from the previous value of itself. See
Expression self reference.

Expression variable examples

Examples cannot be understood without the context in which they are used. Compl ete variable examples
arein the Variable node section of the Report XML description chapter.

5.3. Variable types for simple statistics

There are pre-defined variable types for performing simple statistic calculations. All of them (except data
series counting) operate on numeric values and use iterative expressions internally.

The pre-defined variables types are as below:
e Summing adata series. The variable typeissum

e Counting a data series. The variable type is count or count al | . The difference between the
two is that plain count does not count NULL data, while count al | does. It's equivalent to the
difference between COUNT(queryl. fi el d1) and COUNT(*) in SQL. The former doesn't count
NULL (empty) values, the latter does.

» Averaging in adata series. Averaging uses two running expressions behind the scenes. Oneisthe sum
of data, the other isthe count of data. The sum isdivided by the count.

36

Report variables

Here, two different calculation is possible again, depending on which counting method is used, see
above. NULL data contributes 0 to the sum, but the count (the denominator in the division) may differ.
The result depends on this detail.

For thisreason, aver age and aver ageal | variable types exist.

» Highest and lowest values of adata series. Finding the highest and lowest valuesin adata seriesis done
by thehi ghest andthel owest variabletypes.

NULL valuesdon't contributeto theresult of either variabletype, soinanall-NULL series, each variable
will giveaNULL result, i.e. empty when displayed.

5.3.1. Statistics variable examples

Examples cannot be understood without the context in which they are used. Compl ete variable examples
arein the Variable node section of the Report XML description chapter.

5.4. Custom variables

As seen in Expression variables and al so in the Compl ete variable examples, variables are not mysterious.
They can be iterative or non-iterative and their operation can be spelled out. On the other hand, the pre-
defined variables for doing simple statistics may be limiting. Maybe we need an iteratively calculated
value that uses a different type than nurrer i ¢. Thisiswhere cust omvariables may be useful.

For acust omvariable, al details can be freely defined:
» thebasetype: nuneri c,stringordat eti me; nunber isalso accepted as an aliasfor nuneri ¢
* the base expression

 twointermediary expressionsthat both may usethe base expression'sresult, and the second intermediary
may also use the first one's result

« theresult expression that may use all three expressions' results

See the Custom variable example on how the aver age type variable can be spelled out as a custom
variable.

5.5. Precalculated variables

By default, variables produce results that are valid for the data rows they are derived from. lterative
variables variable produce results that are valid for the current row and preceding rows.

Usually, we are not interested in the running average, only in the average of the whole data series.
Thisiswhere the precalculated variables comein.
A variable can be set to be precalculated via the Precal cul ate attribute.

Asit was aready mentioned for precal culated expressions, the report goes through the data set twice. At
the end of the first run, the value of precalculated variables computed for the last row are kept. In the
second run, the same value is supplied for every data row. The value of such a precalculated variable can
be displayed in areport header, which is shown before any report details to inform the reader in advance
without having to look at the last page.

37

Report variables

See Precalculate attribute for an example.

Variables can reference other variables. When certain combinations are encountered, it's necessary to
calculatethe variables' valuesin multiple rounds. For example, when aprecal culated variableisreferenced
by another precalculated variable that also hasitsignore expression set (especialy if theignore expression
referencesthat other variable), or its valueisreset on abreak boundary, the referred variabl€'s value needs
to be computed first, in order for the referring variable value to be intuitively correct.

38

Chapter 6. Report breaks
6.1. Grouping data

OpenCReports, being a report generator, works on tabular data: the data consists of ordered (named)
columns and ordered or unordered rows.

It isoften necessary to group data by certain properties. Imagine alist of employees of acompany, grouped
by their departments, pay grade, or location of employment. A report may show thelist of the employees
with visual separation according to any of these properties.

Multiple groupings may be prioritized (nested):
1. by department
2. by pay grade

With the above, in each department, subgrouping would separate employees according to the pay grade
in that department.

For this to work, the rows of data must be fed to the report generator in a certain order. For example, in
SQL the ordering can be done by:

SELECT ...
ORDER BY depart nent, paygr ade, enpl oyee;

This grouping of dataiis called a break in areport generator.

6.2. Report breaks in OpenCReports

Expressions can reference dataviathe column names of arow. Arbitrary expressions may be used to watch
for changes in the value of the expression data breaks. Breaks occurs on the boundary of changesin the
expression value.

Prioritization (nesting) of breaks is done according their order of declaration. See Breaks and Break node.

Visual separation is optionally helped with break headers and footers. See BreakHeader and BreakFooter.

6.3. Resetting a variable on break boundaries

It may also be useful to use a regular or precalculated variable that only considers data rows in break
ranges. For example printing a running average for detail rows in bresks, or printing the total average
calculated for a break range in the header for that period.

For this purpose, variables may be reset on break boundaries. See examples of such variables in Reset
on break attribute and Precal cul ate attribute in the Variable node section of the Report XML description
chapter.

6.4. Example

Examples cannot be understood without the context in which they are used. A complete break example
can be found at the end of the Breaks section of the Report XML description chapter.

39

Chapter 7. Formatting

7.1. Formatting functions

Formatting data can be done via the format() function, the printf function and the Text element format
attribute. After formatting, regardliess of the data type that was formatted, the type of the result value is
string. This string can be displayed in the report output or processed further as needed.

7.2. Format strings

OpenCReports supports the same set of format stringsas RLIB, with extensions. RLIB and OpenCReports
support:

* legacy format strings for strings, numbers and datetime values
* "new style" format stringswith ! prefix

The legacy and the "new style" format strings can only be used in the format() function and the Text
element format attribute, due to them being RLIB compatible. They can aso be used in the printf function
in limited cases, i.e. when formatting a single data value.

OpenCReports a so supports a2nd generation new style format strings with a prefix and a pair of brackets
({}) that embed the format strings. The 2nd generation format strings can also be used with the printf
function in a completely unambiguous manner.

7.3. Legacy format strings

7.3.1.

7.3.2.

Legacy format strings are like in C, but not always identical.

Format string for strings

To print a string, the % format string can be used. Examples for using it in the Text element format
attribute can be found in the Format attribute examples.

Example expressions for the format() function:

format (queryl.fieldl, '%')
format (queryl.fieldl, 'Look, there is a % there!')

Example expressions for printf function;

printf('%, 'queryl.fieldl")
printf('Look, there is a % there!', queryl.fieldl)

Supplementary format string flags are supported. See the string flagsin pri ntf(3)1

Format string for numeric values

To print anumber, the % format string can be used. Asopposed tothe C pri nt f format specifier where
% is used for integers, thisis used for printing fractions, too. Examples for using it in the Text element
format attribute can be found in the Format attribute examples.

1 https://man7.org/linux/man-pages/man3/printf.3.html

40

https://man7.org/linux/man-pages/man3/printf.3.html
https://man7.org/linux/man-pages/man3/printf.3.html

Formatting

7.3.3.

The same format string can be used for the the format() function and the printf function, just like in the
previous examples for strings.

Supplementary format string flags are supported. Seethe decimal and float/doubleformat flagsin pri ntf(3)2

Format string for datetime values

RLIB approximated st r f t i me() when printing a datetime value. OpenCReportsusesstrfti ne().
See the strftime()3 function description for the complete description of format string flags.

When a datetime field didn't have an explicit format string, RLIB used the US date format to print the
datetime value. On the other hand, OpenCReports uses the locale specific date format if the report has
alocale set.

7.4. New style format strings

7.4.1.

7.4.2.

7.4.3.

7.4.4.

7.4.5.

RLIB supported "new style" format strings that allowed formatting numeric data as monetary values and
allowed to disambiguate between format strings used for different data types. This was needed because
some format flagsareusedinbothprintf () ,strfron() andstrfti ne().

New style format string for strings

This is an extension over RLIB, which didn't have such a notion. In OpenCReports, the new style flag
is prefixed with ! &

New style format string for numeric data

The new style flag isthe legacy flag prefixed with ! #

New style format string for monetary data

There was way to format numeric data using the legacy formatting flags. The new style flag is prefixed
with! $ and usestheflagsof st r f non() . Seethe strfmon()4 function for details.

To print the correct currency name, the locale must be set for the report. Only one locale can be set, so a
single currency name will be used for every value using monetary formatting.

New style format string for datetime values

The new style flag isthe legacy flags prefixed with ! @ Formatting a datetime value uses strfti me()5.

New style format string examples

Examples for using these in the Text element format attribute can be found in the Format attribute
examples.

2 https://man7.org/linux/man-pages/man3/printf.3.html

8 https://man7.org/linux/man-pages/man3/strftime.3.html
4 https://man7.org/linux/man-pages/man3/strfmon.3.html
s https://man7.org/linux/man-pages/man3/strftime.3.html

41

https://man7.org/linux/man-pages/man3/printf.3.html
https://man7.org/linux/man-pages/man3/strftime.3.html
https://man7.org/linux/man-pages/man3/strfmon.3.html
https://man7.org/linux/man-pages/man3/strftime.3.html
https://man7.org/linux/man-pages/man3/printf.3.html
https://man7.org/linux/man-pages/man3/strftime.3.html
https://man7.org/linux/man-pages/man3/strfmon.3.html
https://man7.org/linux/man-pages/man3/strftime.3.html

Formatting

7.5. Second generation new style format
strings

This format string style builds upon the original new style format strings, with the addition of brackets
that embed the underlying format strings.

7.5.1. 2nd gen new style format string for strings

The format string format is the legacy format string embedded in! &{ . . . }.

7.5.2. 2nd gen new style format string for numeric data

The format string format is the legacy format string embedded in! #{ . . . }

7.5.3. 2nd gen new style format string for monetary data

Theformat string format isthe same asthefirst generation. Instead of just having aprefix, thest r f mon()
format string isembedded in! ${. . . }

Formatting monetary values uses st r f mon() . See strfmon(:?;)6

To print the correct currency name, the locale must be set for the report. Only one locale can be set, so a
single currency name will be used for every value using monetary formatting.

7.5.4. 2nd gen new style format string for datetime
values

The format string format isembeddedin! @ . . . } . Formatting adatetimevalueusesstrfti nme().

7.5.5. 2nd gen new style format string examples

Examples for using these in the Text element format attribute can be found in the Format attribute
examples.

7.6. The swiss army knife of formatting

The printf function is the most versatile formatting function in OpenCReports. It does not exist in RLIB.
Using the second generation format strings makes it completely unambiguous.

Thepri nt f () functionin OpenCReportsallowsformatting every datatype into acommon result string.
Example:

printf('You had %d % on ! @ %- %m %} '
"and % % on ! @ %r-%n %} in your pocket.',
6, 'apples', stodt('2022-05-01"),
2, 'oranges', stodt('2022-05-02"))

Theresult is:

6 https://man7.org/linux/man-pages/man3/strfmon.3.html

42

https://man7.org/linux/man-pages/man3/strfmon.3.html
https://man7.org/linux/man-pages/man3/strfmon.3.html

Formatting

You had 6 apples on 2022-05-01 and 2 oranges on 2022-05-02 in your
pocket .

43

Chapter 8. Report XML description
8.1. XML description structure

OpenCReportsl usesan RLI Bz-compati ble report description with extensions.

The report XML description, like all XML files start with declaring that it's an XML file and the
optional declaration of the Document Type Definition that the XML file can be checked against. For an
OpenCReports report description, the first two lines are:

<?xm version="1.0"?>
<! DOCTYPE OpenCReport SYSTEM "opencreport.dtd">

The DTD fileopencr eport . dt d can be found in the sources of OpenCReports here®.
After the XML header lines, afully specified report description looks like this:

<OpenCReport >
<Dat asour ces>

</ Dat asour ces>
<Queri es>

</ Queri es>
<Part >
<pr >
<pd>
<Report >
</ Report >
</ pd>
</ pr>
</ Part>
</ OpenCReport >

or likethis:

<OpenCReport >
<Dat asour ces>

</ Dat asour ces>
<Queri es>

</ Queri es>

<Report>

</ Report >
</ OpenCReport >

The XML sections Datasources and Queries are optional in the XML description. They can be substituted
by program code using the datasource and query related callsin the Low level C API, similarly to RLIB.

1 https://github.com/zboszor/OpenCReports
2 https://sourceforge.net/projects/rlib/
s https://github.com/zboszor/OpenCReports/bl ob/mai n/opencreport.dtd

https://github.com/zboszor/OpenCReports
https://sourceforge.net/projects/rlib/
https://github.com/zboszor/OpenCReports/blob/main/opencreport.dtd
https://github.com/zboszor/OpenCReports
https://sourceforge.net/projects/rlib/
https://github.com/zboszor/OpenCReports/blob/main/opencreport.dtd

Report XML description

8.1.1.

For RLIB compatibility, areport description may start with either <Par t > or <Repor t > asthetoplevel
node. In this case, there's no other way to add datasources and queries, but through program code, like
the Low level C API.

Since XML filesare hierarchical with asingle toplevel node with child nodes, multiple <Repor t > nodes
in the same report output were only possible in RLIB with using <Par t > as the toplevel node, with all
the nodes having to be spelled out between <Par t > and <Repor t >. With <OQpenCRepor t > being the
toplevel node, multiple <Repor t > child nodes can be used without the parent <Par t > node.

Notes about XML syntax and attributes

Most (if not all) XML attributes in the report description file are handled with the expression parser (see
Expressions), with fallback to literal strings if the the location of expression wouldn't allow identifier
references at that location.

For example, the datasource name may be declared using either of the three examples below:

<Dat asour ce name="mysource" ... />
<Dat asour ce nanme="'nysource'" ... [>
<Dat asour ce nanme="" ; mysour ce"" ... />

Thefirst form isaregular XML string value. Since expression parsing would find that mysour ce isan
identifier which may be a query column name and thisis not avalid place for a query reference, the non-
parsed string value is used.

The second form is a single quoted OpenCReports string constant. The value of the string constant (i.e.
nysour ce) isused.

The third form is a double quoted OpenCReports string constant, but in XML the double quote character
must be substituted with " ; because they are reserved for quoting the attribute values. The value
of the string constant (i.e. nysour ce) is used. (This substitution is called "string escaping” and various
other formats besides XML require some kind of substutition for reserved characters.)

To make the XML easier to read, the second form is recommended because it still allows embedding the
single quote character inside astring (see Report XML description) in case e.g. astrong password contains
this. For security-by-obscurity, the third form may be used because it is harder to read. For all special
characters that should be escaped in XML, see Simplified XML Escaping®.

8.2. OpenCReport element

8.2.1.

The toplevel <OpenCRepor t > element controls some global settings and serves as the topmost XML
element for child elements.

Size unit attribute

Thesi ze_uni t attribute specifies report behaviour for size related settings:

<OpenCReport size unit=""rlib" ">
<OpenCReport size unit=""points'">

Default isr 1 i b which is the legacy RLIB behavior, where sizing of layout details are a mix of units,
making it harder to design the report layout:

4 https://stackoverflow.com/a/46637835/290085

45

https://stackoverflow.com/a/46637835/290085
https://stackoverflow.com/a/46637835/290085

Report XML description

8.2.2.

8.2.3.

e widthforfieldandliteral (seeOutput node) arein number of characters. Thisisinfluenced by
the font size set in either Part font size, Report font size or Line font size.

* height for Part column is measured in number of characters influenced by Part font size

 height for Report is measured in percentage of Part column and considered to be a minimum value, so
padding is added if the report contents end earlier than the limit

 width of horizontal lines and the optional border width around reports are specified in points
* gaps between columns of multi-column reports is measured in inches

Note that RLIB only expected monospace fonts that have the same width for every character. It also
expected that the character height isidentical to the character width. Thelatter expectationisfalsefor many
monospace fonts, i.e. their height is usually greater than their width. Also, there are problems with field
widths cal culated in number of characters. Widthsusing a 12 point font (for example, used for regular text)
is not the same as widths using a 20 point font used for text in a header line. Due to this, width of header
and data lines will not align properly and it will show when using background color for both of them.

With proportional fonts (where the width of characters depend on their image, i.e. an"i" isthinner than an
"m") width of text fields cannot reliably be set in a"number of characters" unit because it's not an exact
value. Thereis aworkaround for thisin OpenCReports but it isn't available in RLIB so it's not backward
compatible. See Text element width.

Whensi ze_uni t issettopoi nt s, al sizerelated settingsin thereport arein points, ak.a. 1/72thinch.
It's consistent and avoids the above described issues.

No query show NoData

The report uses data from Queries through the report's Query attribute. When a query provides no data
rows, an aternative section called NoData hode with static information may be shown instead if it exists
inthereport. The report usesthefirst query declared in Queriesif it's not explicitly set via Query attribute.

RLIB had atrick to disable showing the NoData node. This was enabled by specifying a query name that
does not exist. This option controls the layout behaviour for that case.

<OpenCReport noquery_show nodat a="yes" >
<OpenCReport noquery_show nodat a="no" >

Default ist rue (or yes) when <OpenCRepor t > is the toplevel node, f al se (or no) when either
<Part > or <Report > isthe toplevel node for RLIB compatibility.

Report height after last

A report may specify its height through Report height. Multiple <Repor t > nodes may exist in the same
<pd> section. For more information, see Part column and Report.

This option controls whether report height is applied after the last <Repor t > in the same <pd> node.

<OpenCReport report_height_after_I|ast="yes">
<(penCReport report_height_after_Ilast="no">

Defaultisf al se.

46

Report XML description

8.2.4.

8.2.5.

8.2.6.

8.2.7.

8.2.8.

Follower match single

Queries may be daisy-chained together as Follower queries in two ways, regular and N:1 followers. See
the links for details.

When settof al se, N:1 followersbehave fully like LEFT OUTER JO Nin SQL, with duplicating data
from the primary query if multiple matching rows exist in followers. When set to t r ue, only the first
matching row is used. The latter approximates the RLIB implementation.

<OpenCReport foll ower_match_singl e="yes">
<OpenCReport foll ower_match_singl e="no">

Default isyes in RLIB compatibility mode, i.e. when either <Part > or <Report > are used as the
toplevel XML node for the report description. Otherwise the default isno.

Precision hits

This controls the precision for numeric computations. For more information, see Expressions
<OpenCReport precision_bits="512">

Default is 256.

Rounding mode

This controls the rounding mode for numeric computations. Possible values are: nearest,
to mnus_inf,to_ inf,to _zero,away_from zero,orfaithful.

<OpenCReport roundi ng_node="near est">

<OpenCReport roundi ng _node="to_m nus_inf">

<OpenCReport roundi ng _node="to_inf">

<OpenCReport roundi ng _node="to_zero">

<OpenCReport roundi ng_node="away_ from zero">
<OpenCReport roundi ng _node="faithful ">

Defaultisnear est . Note that according to the MPFR documentation, f ai t hf ul isexperimental.

Locale

This controls the language settings, like the decimal separator, weekday names, month names and similar.
This setting is aso used as the language of tranglation.

<(penCReport | ocal e="de_ DE">

Default is C locale which approximates US English.

Translation settings

These two settings control the translation.

<OpenCReport
transl ati on_donai n="nydonai n"
transl ation_directory="/path/to/translation/files">

47

Report XML description

Translation is based on GNU Gettext®. A subdi rectory tree is expected under the specified translation
directory intheformof | ocal e/ LC_MESSAGES (e.g.: de_ DE/ LC_MESSAGES) withnydonai n. no
filesinthem. These. no files contain translated messages for a given language.

8.3. Paths

Some report description elements reference file. Such elements are <l oad> and <I nage>, see Loaded
report and Image node. By default, these files must be in the same directory asthe report XML description
file, or inthe current working directory for the application using OpenCReports. To lift thislimitation and
to allow organizing files, a search path or multiple search paths may be added. For files referenced with
relative paths, the search paths will be used in their order of declaration. Search paths and the relative file
path are concatenated together to form an absolute path. The first successful absolute file path match will
be used in the element referencing thefile.

Search paths are in the following format:

<Pat hs>
<Pat h val ue="/absol ute/path" />

</ Pai hs>
8.4. Datasources

Datasources in OpenCReports are either database connections, or accessors (mini-drivers) for data files
in certain formats.

Datasource descriptions are in the following format:

<Dat asour ces>
<Dat asour ce name="mysource" type="..." ... [>
</ Dat asour ces>

A report may have multiple datasources, i.e. the description may list multiple <Dat asour ce> lines.

Datasources must have unique names in a report and their type may be: mari adb (or nysql),
post gresqgl ,odbc, csv,j son,xm orarray.

8.4.1. MariaDB (MySQL) database connection

A MariaDB database connection may be declared in three ways. Either by using the database host and
port, the database name, user name and password directly:

<Dat asour ce
name="nmysour ce" type="nari adb"
host="..." port="..."
dbnane="..." user="..." password="..." />

or alternatively, instead of the host and port, specifying the UNIX Domain Socket filefor alocal connection
if it's not in the standard location:

<Dat asour ce
nanme="mysour ce" type="mari adb"

s https://www.gnu.org/software/gettext/

48

https://www.gnu.org/software/gettext/
https://www.gnu.org/software/gettext/

Report XML description

8.4.2.

uni x_socket=". ..
dbnane="..." user="...

password="..." [>
or moving these details out to an external configuration filein an INI file format:

<Dat asour ce
nanme="mysour ce" type="nari adb"
optionfile="myconn.cnf" group="nyconn" />

In the last case, the configuration file myconn. cnf would contain something like this:

[myconn]
I'include /etc/ny.cnf

dat abase=nydb
user =nyuser
#passwor d=
#host =

#port =

#uni Xx_socket =

Please note that the INI group name [myconn] matches gr oup="myconn" in the above datasource
declaration.

The database name and user name are mandatory. The user password isoptional, depending on the database
security authentication setup.

The database host and port, or the socket file location are all optional. Without these, alocal connectionis
attempted using the default settings. If the host name is specified but the port isn't, the remote host is used
on the default port (as known by the local MariaDB database client library).

PostgreSQL database connection

A PostgreSQL database connection may be declared in three ways. Either by using the database host and
port, the database name, user name and password directly:

<Dat asour ce
nanme="nmysour ce" type="postgresql"
host="..." port="...
dbname="..." user="...

password="..." />

or aternatively, instead of the host and port, specifying the UNIX Domain Socket filefor alocal connection
if it's not in the standard location:

<Dat asour ce
nanme="rmysour ce" type="postgresql"
uni x_socket="..."
dbnane="..." user="...

password="..." [>
or using a so called connection string:

<Dat asour ce
nanme="nmysour ce" type="postgresql"
connstr="..." />

For the connection string format, see the PostgreSQL documentation®.

6 https://www.postgresqgl.org/docs

49

https://www.postgresql.org/docs
https://www.postgresql.org/docs

Report XML description

The database name and user name are mandatory. The user password isoptional, depending on the database
security authentication setup.

The database host and port, or the socket filelocation are all optional. Without these, alocal connectionis
attempted using the default settings. If the host name is specified but the port isn't, the remote host is used
on the default port (as known by the local PostgreSQL database client library).

There are also two optional parameters that control the behaviour of the PostgreSQL driver in
OpenCReports, rather than being actual connection parametersto a PostgreSQL server. These parameters
may be used with any of the above connection methods.

» The parameter usecur sor may have aboolean value: t r ue, f al se, yes, no, or anumeric value
interpreted as a boolean value: non-zero valuesmeant r ue, zero meansf al se.

When usecur sor isenabled, the SQL query will be wrapped in a cursor, and the result is retrieved
in parts. Otherwise, the SQL query is executed as is and the result isretrieved in whole.

The default valueis usualy t r ue but this can be controlled when OpenCReports is built.

* When usecur sor isenabled, the parameter f et chsi ze controls the number of rows retrieved at
once. Default value is 1024.

Examples (add the necessary connection parameters from the above):

<Dat asour ce
nanme="rmysour ce" type="postgresql"
usecursor ="f al se"

/>

or

<Dat asour ce
nane="mysour ce" type="postgresql" ...
usecursor="true" fetchsize="4096" />

SQL queries added to the same PostgreSQL datasource (connection) will behave the same way. Either all
of them are executed asis, or all of them will use a cursor.

8.4.3. ODBC database connection

The above described MariaDB and PostgreSQL database connection types are using their respective client
libraries. There is a more generic way, i.e. ODBC. ODBC was invented by Microsoft in the 1990s for
Windows. See Microsoft Open Database Connectivity (OD BC)7 Intheir solution, there's an abstract client
library and individual database drivers adhere to the APIs offered by ODBC toplevel library. Since then,
UNIX and UNIX-like systems also gained their ODBC client librariesin two different implementations,
both of which are supported by OpenCReports: unixODBC® and iODBC®.

An ODBC database setup isdone adifferently. Therearetwo system-wide configuration files. Thefirst one
isodbci nst . i ni that liststhe database driversinstalled into the system. The second oneisodbc. i ni
which references the first one and lists pre-defined database connections. These database connections are
named. In ODBC speak, these are called Data Source Names or DSNs. The DSNs specify the low level
connection parameters, like the database host and port, and optionally the user name and password, too.

! https://docs.microsoft.com/en-us/sgl/odbc/mi crosoft-open-database-connectivity-odbc
8 https://www.unixodbc.org
° https://www.iodbc.org

50

https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://www.unixodbc.org
https://www.iodbc.org
https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://www.unixodbc.org
https://www.iodbc.org

Report XML description

8.4.4.

8.4.5.

8.4.6.

8.4.7.

Thus, an ODBC database connection may be declared in two ways. The first way is by using the DSN
name, and optionally the user name and password:

<Dat asour ce
nanme="rmysour ce" type="odbhc"
dbname="..." user="..." password="..." />

In this case, the dbnan® attribute is not the low level database name, but the ODBC abstract DSN name.
There's also away to use the so called connection string which contain the same connection information:

<Dat asour ce
nane="rmysour ce" type="odbc"
connstr="..." />

For the connection string format, see the public examples™®.

CSV file datasource

For ageneric description of the CSV file format, see CSV filetype.
A CSV file datasource is declared very simply:
<Dat asour ce nane="nysource" type="'csv'" [>

In this case, the actual CSV file is not declared, only that a "query” using a CSV file will be listed later
under <Queri es>.

JSON file datasource

For a generic description of the expected JSON file format, see JSON file type.
Similarly to CSV, the JSON file datasource is also declared very simply:
<Dat asour ce nane="nysource" type="'json'" />

In this case, the actual JSON fileis not declared, only that a"query" using a JSSON file will be listed later
under <Queri es>.

XML file datasource

Similarly to CSV and JSON, the XML file datasource is also declared very simply:
<Dat asour ce nane="nysource" type="'xm"'" [>

In this case, the actual XML fileis not declared, only that a"query" using an XML file will be listed |ater
under <Queri es>.

Spreadsheet file datasource

Declaring the spreadsheet based file datasource is also very simple:

<Dat asour ce

10 https://www.connectionstrings.com/

51

https://www.connectionstrings.com/
https://www.connectionstrings.com/

Report XML description

8.4.8.

name="mysour ce"
type=""' spreadsheet
filename=""nyfile. xlsx'" />

or

<Dat asour ce
name="mnmysour ce"
type=""' pandas'"
filename=""nyfile.xlsx"" />

Since the spreadsheet file may contain multiple sheets, the datasource declaration must specify the file
name, and the query will need to specify the sheet label. An example can be seen under <Quer i es>.

If the sheets that the report uses are in different files, multiple spreadsheet datasources must be declared,
one for each file. If the sheets are in the same file, then the same datasource can be used for multiple
gueries, one query for every sheet.

Array datasource

Arrays are global in-memory structures in the application that should be accessible to the OpenCReports
library. For example, when using the C programming language, global non-static symbols are visible to
librariesif the application is compiled with - r dynami c.

Similarly to file based datasources, the array datasource is declared very smply:
<Dat asour ce nane="nysource" type="'array'" />

In this case, the actual array is not declared, only that a "query" using an array will be listed later under
<Queri es>.

A C array isdeclared in this format:

const char *array[ROAS + 1] [COLUWS] = {
{ "colum1l", ... },
{ "valuel", ... },

}s

The array is declared as a two-dimensional array of C strings. The first row of the array is the column
names, [ROA5 + 1] inthe array declaration accounts for the title row.

All rows have the same number of columns. Column values may be NULL, in which case they will be
treated the same as SQL NULLsin SQL query results.

Optionally, a column types array is declared separately:

#i ncl ude <opencreport. h>

const enum ocrpt_result_type coltypes[COLUWS] = {

b

If this array is present, it must have the same number of COLUWNS as the matching data array. The
enum ocrpt _result_type usablein data array type declaration are OCRPT_RESULT_STRI NG,
OCRPT_RESULT_NUMBER and OCRPT_RESULT_DATETI ME.

52

Report XML description

8.4.9.

Common datasource properties

8.4.9.1. Encoding

OpenCReports expects strings in UTF-8 encoding. However, some datasources may use a different
encoding. To use and display strings from the datasource, an internal conversion to UTF-8 is needed. To
perform this correctly, the datasource encoding must be set.

<Dat asour ce
name="mnysour ce"

encodi ng="1 SO 8859-2" />

8.5. Queries

8.5.1.

8.5.2.

Queries in OpenCReports are SQL queries for database connections, or datafilesfilesin certain formats.
The queries are declared like this:

<Queri es>
<Query name="..." ... [>

</QJé.ri. es>
SQL queries for SQL datasources

SQL queries for MariaDB, PostgreSQL and ODBC datasources may be declared two ways, either as the
XML valuefor <Quer y>:

<Query

name="myquery"

dat asour ce="nysour ce" >
SELECT * FROM sone_tabl e

</ Query>

or astheval ue attribute:

<Query
name="myquery"
dat asour ce="nysour ce"
val ue="SELECT * FROM sone_table" />

Note, that the XML attribute dat asour ce=". . . " must match a previously declared datasource.

The SQL query can be any SELECT statement.

Queries for file based datasources

Queriesfor CSV, XML, JSON and spreadsheet datasources may be declared two ways. Either asthe XML
value for <Quer y>:

<Query nane="nyquery" datasource="nysource" >xnl data.xnl </ Query>

or astheval ue attribute:

53

Report XML description

8.5.3.

<Query
name="myquery"
dat asour ce="nysour ce"
val ue=""'xm data.xm"'" />

Example query for a spreadsheet:

<Query
nane="mysheet "
dat asour ce="nysour ce"
val ue=""' Sheet1'" />

Notes:
» The XML attribute dat asour ce=". . ." must match a previously declared datasource.

* Itisrecommended that theval ue="..." formisused, sinceit's not ensured that whitespace before
or after the file name is trimmed in the first variant if the XML is "beautified". The file name that the
OpenCReports library receives must be correct in order to useit.

» For CSV, XML and JSON files, theval ue inthe query declaration is the file name. Thisfile must be
in the correct format for the datasource type.

* For spreadsheets, theval ue in the query declaration is the sheet label.

» Theoptional type declaration for columnsin the XML and JSON file formats, or for CSV, the complete
lack of it can be supplemented with a memory array using the optional col t ypes="..." and
col s="..." atributes. For details, see the Array queries.

Queries for array based datasources
Queriesfor array datasources may be declared two ways. Either asthe XML value for <Quer y>:

<Query
name="myquery"
dat asour ce="nysour ce"
col types="'col types
rows="30"

col s="6"
>array</ Query>

or astheval ue attribute:

<Query
name="myquery"
dat asour ce="nysour ce"
val ue=""array
col types=""'col types
rows="30"
col s="6" />

Notes:
e The XML attribute dat asour ce=". . ." must match a previously declared datasource.

* Itisrecommended that theval ue="..." formisused, sinceit's not ensured that whitespace before
or after the symbol name is trimmed in the first variant if the XML is "beautified". The symbol name

54

Report XML description

that the OpenCReports library receives must be correct in order to use it. The array name must match
the correct global symbol name. The library discovers this symbol using the Array discovery function,
by default viadl syn() .

e Similarly to the array symbol name, thecol t ypes="..." array name must match the correct global
symbol name. The library discovers this symbol using the Array discovery function, by default via
dl sym() .

e Thevauefor col s must match the second dimension of the data array. It may be omitted if the Array
discovery function is smarter than the default implementation and returns the arrays dimensions.

e The value for r ows must match the number of data rows in the array, excluding the title row. l.e. it
must be one less than the first dimension of the array. It may be omitted if the Array discovery function
is smarter than the default implementation and returns the arrays dimensions.

Failing to fulfill the above may cause crashes or wrong data to be used in the report.

8.5.4. Follower queries

8.5.4.1. Regular follower queries

A regular follower query is declared by adding the f ol | ower _for="..." attribute. The value for
foll ower_for="..." isthename of apreviousy declared query. Example:
<Query

name="myqueryl"
dat asour ce="nysour cel"
val ue=""' SELECT * FROM tablel'" />

<Query
name="myquery2"
dat asour ce="nysour ce2"
val ue="' SELECT * FROM tabl el'"
foll ower_for="nyqueryl" />

In this example, two queries of two different datasources are used. This is one of the advantages of
using follower queries, i.e. data from different databases may be used. Nowadays, with foreign queries
implemented in e.g. PostgreSQL, its use case is more limited.

8.5.4.2. N:1 follower queries

See Section 2.2.4.1.2 for explanation.

The follower matching expression is specified withthef ol | ower _expr="..." attribute. Example:

<Query
name="myqueryl"
dat asour ce="nysour cel"
val ue=""' SELECT * FROM tablel'" />

<Query
name="myquery2"
dat asour ce="nysour ce2"
val ue=""' SELECT * FROM tabl el'"
fol |l ower_for="nyqueryl"

55

Report XML description

foll ower_expr="myqueryl.id = nyquery2.id" />

8.6. Report parts

8.6.1.

An OpenCReports XML description may consists of multiple separate reports. This is achieved by so
called "report parts'. Such a<Par t > may be under the toplevel <OpenCRepor t > node, in which case
multiple report parts may exist in the same XML. It may also be the toplevel node of the XML. In the
latter case, only asingle <Par t > may be present in the XML description.

<Part>
<pr >
<pd>
<Report >
</ Report >
</ pd>
</ pr>
</ Part >
A report <Par t > may consist multiple reports, arranged in
e rows (<pr>),
e columnsinrows (<pd>), and
* reports (<Repor t >) arranged vertically in a column.
The rows and columns in rows do not form a grid as rows are independent of each other. E.g. one row
may contain two columns, the next one may contain three, the next one may contain one. It is completely

freeform.

This alows very complex report layouts. One possible application of such a complex layout is printed
forms.

Part attributes

Note that any attribute setting below may only use constant expressions or an query column reference
from Independent queries. An environment variable (since it can't - or shouldn't - change during the
report execution) is considered constant. See Expressions. This allows external control for the attributes
in question.

8.6.1.1. Font name

The font name attribute specifies the font for the report part's global scope. It can be overridden by child
nodes for their scope. It may be specified in two forms, the first one is the preferred name, the second is
for RLIB compatibility:

<Part font_name="'Arial'">
<Part fontName=""'Arial'">

If both forms are specified, f ont _nane isused.

56

Report XML description

Default font nameis Couri er.

8.6.1.2. Font size

Thefont size attribute specifiesthe font sizefor the report part's global scope. It can be overridden by child
nodes for their scope. It may be specified in two forms, the first one is the preferred name, the second is
for RLIB compatibility:

<Part font_size="10">
<Part fontSize="10">

If both forms are specified, f ont _si ze isused.

Default font sizeis 12.

8.6.1.3. Size unit

Shortcut for the Size unit attribute in <OpenCRepor t > when <Par t > is the toplevel node.

<Part size_unit=""rlib" ">
<Part size_unit="'points' ">

When <QpenCRepor t > isthetoplevel nodeinthe XML, this attribute for <Par t > isignored.

8.6.1.4. No query show NoData attribute

Shortcut for No query show NoData attribute in <CpenCRepor t > when <Par t > isthe toplevel node.

<Part noquery_show nodat a="yes" >
<Part noquery_show nodat a="no">

See default in No query show NoData attribute See also NoData node.

8.6.1.5. Report height after last attribute

Shortcut for Report height after last attribute in <OQpenCRepor t > when <Par t > isthe toplevel node.

<Part report_height _after | ast="yes">
<Part report_height_after | ast="no">

See default in Report height after last attribute See also NoData node.

8.6.1.6. Orientation

Page orientation for the whole <Par t >.

<Part orientation="'portrait'">
<Part orientation="'landscape'">

Default is portrait orientation.
8.6.1.7. Margin settings
Margin settings for the page for the whole <Par t >. Individual settings exist for the top, bottom, left

and right margins of the page. Every setting exist in two forms: the RLIB compatible "lowerCamel Case"
variant and the all lowercase with underscore. The latter variants are preferred.

57

Report XML description

<Part top_margi n="0.2">
<Part topMargi n="0.2">
<Part bottom margi n="0.2">
<Part bottomvargi n="0.2">
<Part |eft_margin="0.2">
<Part |eftMargin="0.2">
<Part right_margi n="0.2">
<Part right Margi n="0.2">

Whensi ze unit=""rlib"" isineffect (the default case) the margin unit isinches. The margin unit
is points (1/72th inches) when si ze_uni t ="' poi nts' " isin effect.

Default values for the top, bottom, left and right margins are al 0.2, regardless of the unit.

Notethat ri ght Mar gi n didn't existin RLIB.

8.6.1.8. Paper type

Paper type (implicitly: page size) for the whole <Par t >. It exists in two forms: the RLIB compatible
"lowerCamelCase" variant and the all lowercase with underscore. The latter variant is preferred.

<Part paper_type=""'A4"">
<Part paperType="'A4"">

Default value isthe current system paper type that libpaper!! uses. E.g. if the system is set to US English,
the default paper typeisimplicitly | et t er . In most of Europe, the default paper typeis A4

The paper type can be specified in either lower case or upper case, both are accepted.

8.6.1.9. lterations

The same <Par t > may be executed multiple times.
<Part iterations="3">
Default valueis 1.

Note that a<Par t > and every iteration of it start on anew page. Thisisone way to print multiple copies
of areport and encode it into the output, e.g. in the PDFfile.

8.6.1.10. Suppress

Report parts may be suppressed.
<Part suppress="yes">

Default valueisf al se, i.e. no suppression.

8.6.1.11. Suppress page header on the first page
The <PageHeader > section (see Page header below) for <Par t > may be suppressed on the first page.

<Part suppressPageHeader Fi r st Page="yes" >

1 http://packages.qa.debian.org/libp/libpaper.html

58

http://packages.qa.debian.org/libp/libpaper.html
http://packages.qa.debian.org/libp/libpaper.html

Report XML description

8.6.2.

Default valueisno.

Note that this suppression applies only to the first page of the complete result (e.g. PDF) and not to the
first page of an iteration, which may fall on alater page of the result.

Part subsections

Asdescribed at the beginning of this section (see Report parts), a<Par t > may contain one or more report
rows (<pr >) which in turn may contain one or more columns (<pr >). See Part row and Part column.
Apart from these, global page headers and footers may also be used for report parts.

8.6.2.1. Page header

Thisisthedescription of the page header. It contains an Output node. The expressionsinit cannot reference
guery columns. See also Report page header.

<Part >
<PageHeader >
<Qut put >
</ Qut put >
</ PageHeader >
</ Part >

8.6.2.2. Page footer

Thisisthe description of the pagefooter. It contains an Output node. The expressionsin it cannot reference
guery columns. See also Report page footer.

<Part >
<PageFoot er >
<Qut put >
</ Qut put >
</ PageFoot er >
</ Part>

8.6.2.3. Part row

See Part row.

<Part>
<pr>
<pd>

</ pd>
</ pr>
</ Part >

8.7. Part row

A part row (<pr >) may contain one or more Part columns (<pd>) which are layed out side by side
horizontally. The longest running column will control the height of the row. The next row will be
continuous from that vertical page position.

59

Report XML description

8.7.1. Part row attributes

Note that any attribute setting below may only use constant expressions or an query column reference
from Independent queries. An environment variable (since it can't - or shouldn't - change during the
report execution) is considered constant. See Expressions. This allows externa control for the attributes
in question.

8.7.1.1. Layout

Thel ayout attribute exists only for RLIB compatibility, it's ignored. It accepts two values: f | ow and
fixed.

<pr layout=""'flow ">
<pr layout=""'fixed ">

8.7.1.2. New page

Thenewpage attribute controls whether the part row starts from the point where the previous row in the
same part ended, or it should start on a new page.

<pr newpage="yes">

Default valueisno

8.7.1.3. Suppress
Report rows may be suppressed.
<pr suppress="yes">

Default valueisf al se, i.e. no suppression.

8.8. Part column

A part column (<pd>) may contain one or more Reports (<Repor t >) which are layed out verticaly in
this column continuously.

Such areport may be inlined:

<Part >
<pr>
<pd>
<Report>
</ Report >
</ pd>
</ pr>
</ Part>

A report may also be loaded from a separate file. For details, see Loaded report.
<Part >

<pr>
<pd>

60

Report XML description

8.8.1.

<load ... />
</ pd>
</ pr>
</ Part>

Part column attributes

Note that any attribute setting below may only use constant expressions or an query column reference
from Independent queries. An environment variable (since it can't - or shouldn't - change during the
report execution) is considered constant. See Expressions. This allows external control for the attributes
in question.

8.8.1.1. Width

Width of the part column. Optional.
<pd wi dt h="60">

When Size unit attributeisset tor | i b (the default), the column width is measured in characters, which
is controlled by Part font size. Note, that the font width and height may differ, depending on the font face
controlled by Part font name. Width is computed from the font width.

When Size unit attribute is set to poi nt s, width is measured in points.

Columnswithout explicitly specified width are dynamically sized according to Paper type, Margin settings
and other columnsin the same Part row that do have explicitly set width.

Columns that exceed the total page width (according to Paper type and Margin settings) will be shown
partialy, or won't be shown at all.

8.8.1.2. Height

Height of the part column.
<pd hei ght="120">

When Size unit attributeissettor | i b (the default), the column height is measured in characters, which
is controlled by Part font size. Note, that the font width and height may differ, depending on the font face
controlled by Part font name. Column height is computed from the font height.

When Size unit attribute is set to poi nt s, height is measured in points.

Report details in this part column are layed out up to the specified height. See Report height for further
explanation.

Note, that OpenCReports allows fixed height columns to break over page boundaries. Thisis adeviation
from RLIB.

8.8.1.3. Border width

Border width around the part column. It is measured in points.
<pd border_wi dt h="2">

When set, a rectangle around the part column will be drawn. The width of outline of the rectangle is
measured in points.

61

Report XML description

Thisis adeviation from RLIB where the width of the outline was a fixed 0.1 points and an inner margin
(al of top, bottom, left and right) inside the column border was used.

If the column breaks over a page boundary, the border will be drawn the column parts on every page.

8.8.1.4. Border color

When bor der _wi dt h isset, thiscolor is used to draw the border rectangle.
<pd border_col or=""blue" ">

See Color specification.

8.8.1.5. Detail columns

Inner <Repor t >sarelayed out in one or more columns.
<pd detail _col ums="3">

Default valueis 1.

8.8.1.6. Column padding

When det ai | _col umrms is set to higher than 1, inner padding between the detail columns may be
specified.

<pd col um_pad="0.2">
Default value is 0, i.e. no padding.

The unit of padding isinchesif Size unit attributeissettor | i b (default), points otherwise.

8.8.1.7. Suppress
Report columns may be suppressed.
<pd suppress="yes">

Default valueisf al se, i.e. no suppression.

8.9. Report

This section may occur in awider context or standalone in an OpenCReports XML report description file.
Example XML skeleton structure with <OpenCRepor t > asthe toplevel node;

<OpenCReport >
<Part >
<pr>
<pd>
<Report>
</ Report >
</ pd>
</ pr>
</ Part>

62

Report XML description

</ OpenCReport >
Example XML skeleton structure with <Par t > as the toplevel node:
<Part >

<pr >

<pd>
<Report>

</ Report >
</ pd>

</ pr>
</ Part>

Example XML skeleton structure with a standalone <Repor t > node:

<Report >

</ Repor t >

When <Repor t > isthetoplevel node, parent nodesfor <Par t >, <pr > and <pd> areimplicitly created.

Subsections and many attributes specific to these parent nodes can be used as shortcutsin the <Repor t >
node.

8.9.1. Report attributes

Note that any attribute setting below may only use constant expressions or an query column reference
from Independent queries. An environment variable (since it can't - or shouldn't - change during the
report execution) is considered constant. See Expressions. This allows externa control for the attributes
in question.

8.9.1.1. Font name

The font name attribute specifies the font for the report's scope. It can be overridden by child nodes for
their scope. It may be specified in two forms, the first one is the preferred name, the second is for RLIB
compatibility:

<Report font_nane="'Arial'">
<Report fontName="'Arial'">

If both forms are specified, f ont _narme isused.

Default font name is what's set for Part font name, or Cour i er if both are unset.

8.9.1.2. Font size

The font size attribute specifies the font size for the report's scope. It can be overridden by child nodes
for their scope. It may be specified in two forms, the first one is the preferred name, the second is for
RLIB compatibility:

<Report font_size="10">
<Report fontSize="10">

If both forms are specified, f ont _si ze isused.

Default font name is what's set for Part font size, or 12 if both are unset.

63

Report XML description

8.9.1.3. Size unit

Shortcut for the Size unit attributein <OpenCRepor t > when <Repor t > isthe toplevel node.

<Report size unit=""rlib" ">
<Report size_unit="'points' ">

When <OpenCReport > or <Part > is the toplevel node in the report XML description, this attribute
for <Report > isignored.

8.9.1.4. No query show NoData attribute

Shortcut for No query show NoDataattributein <QpenCRepor t >when<Repor t > isthetoplevel node.

<Report noquery_show nodat a="yes">
<Report noquery_show nodat a="no>

See default in No query show NoData attribute See also NoData node.

8.9.1.5. Report height after last attribute

Shortcut for Report height after last attribute in <OQpenCRepor t > when <Par t > isthe toplevel node.

<Report report_height after | ast="yes">
<Report report_height _after_|ast="no">

See default in Report height after last attribute See also NoData node.

8.9.1.6. Orientation

Shortcut for Part page orientation for the implicitly created parent <Par t > node when <Report > is
standalone.

<Report orientation="'portrait'">
<Report orientation="'l|andscape'">

Default is portrait orientation.

This setting for <Repor t > isignored when there is a parent <Par t > node in the XML description.

8.9.1.7. Margin settings

Shortcuts for Margin settings for the implicitly created parent <Par t > node. Individua settings exist for
the top, bottom, left and right margins of the page. Every setting exist in two forms: the RLIB compatible
"lowerCamel Case" variant and the all lowercase with underscore. The lowecase-with-underscore variants
are the preferred ones.

<Report top_nargi n="0.2">
<Report topMargin="0.2">
<Report bottom nmargi n="0.2">
<Report bottomvargi n="0.2">
<Report left_margi n="0.2">
<Report |eftMargi n="0.2">
<Report right_margi n="0.2">
<Report right Margi n="0.2">

Report XML description

Whensize unit=""rlib"" isineffect (the default case) the margin unit isinches. The margin unit
ispoints (1/72th inches) when si ze_uni t ="' poi nts' " isin effect.

Default values for the top, bottom, left and right margins are al 0.2, regardless of the unit.
Notethat ri ght Mar gi n didn't existin RLIB.

These settings for <Repor t > are ignored when there is a parent <Par t > node in the XML description.

8.9.1.8. Paper type

Shortcut for Paper type for the implicitly created parent <Part > node. It exists in two forms: the
RLIB compatible "lowerCamelCase" variant and the all lowercase with underscore. The lowecase-with-
underscore variant is preferred.

<Part paper_type=""'"A4"">
<Part paperType="'A4"">

Default value isthe current system paper type that Iibpaper12 uses. E.g. if the system is set to US English,
the default paper typeisimplicitly | et t er . In most of Europe, the default paper typeis A4

The paper type can be specified in either lower case or upper case, both are accepted.

This setting for <Repor t > isignored when there is a parent <Par t > node in the XML description.

8.9.1.9. Height

Height of the report.
<Report height="120">

This setting is interpreted differently depending on whether the report XML description uses
<OpenCReport > asthetoplevel node, or it uses either <Par t > or <Report >.

8.9.1.9.1. Report height in OpenCReports mode

When Size unit attributeissettor | i b (the default), the report height is measured in characters, whichis
controlled by Report font size. Note, that the font width and height may differ, depending on the font face
controlled by Report font name. Report height is computed from the font height.

When Size unit attribute is set to poi nt s, height is measured in points.

Report details are layed out up to the specified height. If the report would run longer than the specified
height, it gets truncated. When the report fits in the specified height, the next report starts with the
remaining height added as padding before it.

If the <Report > isthe last one in the <pd> node, then the report may or may not be padded with the
remaining height, depending on the Report height after last attribute.

If height is unset for the parent <pd> node, it is expanded with this vertical padding.

In case height is set for both the parent <pd> node and the <Repor t > nodes in it, the height value for
<pd> is applied first. It would limit the displayed rows in whichever <Repor t > node is terminated by
it. Subsequent <Repor t > nodes would no be displayed in that <pd> node.

12 http://packages.qa.debian.org/libp/libpaper.html

65

http://packages.qa.debian.org/libp/libpaper.html
http://packages.qa.debian.org/libp/libpaper.html

Report XML description

Note, that OpenCReports allows fixed-height reports to break over page boundaries. This is a deviation
from RLIB.

8.9.1.9.2. Report height in RLIB compatibility mode

When parsing XML descriptions from RLIB, i.e. when either <Part > or <Report > is used as the
toplevel node, compatibility mode is turned on for interpreting this setting.

Inthismode, thereport height isinterpreted as a percentage of the height set in Part column height attribute.
In this case, the report height setting is a hint, to use it as minimum height. If the <Repor t > isrendered
on the same page from start to end, and is shorter than the height of the parent <pd> node, then a gap
is added to the <Repor t >. If there are multiple <Repor t > nodes in the same <pd> node, this will
separate them visually.

Note, that this behaviour is not available when using the programming API to create areport. It'sonly for
RLIB compatibility which relied only on the report XML description file.

8.9.1.10. lterations

The same <Repor t > may be executed multiple times.
<Report iterations="3">

Default valueis 1.

8.9.1.11. Suppress

Reports may be suppressed.
<Report suppress="yes">

Default valueisf al se, i.e. no suppression.

8.9.1.12. Suppress page header on the first page

Shortcut for Suppress page header on the first page in the implicitly created parent <Par t > node when
<Report > isthe toplevel node.

<Report suppressPageHeader Fi r st Page="yes" >
Default valueis no.

This setting for <Repor t > isignored when there is a parent <Par t > node in the XML description.
8.9.1.13. Query

Set the primary query name for <Repor t > from the list of Queries.
<Report query="queryl">
Default value is unset, i.e. use the first query from the list of Queries.

Column references of the report's primary query and its follower queries may be used in Expressions
of Output node sectionsin a <Repor t > node: Report page header, Report page footer, Report header,
Report footer, <Fi el dHeader s> and <Fi el dDet ai | s> in Detail node, and also in Break nodes and
Variable nodes.

66

Report XML description

When aquery isempty (i.e. it doesn't have data rows) then the NoData node will be shown.

When the query name is set to a non-existing query, then the appearance of the NoData node is controlled
by No query show NoData attribute.

8.9.1.14. Field header priority

Set the field header priority for the report versus break (header and footer) priority. This setting selects
which report detail is encompassing the other.

<Report field header priority=""'1low ">
<Report field header_priority=""high ">

Default valueishi gh. In this mode, the field header is printed on the top of every page of the report and
break headers and footers are encompassed by it. The default is chosen for RLIB compatibility.

When this setting is | ow, field headers are handled with lower priority compared to break headers and
footers. Inthismode, abreak header isfollowed by the field header, then datarows (field detail s), followed
by the break footer. This brings the field header closer to the field details.

8.9.1.15. Border width

This is a shortcut for Part column border width for the implicitly created <pd> node when <Repor t >
is standalone. It is measured in points.

<Report border_w dt h="2">

When set, a rectangle around the part column (in this case, around the single report in the part column)
will be drawn. The width of outline of the rectangle is measured in points.

Thisis adeviation from RLIB where the width of the outline was afixed 0.1 points and an inner margin
(al of top, bottom, left and right) inside the column border was used. Also, this shortcut didn't exist in
RLIB, the <pd> node had to be present.

If the report (column) breaks over a page boundary, the border will be drawn the column parts on every
page.

This setting for <Repor t > isignored when there is a parent <pd> node.

8.9.1.16. Border color

Thisisashortcut for Part column border color for the implicitly created <pd> node when <Report > is
standalone. When bor der _wi dt h isset, this color is used to draw the border rectangle.

<Report border_col or=""'blue' ">

See Color specification.

8.9.1.17. Detail columns
Shortcut for Detail columnsin the implicitly created parent <pd> when <Par ent > isthe toplevel node.
<Report detail col ums="3">

Default valueis 1.

67

Report XML description

This setting for <Par ent > isignored when there is a parent <pd> node in the report XML description.

8.9.1.18. Column padding

Shortcut for Column padding in theimplicitly created parent <pd> node when <Par ent > isthetoplevel
node.

<Report col um_pad="0.2">
Default valueis 0, i.e. no padding.

The unit of padding isinchesif Size unit attributeissettor | i b (default), points otherwise.
8.9.2. Report subsections
8.9.2.1. Page header

This may be seen as a shortcut for Page header in the implicitly created <Par t > node when <Report >
is standalone. Except that report query column references are also allowed in expressions instead of only
constants and column references of Independent queries. It contains an Output node.

<Report >
<PageHeader >
<CQut put >
</ Cut put >
</ PageHeader >
</ Part >

This subsection for <Repor t > isignored when there is a page header section defined for the <Par t >
node, either in the <Par t > node itself or in a previous child <Repor t > node for the same <Par t >. A
warning isissued in this case.

8.9.2.2. Page footer

This may be seen as a shortcut for Page footer in the implicitly created <Par t > node when <Report >
is standalone. Except that report query column references are also allowed in expressions instead of only
constants and column references of Independent queries. It contains an Output node.

<Report>
<PageFoot er >
<Qut put >
</ Qut put >
</ PageFoot er >
</ Part>

This subsection for <Repor t > isignored when there is a page footer section defined for the <Par t >
node, either in the <Par t > node itself or in a previous child <Repor t > node for the same <Par t >. A
warning isissued in this case.

8.9.2.3. Report header

Thisisthe description of the report header that is print at the beginning of the report. It contains an Output
node.

68

Report XML description

<Report>
<Report Header >
<Qut put >
</ Qut put >
</ Report Header >
</ Part>

8.9.2.4. Report footer

Thisisthe description of the report footer that is printed at the end of the report. It contains an Output node.

<Report>
<Report Foot er >
<Qut put >
</ Qut put >
</ Report Foot er >
</ Part>

8.9.2.5. Variables

This section describes the VVariables in the report.
<Report>

<Vari abl es>
<Variable ... />

</ Vari abl es>
</ Part>

8.9.2.6. Breaks

This section describes the Breaks in the report.

<Report>
<Br eaks>
<Break ... >

</ Br eak>
</ Br eaks>
</ Part>

8.9.2.7. Detail

This section describes the tabular detail s of the report. There are two subsectionsin this node, both contain
an Output node.

<Report>
<Detail >
<Fi el dHeader s>
<Qut put >

69

Report XML description

</ Qut put >
</ Fi el dHeader s>
<Fi el dDet ai | s>

<Qut put >
</ Qut put >
</ Fi el dDet ai | s>
</Detail >

</ Part>
<Fi el dHeader s> isused to describe the header for data rows.

<Fi el dDet ai | s> isused to show datathat is derived from the current data row produced by the report
query.

8.9.2.8. Alternate output for no data

This section describes the aternate output of the report when the query has no data rows, or there is no
such query name defined that's set in Report query name. It contains an Output node.

This section may be declared in two ways. One way is to spell out the <Al t er nat e> node:

<Report >
<Al t er nat e>
<NoDat a>
<Qut put >
</ Qut put >
</ NoDat a>

</ Al t ernate>
</ Part>

The other way is without the <Al t er nat e> node:
<Report >
<NoDat a>
<Qut put >
</ Qut put >
</ NoDat a>
</ Part >

When the Report query name does not exist in inthe global list of Queries and the No query show NoData
attribute is set, then the <NoDat a> section is not displayed.

8.10. Loaded report

Itislike aninline Report it isloaded from a different file.

8.10.1. Loaded Report attributes
8.10.1.1. File name

<l oad name="reportl.xm" />

70

Report XML description

8.10.1.2. Query

This attribute overrides the Query attribute of <Repor t >. This way, the report in the separate file can
be reused for a different data set.

<l oad query="queryl" />
8.10.1.3. Iterations

This attribute overrides the Report iterations attribute of <Report >.

<load iterations="5" />

8.11. Variables

Thisisthe parent node for individual <Var i abl e> nodes that describe each variable.

<Vari abl es>
<Variable ... />

</ Vari abl es>

8.12. Variable

This node describes one <Var i abl e> node. It has no children nodes, only attributes.

<Variable ... />
8.12.1. Variable attributes
8.12.1.1. Name

The name of the variable. It must be unique in the list of variables for the parent <Repor t > node.

<Vari abl e name="var1" />

8.12.1.2. Value

The "value" of the variable, or rather, the expression from which the value is computed. Variables values
are computed for every data row produced by the report query. The expression may therefore reference
field names of queriesthat are declared in the XML description or in programming code.

<Vari abl e value="ql.fieldl + 2 * g2.field2" />
8.12.1.3. Type

The type of the variable. Several variable types exist:

<Vari abl e value="qgl.field" type="expression"/>

<Vari abl e value="qgl.field" type="count"/>
<Vari abl e value="qgl.field" type="countall"/>

71

Report XML description

<Vari abl e value="ql.field" type="sum/>

<Vari abl e value="ql.field" type="average"/>
<Vari abl e value="ql.field" type="averageall"/>

<Vari abl e value="ql.field" type="highest"/>
<Vari abl e value="ql.field" type="Iowest"/>

<Vari abl e type="custom' ... />

Default typeisexpr essi on. Thisisjust a shortcut for the computed value of the expression that saves
both typing (in other expressions referencing this variable) and time to generate the report. This can be
considered a manual optimization.

The count and count al | variable types count the number of expression results for the data set. The
former leaves out NULL values, the latter includes them. This is equivalent to COUNT(fi el d) and
COUNT(*) in SQL.

The sumvariable type sums the non-NULL values of the expression results for the data set.

The aver age and aver ageal | variable types are combinations of sum and either count or
count al | . They takethe value computed for each datarow, add them together, and divide by the number
of values. Theresult of aver age and aver ageal | may differ if thereis NULL datain the result set.

The hi ghest and | owest variable types return the highest and the lowest values for the data set,
respectively.

All of the above pre-defined variables types work on numeric data.

The cust omvariable type allow arbitrary user variables if the predefined types are not enough, for
example, when the base type needs to be something else then a number. See below.

8.12.1.3.1. Complete variable examples
Here's a complete example of an expression variable;

<Report>
<Vari abl es>
<Vari abl e
name="var 1"
val ue="queryl.fieldl + query2.field2"
type="expression" />
</ Vari abl es>

<Det ai | >
<Fi el dHeader s>
<literal value="'"M variable " />
</ Fi el dHeader s>

<Fi el dDet ai | s>
<field value="v.varl" />
</ Fi el dDet ai | s>
</Detail >
</ Report >

72

Report XML description

Note, that in this smple example, there is no difference if the variable is used in the <f i el d> or the
queryl.fieldl + query2.fi el d2 expression. Theefficiency of not computing thevariable again
for the same data row can be observed when the variable is used multiple times and the report processes
ahuge data set.

Here's a complete example of using avariable:

<Report >
<Vari abl es>
<Vari abl e
name="var 1"
value="r.self + queryl.fieldl + query2.field2"
t ype="expression" />
</ Vari abl es>

<Det ai |l >
<Fi el dHeader s>
<literal value="'M/ variable " />
</ Fi el dHeader s>

<Fi el dDet ai | s>
<field value="v.varl" />
</ Fi el dDet ai | s>
</Detail >
</ Report >

Thetrick istousether . sel f internal variable.

Please note, that the above example will not work as is, because for the first row, there is no previous
row. But thereisatrick to avoid such problems, namely using the Ternary operator (or its equivalent, the
iif() function) and the r ownun{) to perform only safe computations. (Note that the val ue=. .. part
below isasingleline.)

<Vari abl e>

val ue="rownum() == 1 ?
queryl.fieldl + query2.field2
r.self + queryl.fieldl + query2.field2"

</ Vari abl e>

This example shows the correct operation of an iterative expression. For the first row, set a known good
value. For every subseguent rows, the previous row value may be used for deriving the new value from.

The above spelled out example can also be written asasunming variable:

<Report>
<Vari abl es>
<Vari abl e
name="var 1"
val ue="queryl.fieldl + query2.field2"
type="sum />
</ Vari abl es>

<Det ai | >

73

Report XML description

<Fi el dHeader s>
<literal value="'"M variable " />
</ Fi el dHeader s>

<Fi el dDet ai | s>
<field value="v.varl" />
</ Fi el dDet ai | s>
</Detail >
</ Report >

Here are two examples of thecount and count al | variable types:

<Report >
<Vari abl es>
<Vari abl e
name="var 1"
val ue="queryl.fiel d1"
type="count" />
<Vari abl e
name="var 2"
val ue="queryl.fiel d1"
type="countall" />
</ Vari abl es>
</ Report >

Here are two examples of using theaver age and aver ageal | variable types:

<Report>
<Vari abl es>
<Vari abl e
name="var 1"
val ue="queryl.fiel dl1"
type="average" />
<Vari abl e
name="var 2"
val ue="queryl.fiel d1"
type="averageal I " />
</ Vari abl es>
</ Report >

Here are two examples of using hi ghest and | owest variabletypes:

<Report>
<Vari abl es>
<Vari abl e
nane="var 1"
val ue="queryl.fiel dl1"
type="hi ghest” />
<Vari abl e

name="var 2"
val ue="queryl.fiel dl1"
type="I| onest" />

74

Report XML description

</ Vari abl es>
</ Report >

8.12.1.4. Custom variable attributes

These attributes below define a custom variable. A base expression, up to two intermediary expressions
and one result expression may be defined, together with the expression type.

<Vari abl e
baseexpr="...
i nt er medexpr="...
i nt er med2expr=". ..
resul texpr="..."
basetype="..."
type="custont'/>

baseexpr,int er mredexpr,i ntermed2expr andr esul t expr are Expressions.
Iterative or recursive variables can use Expression self reference.
Possible values for baset ype arenunber ,stri ng ordat eti ne.

It's the user's responsibility to use expressions valid for the base type. Failing that, the result value will
be an appropriate error message.

Note that the baseexpr attributeisan diasfor val ue.

8.12.1.4.1. Custom variable example

For example, the aver age variable works this way behind the scenes as written below.

<Report>
<Vari abl es>
<Vari abl e
name="aver agevar 1"
type="cust ont
baset ype="nunber "
baseexpr="queryl.fiel d1"
i ntermedexpr="(rownum() ==1 ? 0 : r.self) +
(isnull(r.baseexpr) ?
0 : r.baseexpr)"
i nterned2expr="r.self +
(isnull(r.baseexpr) 2 0 : 1)"
resul texpr="r.intermedexpr / r.interned2expr”
/>
</ Vari abl es>
</ Report >

8.12.1.5. Reset on break

A variable may be reset on break boundariesto the base expression value, e.g. O for count and other pre-
defined variable types. See Break node and Report breaks.

<Vari abl e reset onbr eak="br eakl" />

Default is unset, i.e. no reset on a break.

75

Report XML description

Here's an example to use avariable that's value is reset on a break boundary:

<Report>
<Br eaks>
<Br eak nane="breakl" ... >
<Br eaksHeader >
<Qut put >
<field value="v.var1" />
</ Qut put >
</ Br eaksHeader >
<Br eaksFi el ds>
<Br eaksFi el d val ue="queryl.field2" />
</ Br eaksFi el ds>
</ Br eak>
</ Br eaks>

<Vari abl es>
<Vari abl e

nane="var 1"

val ue="queryl.fiel dl"

t ype="aver age"

precal cul at e="yes"

reset onbreak=""'breakl'" />
</ Vari abl es>

</ Report >

8.12.1.6. Precalculate (delayed)

A variable may work two ways. The first way is to generate an immediate value that is valid for the
current row. See Expressions. An expression may reference the value computed for previous data row,
see Expression self reference.

The other way is Precalculated variables. The attribute is accepted under two names:

<Vari abl e precal cul ate="yes" />
<Vari abl e del ayed="yes" />

Default isno.

A precalculated variable may also use the Reset on break attribute. In this case, the precalculated value
is computed for each break range separately.

Precal culated variables may be used to show totalsin e.g. Report header, in <Fi el dHeader s> in Detall
node, in BreakHeader and in Report page header, among other places.

Here's an example of a precalculated variable:

<Report>
<Vari abl es>
<Vari abl e
name="var 1"
val ue="queryl.fiel d1"
type="aver age"
precal cul ate="yes" />

76

Report XML description

</ Vari abl es>

<Report Header >
<Qut put >
<field value="v.var1l">
</ Qut put >
</ Report Header >
</ Report >

Toreved theinternas of avariable that's value is reset on break boundaries, here is the equivalent using
acust omvariable. The value returned by the Break row number function automatically resets at every
break boundary, so it can be used as below.

<Vari abl es>
<Vari abl e
name="var 1"
t ype="cust ont
baseexpr="queryl. fiel d1"
i nt ernedexpr="(brrownum(' breakl') == 1 ? 0 : r.self) +
(isnull(r.baseexpr) ?
0 : r.baseexpr)"
i nterned2expr="r.self +
(isnull(r.baseexpr) 2 0 : 1)"
resul texpr="r.internmedexpr / r.interned2expr"
/>
</ Vari abl es>

8.13. Breaks

Thisisthe parent node for individual <Br eak> nodes that describe each break. See Report breaks

<Br eaks>
<Break ... />

</Bréék>
8.14. Break

This node describes one <Br eak>.

<Break ... >
<Br eakHeader >
<Qut put >
</ Qut put >

</ Br eakHeader >

<Br eakFoot er >
<Qut put >
</ Qut put >

</ Br eakFoot er >

<Br eakFi el ds>
<BreakField />

77

Report XML description

</ Br eakFi el ds>
</ Br eak>

The order in which Br eak nodes are listed matters for two reasons.

The primary reason is that break fields are hierarchical. The break fields listed earlier are higher in the
hierarchy. If abreak field earlier in the list triggers, all subsequent break fields also trigger implicitly.

The second reason is a consequence of the previous one: emitting the BreakHeaders occur in the order of
thelist. For logical reasons, BreakFooters are in reverse order.

8.14.1. Break attributes
8.14.1.1. Name

The name of the break. It must be unique in the list of breaks for the parent <Repor t > node.

<Br eak name="breakl" />
8.14.1.2. Header on new page

After abreak boundary, the header starts on anew page. Accepted in two variants:

<Br eak header newpage="yes" />
<Br eak newpage="yes" />

Thenewpage="yes" variant is parsed but ignored in RLIB.
8.14.1.3. Suppress break header and footer for blank break fields

Suppress break header and footer in case any of the break fields values are either NULL or an empty string,
if the break field is of the string type.

<Break suppressbl ank="yes" />
8.14.2. Break subsections
8.14.2.1. BreakHeader

The break header is printed before the new datarow if it causes a break, i.e. the values in the set of break
fields changed from one row to the next. It contains an Output node child node.

<Br eakHeader >
<Qut put >
</ Qut put >

</ Br eakHeader >

8.14.2.2. BreakFooter

The break header is printed after the previous data row if it causes a break, i.e. the values in the set of
break fields changed from one row to the next. Also before the first row in the data set. It contains an
Output node child node.

78

Report XML description

<Br eakHeader >
<Qut put >
</ Qut put >

</ Br eakHeader >

8.14.2.3. BreakFields

The break fields node contains one or more BreakField children nodes.

<Br eakFi el ds>
<BreakField ... />

</ Br eakFi el ds>
8.14.2.3.1. BreakField

The break field node only has one attribute and contains no child nodes.
<BreakField value="..."/>

Thesoleattributein <Br eakFi el d>is<val ue>wherethe expression watched for changesis declared.
See Expressions.

There must be at least one <Br eak Fi el d> node listed. When more than one break fields are listed, then
all of them are watched for value changes. If any of them changes, a break boundary occurs for the break.

8.14.3. A complete break example

ThisXML part below showsacomplete example of nested breaks based on thereal life example mentioned
in Section 6.1.

<Report>
<Br eaks>
<Br eak>

<Br eakHeader >
<Qut put >
<Li ne>
<field val ue="queryl. departnent” />
</ Li ne>
</ Qut put >
</ Br eakHeader >

<Br eakFoot er >
<Qut put >
<Li ne>
<literal >End of </literal >
<field val ue="queryl. departnent” />
</ Li ne>
</ Qut put >
</ Br eakFoot er >

79

Report XML description

<Br eakFi el ds>
<Br eakFi el d val ue="queryl. departnment" />
</ BreakFi el ds>

</ Br eak>
<Br eak>

<Br eakHeader >
<Qut put >
<Li ne>
<literal w dth="30" />
<field val ue="queryl. paygrade" />
</ Li ne>
</ Qut put >
</ Br eakHeader >

<Br eakFoot er >
<Qut put >
<Li ne>
<literal wdth="30" />
<literal >End of </literal >
<field val ue="queryl. paygrade" />
</ Li ne>
</ Qut put >
</ Br eakFoot er >

<Br eakFi el ds>
<Br eakFi el d val ue="queryl. paygrade" />
</ Br eakFi el ds>

</ Br eak>
</ Br eaks>
<Det ai | >

<Fi el dHeader s>
<Qut put >
<Li ne>
<literal w dth="60" />
<literal >Enpl oyee nane</literal >
</ Li ne>
</ Qut put >
</ Fi el dHeader s>

<Fi el dDet ai | s>
<Qut put >
<Li ne>
<literal w dth="60" />
<field val ue="queryl. enpl oyee" />
</ Li ne>
</ Qut put >

80

Report XML description

</ FieldDetail s>

<Detai | >

</ Report >

Assuming that Size unit attribute is set to poi nt s, the indentation would be 30 and 60 points for certain
elements (seethe empty <l i t er al >s) and the result would look like this:

1.

2.

6.

Before the first row on every page, the contents of <Fi el dHeader s> is printed.

Before the first row, the contents of <Br eakHeader > is printed for every break declared in the
<Report > inthe order of their declaration.

The contents of <Fi el dDet ai | s> is printed for the current row. Repeat until a value change is
observed between adjacent rowsfor abreak's expression. In this case, the employees are printed in one
block that arein the current paygrade category and working at the current department.

When a value change happened between adjacent rows for a break's expression, then this break and
every break declared after it triggers. For every triggering breaks, their <Br eak Foot er > is printed
in the reverse order of their declaration. Thisis done using the previousrow, so if any data used from
the row or derived from it (e.g. avariable) and is to be displayed in the footer, it will be valid for the
break range that just ended.

Before the new row, the contents of <Br eak Header > is printed for every break that just triggered.
For example, the department’'s name is not printed if only the paygrade category changed in the same
department from the one row to the next.

Repeat from step 3 until there are no more data rows.

8.15. Output

The <Qut put > node is used by many previously mentioned sections. This is the generic node that
describes how details are displayed in reports.

8.15.1. Output attributes

Note that Expressions in attribute settings below depend on the parent node context. Some may only
use constant expressions or query column references from Independent queries. <Qut put > nodes in
<Repor t > context may also use report query column references.

8.15.1.1. Suppress

Output nodes may be suppressed as awhole.

<Qut put suppress="yes">

Default valueisf al se, i.e. no suppression.

8.15.2. Output subsections

8.15.2.1. Line

A line containing text elements of varying widths. See Line node.

81

Report XML description

<Qut put >
<Li ne>

</ Li ne>
</ Qut put

8.15.2.2. HorizontalLine

A horizonta line. See Horizontal Line node.
<Qut put >

<Hori zontal Line ... />
</ Qut put

8.15.2.3. Image

Animage. See Image node.
<Qut put >

<Image ... />
</ Qut put

8.15.2.4. Barcode

A barcode. See Barcode node.

<Qut put >
<Barcode ... />
</ Qut put

8.15.2.5. Image end

Terminator for a previous image or barcode node. See ImageEnd node.

<Qut put >
<l mageEnd/ >
</ Qut put

8.16. Line

A line containing text elements of varying widths.

<Qut put >
<Li ne>
</ Li ne>
</ Qut put

8.16.1. Line attributes

Note that Expressions in attribute settings below depend on the parent node context. Some may only use
constant expressions or query column references from Independent queries. Child nodes of <Cut put >
nodesin <Repor t > context may also use report query column references.

82

Report XML description

8.16.1.1. Font name

The font name attribute specifies the font for the line's scope. It can be overridden by child nodes for
their scope. It may be specified in two forms, the first one is the preferred name, the second is for RLIB
compatibility:

<Li ne font_name=""'Arial"'">
<Li ne fontName=""'Arial"'">

If both forms are specified, f ont _nane isused.

Default font name is what's set (in decreasing priority) in Report font name or Part font name. If none of
themisset, it'sCouri er.

8.16.1.2. Font size

The font size attribute specifies the font size for the line's scope. It can be overridden by child nodes for
their scope. It may be specified in two forms, the first one is the preferred name, the second is for RLIB
compatibility:

<Line font_size="10">
<Li ne font Si ze="10">

If both forms are specified, f ont _si ze isused.

Default font name is what's set (in decreasing priority) in Report font size or Part font size. If none of
themisset, it's12.

8.16.1.3. Bold font

Whether the line e ements use bold font.
<Li ne bol d="yes" >

Default isf al se.

8.16.1.4. Italic font

Whether the line elements useitalic font. It is accepted in two forms:

<Line italic="yes">
<Line italics="yes">

Default isf al se.

8.16.1.5. Suppress

Text lines may be suppressed. If the parent <Qut put > nodeisin <Fi el dDet ai | s>, the expression
may be derived from a query field.

<Li ne suppress="yes">

Default valueisf al se, i.e. no suppression.

8.16.1.6. Text color

This color is used to render text. It's accepted with both American and British spelling.

83

Report XML description

<Line color=""Dblue' ">
<Li ne col our="" bl ue' ">

Default isbl ack. See Color specification.

8.16.1.7. Background color

This color is used to render the background rectangle under the text. It's accepted with both American
and British spelling.

<Li ne bgcol or=""bl ue' ">
<Li ne bgcol our=""bl ue' ">

Default iswhi t e. See Color specification.
8.16.2. Line subsections
8.16.2.1. Text element

See the Text element node. Two variants are accepted.

<Li ne>
<field value="expression..." ... [>
</ Li ne>

and
<Li ne>

<literal ... >Literal text</literal >
</ Li ne>

8.16.2.2. Image element

An <| mage> isaccepted as aline element. See the Image node.

<Li ne>
<I mage val ue="expression..." ... [>
</ Li ne>

8.16.2.3. Barcode element

A <Bar code> is accepted as aline element. See the Barcode node.

<Li ne>
<Bar code val ue="expression..." ... [>
</ Li ne>

8.17. Text element

Two variants are accepted.

<Li ne>
<field val ue="expression..." ... [>
</ Li ne>

Report XML description

and

<Li ne>
<literal ... >Literal text</literal >
</ Li ne>

Neither fi el d norliteral havechild nodes, only attributes or XML values.

The two variants are interchangeable, see Text element value below.

8.17.1. Text element attributes

Note that Expressions in attribute settings below depend on the parent node context. Some may only use
constant expressions or query column references from Independent queries. Child nodes of <Cut put >
nodesin <Repor t > context may also use report query column references.

8.17.1.1. Value

The value of the text element. It's accepted in two ways:. in the val ue attribute or asthe XML value for
thefi el dandliteral nodes.

<Li ne>
<field value=""'This text'" />
<field>This text</field>
<literal value="'This text'" />
<literal >This text</literal >

</ Li ne>

Thevalue is parsed as an expression from the val ue attribute. See Expressions.

On the other hand, the value is taken as a literal string from the XML value in the second and fourth
examples above.

8.17.1.2. Delayed (precalculated) value

This setting indicates whether the value is "delayed" or "precalculated”, i.e. the value for the last
row in the data set is used for every row. It is equivalent to referencing an Expression variable with
precal cul at e="yes" and without r eset onbr eak.

<field del ayed="yes" />
<field precal cul ate="yes" />

Defaultisf al se.
This setting is only applicable for line elementsin the Output node node in <Repor t > context.

Note that in OpenCReports, an expression may mix references to precalculated variables with non-
precal culated variables and query field references. The result will use the precalculated value only for the
precal culated variables. Other references will use values derived from the current row in the data set. This
isan extension over RLIB.

8.17.1.3. Format string

The format string is one way to format the field val ue to be displayed in the generated output.

The format string is expected to be a string so quoting around it is heeded.

85

Report XML description

See Formatting data for details.

8.17.1.3.1. Format attribute examples
Format avalue asastring, first asis, second with adding a surrounding text:

<field value="queryl.fieldl" format=""9"" >

<field val ue="queryl.fieldl"
format ="' Look, there is a % there!'" >

Here's the same with the "new syle" formatting flag:

<field value="queryl.fieldl" format=""1&8%"" />

<field value="queryl.fieldl"
format="'Look, there is a !&s there!'" >

Also, with the 2nd generation new style formatting flag:

<field val ue="queryl.fieldl"
format=""1&%}'" ... [>

Here's an example to truncate a string to 6 characters using format string flags in legacy and both new
style formatting flags:

<field val ue="queryl.fieldl"
format=""9.6s"" ... />

<field val ue="queryl.fieldl"
format=""'1&%6.6s"" ... />

<field val ue="queryl.fieldl"
format=""'1&{%6.6s}'" ... />

Format a numeric value with three decimal places, first asis, second with adding a surrounding text:

<field value="queryl.fieldl"
format=""'%3d" " >

<field value="queryl.fieldl"
format=""'You have % 3d apples.'" >

Convert anumber from a string and the value with two decimal places:

<field val ue="val (queryl.fieldl)"
format=""%2d" " />

Here are the same examples using the "new style" formatting flags:

<field val ue="queryl.fieldl"
format=""'1#%3d" " >

<field val ue="queryl.fieldl"
format ="' You have !#% 3d apples.'" >

86

Report XML description

<field val ue="val (queryl.fieldl)"
format=""1#%2d"" />

Here are the same examples using the 2nd generation new style formatting flags:

<field val ue="queryl.fieldl"
format=""'1#{% 3d}'" >

<field val ue="queryl.fieldl"
format ="' You have !#{% 3d} apples.'" >

<field val ue="val (queryl.fieldl)"
format=""1#%2d" />

Format anumeric value with monetary details either using thefirst or the second generation format strings:

<field value="queryl.fieldl"
format ="'!$%*#150n' " />

<field value="queryl.fieldl"
format ="' ! ${%&=*#150n}"' " />

Format a datetime value, first with the preferred datetime format for the locale, then only the year, month
and day using the YYYY-MM-DD format:

<field value="queryl.fieldl"
format=""1@c"" />

<field value="queryl.fieldl"
formt=""1@-%n%"" ... />

Here's the same using the second generation format strings:

<field val ue="queryl.fieldl"

formt=""1@%}'" ... />
<field val ue="queryl.fieldl"
format=""1@ %-%m%}' " ... />
8.17.1.4. Width
The field width.

<field value="3" format="'%2d'" w dth="6" />

Defaultisunset, i.e. thefield width isimplicitly set to the rendered width (in points) of the field'sformatted
value astext, using the font name and font size of the field.

When the field isthe last one in the <Li ne>, then its width will be the remaining page or column width.
If set, the width's unit depends on the Size unit attribute.
When the Size unit attributeissettor | i b, the field width is measured in number of characters.

The character width is queried from the font set by Line font name and Line font size, Report font name
and Report font size, or Part font name and Part font size in decreasing order of precedence.

87

Report XML description

Text element font name and Text element font size do not influence the field width calcul ation.

This allows using uniquely set font name and size for individua text elements, including proportional
fonts, using the RLIB compatible field width settings.

When using different font names or font sizes for different text elements in the same <Li ne>, the text
elements are aligned vertically so all text elements are rendered on the same typographic baseline.

8.17.1.5. Alignment

It specifies the alignment for the text element. It works in accordance with the Text element width, i.e. the
field's formatted value (as text) is aligned inside the specified field width.

<field value="3" format=""'%2d""
wi dt h="6" align=""'center'" />

The alignment valuesmay bel eft,ri ght,center orjustified.

Justified alignment islikeleft alignment, but for Multi-line (memo) fields, all linesbut the last arejustified.
This is best used with the default word wrapping. In this case, the spacing between words is enlarged.
justifiedandl eft behavethe samefor single-line fields.

Defaultis| ef t .

OpenCReports decoupled the data from displaying it. For example, with the PDF output, the text element
is not truncated to the element width. Instead, pixel perfect alignment is used together with masking the
parts of the value with a bounding box. Thisis an improvement over RLIB where data was truncated (in
every output formats) because it was designed for using only monospace fonts.

8.17.1.6. Text color

This color is used to render text. It's accepted with both American and British spelling.

<Line col or=""'Dblue'">
<Li ne col our=""' Dbl ue' ">

Default iswhat's set for Line node, otherwise bl ack. See Color specification.

8.17.1.7. Background color

This color is used to render the background rectangle under the text. It's accepted with both American
and British spelling.

<Li ne bgcol or=""bl ue' ">
<Li ne bgcol our=""bl ue' ">

Default iswhat's set for Line node, otherwise whi t e. See Color specification.

8.17.1.8. Font name

The font name attribute specifies the font for the text element's scope. It may be specified in two forms,
the first oneisthe preferred name, the second is for RLIB compatibility:

<Part font_name="'Arial'">
<Part fontName="'Arial'">

88

Report XML description

If both forms are specified, f ont _nane isused.

Default font name is what's set (in decreasing priority) in Line font name, Report font name or Part font
name. If none of themis set, it'sCouri er.

8.17.1.9. Font size

Thefont size attribute specifiesthe font size for the text element's scope. It may be specified in two forms,
the first oneis the preferred name, the second is for RLIB compatibility:

<Part font_size="10">
<Part fontSize="10">

If both forms are specified, f ont _si ze isused.

Default font name iswhat's set (in decreasing priority) in Line font size, Report font size or Part font size.
If none of themis set, it's12.

8.17.1.10. Bold font

Whether the text el ement uses bold font. It overrides the Line bold attribute for this text element.
<field bol d="yes" />

Default iswhat's set for Line bold attribute. f al se if both are unset.
8.17.1.11. Italic font

Whether the text element uses italic font. It overrides the Line italic attribute for this text element. It is
accepted in two forms:

<field italic="yes" />
<field italics="yes" />

Default iswhat's set for Lineitalic attribute. f al se if both are unset.
8.17.1.12. Web link

This attribute adds a weblink to the text element. E.g. clicking on this text element in the generated PDF
will open a browser with the website.

<field value=""This is nmy website'"
[ink=""https://github.com zboszor/ QpenCReports' " />

Default is no weblink.

8.17.1.13. Multi-line (memo) field

This attribute allows breaking long text fields to multiple lines according to the Text element width.

<field value=""This is a long text...""
wi dt h="12" nenp="yes" />

Default isf al se, i.e. thefield isrendered on asingle line.

89

Report XML description

Every line of the text element (regardlessiif it'samemo field or not) is aligned according to Text element
alignment.

8.17.1.14. Multi-line field hyphenation

Thisattribute allowswrapping multi-line text somewherein the middl e of thewordswith hyphenation. The
text rendering library may need extra supporting libraries so the hyphenation in the report localeis correct.

<field value=""'This is a long text...""
wi dt h="12" nenp="yes" neno_hyphenat e="no" />

Defaultist r ue, i.e. thefield is hyphenated. When character wrapping is used, this setting is not used.

In OpenCReports, character wrapping adds hyphenation. Thisis an improvement over RLIB.
8.17.1.15. Multi-line field wrapping

This attribute allows wrapping multi-line text at characters as opposed to words.

<field value=""'This is a long text...""
wi dt h="12" neno="yes" neno_w ap_chars="yes" />

Default isf al se, i.e. thefield iswrapped at word boundaries.

In OpenCReports, character wrapping adds hyphenation. Thisis an improvement over RLIB.

8.17.1.16. Multi-line field row limit

This attribute allows limiting multi-line text with a maximum row number.

<field value="'This is a long text...""
wi dt h="12" neno="yes" meno_max_| i nes="20" />

Default is no limit.

8.17.1.17. Translation

This attribute allows the text element to be translated to a specified language or locale. See Locale.

<field value=""This is a field"
transl ate="yes" />

The expression result for t r ans| at e must be numeric (boolean).
For trand ations to work, the translation settings and the language (locale) must be correctly set up.
OpenCReports will attempt to trandate both the format string (if specified) and the text element's value.
For example, if the format string has atranslated variant in the trand ations, then this formatted result will
be trandlated:
<field val ue="q. appl es”

format ="' You have % apples.'"

transl ate="yes" />

Defaultisno.

90

Report XML description

An aternative way is to use the trandation functions directly in the field expression. See translate() and
trandate2(). When using them, thet r ansl at e="yes" attribute is not needed.

8.17.1.18. Column number

This attribute is accepted for RLIB compatibility, but it's unused.

<field value="'This is a long text..."'
col ="3" />

8.18. HorizontalLine

A horizontally drawn line.

<Qut put >
<Hori zontal Line ... />
</ Qut put

8.18.1. HorizontalLine attributes

Note that Expressions in attribute settings below depend on the parent node context. Some may only use
constant expressions or query column references from Independent queries. Child nodes of <Cut put >
nodesin <Repor t > context may also use report query column references.

8.18.1.1. Line width

The line width is measured in points, regardless of the Size unit attribute.
<Hori zont al Li ne size="3" />

Defaultis1. 0

8.18.1.2. Line alignment

Thepossiblealignment valuesarel ef t ,ri ght andcent er . Defaultis| ef t alignment. Thealignment
isonly applied if the line length is shorter than the designated page or column width without the margins.

<Hori zont al Li ne align=""center""
| engt h="200" />

Defaultis1. O

8.18.1.3. Indentation
Extraindentation for the line. It is measured in points, regardless of the Size unit attribute.
<Hori zont al Li ne i ndent="15" />
Defaultis0. O

8.18.1.4. Length

Theline length.

<Hori zont al Li ne | engt h="150" />

91

Report XML description

The line length unit depends on the Size unit attribute. When settor | i b, it is measured in number of
characters. Theisinfluenced by HorizontalLine font size, Report font size and Part font size in decreasing
order, which in turn isinfluenced by Report font name and Part font name in decreasing order.

When Size unit attribute is set to poi nt s, the line length is measured in points.

Default isunset, i.e. the line is drawn across the page width.

8.18.1.5. Font size

An extraknob to influence linelength computation. See HorizontalLine length. It isaccepted in two forms,
f ont _si ze isthe preferred one, the other is accepted for RLIB compatibility:

<Hori zont al Li ne font_size="14" />
<Hori zont al Li ne fontSize="14" />

Default isunset, i.e. only Report font size and Part font size would contribute to the horizontal line width
computation.

8.18.1.6. Suppress

Horizontal lines may be suppressed. If the parent <Qut put > node is in <Fi el dDet ai | s>, the
expression may be derived from a query field.

<Hori zont al Li ne suppress="yes" />

Default valueisf al se, i.e. no suppression.

8.18.1.7. Line color

This color is used to render text. It's accepted with both American and British spelling. For RLIB
compatibility, it is also accepted asbgcol or , with both American and British spelling.

<Hori zontal Line color=""blue'" />
<Hori zontal Line col our=""blue'" />
<Hori zont al Li ne bgcol or=""blue'" />
<Hori zont al Li ne bgcol our=""blue'" />

Default isbl ack. See Color specification.

8.19. Image

An image to draw on the page, either on its own, which controls indentation for subsequent elements:

<Qut put >
<Image ... />
</ Qut put

or asaline element:

<Qut put >
<Line ... >
<Image ... />
<Li ne/ >
</ Qut put

92

Report XML description

After a valid (standalone) image specification, subsequent Line nodes and HorizontalLine nodes are
indented by the image width in the same <Qut put > node, or until an <I mageEnd> node is encountered
in that <Qut put > node.

8.19.1. Image attributes

Note that Expressions in attribute settings below depend on the parent node context. Some may only use
constant expressions or query column references from Independent queries. Child nodes of <Cut put >
nodesin <Repor t > context may also use report query column references.

8.19.1.1. File name

The file name of the image.
<l mage value="'filenane.jpg " />

Default is unset. It makesthe | mage not shown.

8.19.1.2. Suppress

Theimage may be suppressed.

<l mage val ue="'fil enane.jpg" "
suppress="yes" />

Defaultisf al se, i.e. no suppression.

8.19.1.3. Type
Accepted for RLIB compatibility.

<l mage value="'filenane.jpg" "
type="'jpg " />

Default is unset, i.e. autodetect.

Various image formats are supported with autodetection via gdk- pi xbuf . SVG (Scaable Vector
Graphics) issupported vial i br svg.

8.19.1.4. Width

Image width, measured in points regardless of the Size unit attribute.

<l mage val ue="'filenane.jpg "
wi dt h="100" />

Default is unset. The image would not be shown, unless both width and height are set.

When theimage isused asaline element, this setting isignored. Instead, the imageis automatically scaled
according to the line height.

8.19.1.5. Height

Image height, measured in points regardless of the Size unit attribute.

93

Report XML description

<l mage val ue="'filenane.jpg" "
hei ght ="100" />

Default is unset. The image would not be shown, unless both width and height are set.

When theimage is used asaline element, this setting isignored. Instead, the imageis automatically scaled
according to the line height.

8.19.1.6. Text width

When the image is used as aline element, thisis the width in which theimage is shown. Its unit is subject
to the Size unit attribute, by default it's measured in text character width for the parent <Li ne>. This
setting is only used when the image is aline element. Two variants are accepted:

<l mage val ue="'fil enane.jpg
text _width="8" />

<l mage val ue="'fil enane.jpg
text Wdth="8" />

Default is 0. Asaresult, theimage would be 0 points wide, i.e. not shown.

This setting isignored when the image is used as an output subsection.

8.19.1.7. Background color

Image background color. When theimageisaline element, then thewidthin whichit's shown may bewider
than the scaled image width. Or possibly, the image is vector graphics (SVG) and there is no background
defined in the image file. Or the image file contains transparency (i.e. PNG). The color background will
be shown around the image or where there are transparent pixels.

<l mage val ue="'filenane.jpg "
bgcolor=""red " />

Default isunset, i.e. white.

8.19.1.8. Alignment

8.20.

Image alignment. When theimage is aline element, then the width in which it's shown may be wider than
the scaled image width. The image then may be aligned. | ef t ,ri ght and cent er are accepted.

<l mage val ue="'filenane.jpg" "
align=""center'" />

Default is left alignment.

This setting isignored when the image is used as an output subsection.

Image end

Terminator for a previous image. This node doesn't have any attributes or child nodes. Its purpose is to
reset indentation caused by a previous |mage node or Barcode node.

<Qut put >
<l mageEnd/ >

94

Report XML description

</ Qut put

8.21. Barcode element

Thisline or output element renders a barcode in various formats.

<Li ne>
<Bar code val ue="expression..." ... [>
</ Li ne>

The Bar code does not have child nodes, only attributes.

8.21.1. Barcode element attributes

Note that Expressions in attribute settings below depend on the parent node context. Some may only use
constant expressions or query column references from Independent queries. Child nodes of <Cut put >
nodesin <Repor t > context may also use report query column references.

8.21.1.1. Suppress

<Bar code> elementsin <Qut put > may be suppressed.

<Li ne>
<Bar code suppress="yes" ... [>
</ Li ne>

Default valueisf al se, i.e. no suppression.

The expression for suppr ess must be aconstant expression. An environment variable (sinceit can't - or
shouldn't - change during the report execution) is considered constant. See Expressions.

8.21.1.2. Value

The string value to be encoded as barcode.

<Li ne>
<Bar code val ue="'1234567890128'" />
</ Li ne>

The value is parsed as an expression from the val ue attribute. See Expressions.

8.21.1.3. Delayed (precalculated) value

This setting indicates whether the value is "precalculated”, i.e. the value for the last row in the data set is
used, or it would be the actual value for the current row in the data set.

<Bar code del ayed="yes" />
<Bar code precal cul ate="yes" />

Defaultisf al se.

This setting is only applicable for line elements in the Output node node in <Repor t Header >,
<Report Foot er >, <Fi el dheader s> <Fi el dDet ai | s>, since they are the ones under the
<Repor t > scope with aquery.

95

Report XML description

8.21.1.4. Barcode type

The format string is used to format the val ue to be displayed in the generated output. For example, to
print a number with two decimal places:

<Bar code val ue="'123456789012'" type="'ean-13'" />

The type may be optional, in which case it's autodetected and the barcode is rendered in the format that
first allows the val ue string to be rendered. Possible types (in the order of autodetection) are: upc-
a,ean-13,upc- e, ean- 8,i shn,code39, code39ext,codel28b,codel28c, orcodel28. If
t ype is specified, the val ue is rendered in that barcode type if the string is valid for the type. If the
val ue isinvalid for the specified t ype, or autodetection fails, because the val ue isinvalid for any of
the above listed types, the barcodeis not rendered.

8.21.1.5. Width
The field width.
<Barcode value=""...'"" width="6" />

Default is unset, i.e. the field width is implicitly set to the rendered width (in points) of the barcode's
inherent encoding width.

If set, the barcode is scaled to the specified width. Its unit depends on the Size unit attribute.

Whenthefieldisthelast oneinthe<Li ne> and itswidth is unset, then depending on the remaining width
of theline, the barcode is either rendered asis, or it's scaled to the remaining width.

When the Size unit attribute isset to r | i b, the field width is measured in number of characters that is
set for the<Li ne>.

8.21.1.6. Height

Thefield height.
<Barcode value=""'..."" height="6" />

Default is unset, i.e. the barcode height is implicitly controlled by the text in the line or the font height
set for theline.

If set, and it's larger than the text in the line, the barcode height controls the line height, with empty
space added before and after the text elements verticaly. is scaled to the specified width. It's measured
inpoi nt s, i.e. 1/72th of an inch.

Whenthefieldisthelast oneinthe<Li ne> and itswidth is unset, then depending on the remaining width
of the line, the barcode is either rendered as is (if the remaining width is larger), or it's scaled down to
the remaining width.

8.21.1.7. Barcode color

This color is used to render the barcode's bars. It's accepted with both American and British spelling.

<Bar code col or=""'bl ue' ">
<Bar code col our="" bl ue' ">

Default iswhat's set for Line node, otherwise bl ack. See Color specification.

96

Report XML description

8.21.1.8. Barcode background color

This color is used to render the background (the "gaps") in the barcode. It's accepted with both American
and British spelling.

<Bar code bgcol or=""'bl ue' ">
<Bar code bgcol our="" Dbl ue' ">

Default iswhat's set for Line node, otherwise whi t e. See Color specification.

8.22. Color specification

Colors may be specified by HTML notation. This contains six hexadecimal digits, representing RGB (red,
green, blue) values between 0 and 255 for each color component, prefixed by the # character.

<Li ne bgcolor=""#ffffoo'" ... >
<Hori zontal Li ne col or=""#ffooff"'" ... >

Colors may aso be specified by hexadecimal notation. This contains six hexadecimal digits, representing
RGB (red, green, blue) values between 0 and 255 for each color component, prefixed by 0x.

<Li ne bgcol or=""0xffff00"'" ... >
<Hori zont al Li ne col or=""0xffoOff"'" ... >

Color names may aso be specified by name. The following color names are supported for RLIB
compatibility. Color names are matched in a case-insensitive way.

M Black M Green BobKratz
Silver Lime Everton

W Gray M olive

[white Yellow

B Maroon O Navy

B Red M Blue

n Purple M Teal

B Fuchsia Agua

97

Chapter 9. High level C language API
reference

9.1. Header file

For using OpenCReports, this single header must be used:
#i ncl ude <opencreport. h>

The header can be used from C and C++ source code.

9.2. High level C API

Example code using the high level C APl where everything concerning the report (including the data
source) is described in the report XML:

#i ncl ude <opencreport. h>

int main(void) {
opencreport *o = ocrpt_init();

if (locrpt_parse xm (o, "report.xm")) {
printf("XM. parse error\n");
ocrpt _free(o);
return 1,

}

ocrpt _set output fornmat (o, OCRPT_QOUTPUT_ PDF);
ocr pt _execute(0);

ocr pt _spool (0);

ocrpt _free(o);

return O;

}

Theabove codewill loadr eport . xm , set the output format to PDF, runsthe report and printsits output
onstdout.

9.2.1. Report handler initialization

opencreport *
ocrpt_init(void);

9.2.2. Load a report XML description

This function loads the specified XML file into the report handler. It returnst r ue for success, f al se
for failure.

bool
ocrpt _parse_xmnl (opencreport *o,

98

High level C language API reference

9.2.3.

9.24.

9.2.5.

9.2.6.

const char *fil ename);

Parse report XML description from a buffer

Thisfunction parsesthe buffer asif it contained XML contents and |oads the detailsinto the report handler.
It returnst r ue for success, f al se for failure.

bool

ocrpt _parse_xm _from buffer(opencreport *o,
const char *buffer,
size_t size);

Set report output format

enum ocrpt _format_type {
OCRPT_OQUTPUT_PDF = 1,
OCRPT_OUTPUT_HTM.,
OCRPT_QUTPUT_TXT,
OCRPT_QUTPUT_CSV,
OCRPT_QOUTPUT_XM_,
OCRPT_QOUTPUT_J SON,
OCRPT_QOUTPUT_LAST

b

typedef enum ocrpt_format _type ocrpt_format_type;

voi d
ocr pt _set_out put _f or nmat (opencreport *o,
ocrpt_format_type format);

Get report output format as enum or string

ocrpt_format _type
ocrpt _get out put _fornat (opencreport *0);

const char *
ocrpt _get output fornmat_nane(ocrpt _fornat _type format);

Set report output parameter

Set output parameters for the report.

voi d

ocr pt _set _out put _par anet er (opencreport *o,
const char *param
const char *val ue);

Possible parameters for the HTML output driver:
» docunent _r oot setsthe document root for trimming path prefix from image paths.

e net a extendsthedefault <met a char set =" ut f - 8" >. The passed-in string value may contain the
whole<net a ... >, inwhich case the inner parameters are used only. The char set specification
isignored. Only the rest is used.

99

High level C language API reference

9.2.7.

9.2.8.

9.2.9.

e suppr ess_head suppressesthe default <head> ... </ head> section. Possiblevaluesareyes,
t r ue, on or any positive non-zero number. Anything else disablesit. Be aware, that the default section
contains importand CSS stylesheet settings that are needed for the correct layout.

Possible parameters for the CSV output driver:

» csv_fil enane setsthefilenamefor Cont ent - Di sposi ti on inthe HTTP metadata returned by
ocrpt_get _content _type().

* csv_as_text sets the MIME type for Cont ent - Type in the HTTP metadata returned by
ocrpt _get_content _type() to text/plain when enabled. By default it's t ext/ csv.
Possiblevaluesto enableit areyes,t r ue, on or any positive non-zero number. Anything el se disables
it.

e csv_delinmiter (asoaliasedascsv_del i met er according to the historical typo in RLIB) sets
the CSV field delimiter to the first character of the string. By default it's a comma.

* no_quot es will create a CSV output with values unquoted. Possible values to enable it are yes,
true, on or any positive non-zero number. Anything else disables it. It takes precedence over
only_quote_strings

» only_quote_strings will createaCSV output with only string values quoted. Possible values to
enableit areyes, t r ue, on or any positive non-zero number. Anything else disablesiit.

Note that some languages (e.g. German, Swedish and Hungarian) use comma as the decimal separator
instead of the decimal dot. For these languages, either set csv_del i mi t er to something else, or don't
enable either no_quot es oronl y_quot e_stri ngs.

Possible parameters for the XML output driver:

o xm _rlib_conpat setstheflagto createan RLIB compatible XML output. Possiblevaluesto enable
itareyes, true, on or any positive non-zero number. Anything else disablesiit.

When enabled, thetoplevel element will be<r | i b>and <Repor t >sinside <pd> won't be embedded
inareport element.

Run the report

This function executes the report, constructs the result in memory. It returnst r ue for success, f al se
for failure. Itisafailureif the output format is unset.

bool
ocr pt _execut e(opencreport *0);

Dump report result

Dump the report output on the program's standard output channel.

voi d
ocr pt _spool (opencreport *o0);

Get report result

Get the report output. The application then can saveit as afile.

100

High level C language API reference

const char *
ocr pt _get _out put (opencreport *o, size_t *length);

9.2.10. Get report content type

Get the report content type for web publishing. The content type depends on the output type the report was
executed with. It returns an array of ocr pt _stri ng * pointersfor potentially multiple HTTP header
lines. The last pointer in the array is NULL.

const ocrpt_string **
ocr pt _get _content _type(opencreport *o);

9.2.11. Report handler destruction

Calling this function frees up the report handler structure and everything created for it, even the details
that were created by the low level API.

voi d
ocrpt _free(opencreport *0);

9.2.12. Get library version

This function reports the OpenCReports library version.

const char *
ocrpt _version(void);

101

Chapter 10. Low level C language API
reference

10.1. Low level C API

The low level API extends the High level C API to either fine-tune the report behaviour, or to create a
report purely from program code.

10.1.1. Numeric behavior related functions

10.1.1.1. Set nuneric precision

The default is 256 bits of floating point precision. The expression string must evaluate to anumeric value,
the integer part will be used to set the number of precision bits for numeric calculations.

voi d

ocrpt _set_nuneric_precision_bits(opencreport *o,
const char *expr_string);

10.1.1.2. Get nuneric precision

Thereport XML description may set the numeric precision. Thisfunction allowsthe application to query it.

npfr_prec_t
ocrpt _get_nuneric_precision_bits(opencreport *o);

10.1.1.3. Set rounding mode

The expression string must evaluate to a string value. Possible values are: near est ,t o_m nus_i nf ,
to_inf,to_zero,away_from zeroandfait hful . Thedefaultisnear est .
voi d
ocr pt _set_roundi ng_node(opencreport *o,
const char *expr_string);

10.1.2. Locale related functions
10.1.2.1. Set up translation

Setting up the translation needs two parameters: the so called translation domain and the toplevel directory
for the trandlations. It relies on GNU Gettext.

voi d
ocr pt _bi ndt ext dormai n(opencreport *o,

const char *donmi nnane,
const char *dirnane);

10.1.2.2. Set up translation (delayed variant)

Setting up the trandlation needs two parameters: the so called translation domain and the toplevel
directory for the trandations. It relies on GNU Gettext. This function allows setting the trandation from

102

Low level C language API reference

a supplemental query. The passed in expressions strings must evaluate to string values, with potential
fallbacks to plain stringsin case of parse errors or if the expressions may be interpreted as query columns
but no such column names exist in any query.

voi d

ocr pt _bi ndt ext domai n_f rom expr (opencreport *o,
const char *domai n_expr,
const char *dir_expr);

10.1.2.3. Set report locale

Setting thelocalefor the report does not affect the main program or other threads. A local e setting includes
the language and the country. The UTF-8 suffix is necessary. E.g.: en_GB. UTF- 8 or de_DE. UTF- 8

voi d
ocrpt _set | ocal e(opencreport *o,
const char *locale);

10.1.2.4. Set report locale (delayed variant)

This function allows setting the locale from a supplementary query of the report. It is used by the report
XML parser code and it's alower priority setting than the previous function: the application executing the
report may need to be run a different locale. The expression string must evaluate to a string value that's
avalid locale string.

voi d
ocrpt _set | ocal e_from expr(opencreport *o,
const char *expr_string);

10.1.2.5. Print monetary data in the report locale

A customized monetary printing function was implemented for the purposes of the report which MPFR
doesn't provide. It is used in OpenCReports both internally and by unit tests.

ssize t

ocrpt _npfr_strfnon(opencreport *o,
char *s, size_t nmaxsize,
const char *format, ...);

10.1.3. Data source and query related functions

Thefollowing enumand st r uct types are used by OpenCReports for datasources and queries.

enum ocrpt _result_type {
OCRPT_RESULT_ERROR,
OCRPT_RESULT_STRI NG,
OCRPT_RESULT_NUMBER,
OCRPT_RESULT_DATETI ME

b

struct ocrpt_datasource;
typedef struct ocrpt_datasource ocrpt_dat asource;

struct ocrpt_query;
typedef struct ocrpt_query ocrpt_query;

103

Low level C language API reference

struct ocrpt_query_result;
typedef struct ocrpt_query result ocrpt_query_ result;

For more details, see Data sources and queries. Multiple queries may use the same data source.

10.1.3.1. Add a datasource

Add adatasource of the specific typeto the report handler with the associated source_name, using optional
connection parameters.

ocr pt _datasource *
ocr pt _dat asour ce_add(opencreport *o,

const char *source_naneg,

const char *type,

const ocrpt_i nput _connect _par anet er
*conn_par ans) ;

The pointer to connection parameters can be NULL for arr ay, csv, j son, and xm datasource types.
10.1.3.1.1. MariaDB connection parameters
There are two methods to connect to aMariaDB (or MySQL) database.

Thefirst method usesaMariaDB (MySQL) specific configurationi ni fileandthegr oup nameinit. The
gr oup parameter is mandatory as the main database configuration may also have such a group section,
in which case the separate opt i onf i | e isnot needed.

ocrpt i nput_connect _paraneter conn_parans[] = {
{ .paramnane = "group", .paramvalue = "..." },
{ .paramnane = "optionfile", .paramvalue = "..." },

{ .param nane NULL }

}s

The second method spells out individual connection parameters. This allows local and remote database
connections. The dbnamne parameter is mandatory, others are optional.

ocrpt _input_connect _paraneter conn_parans[] = {

{ .param.name = "dbnane", .paramvalue ="..." },

{ .paramname = "host", .paramvalue ="..." },

{ .paramnane = "port", .paramvalue ="..." },

{ .paramnane = "uni x_socket", .paramvalue ="..." },
{ .paramname = "user", .paramvalue ="..." },

{ .paramnane = "password", .paramvalue ="..." },

{ .paramname = NULL }

b

These connection parameters can be used as XML node attributes, see MariaDB database connection.
10.1.3.1.2. PostgreSQL connection parameters

There are three methods to connect to a PostgreSQL database.

The first method uses the PostgreSQL specific connection string. It is the only setting and as such, it's
mandatory. Its content is almost freeform, with optional elements. See PostgreSQL connection stri ngl.

1 https://www.postgresqgl .org/docs/current/libpg-connect.html#L I BPQ-CONNSTRING

104

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

Low level C language API reference

ocr pt _i nput _connect _paraneter conn_paranms[] = {
{ .paramnane = "connstr", .paramvalue ="..." },
{ .paramnanme = NULL }

b

The second method spells out individual connection parameters. This allows local database connections
on anamed socket. Theuni x_socket and dbnarme parameters are mandatory, others are optional.

ocrpt i nput_connect _paraneter conn_parans[] = {

{ .paramnane = "uni x_socket", .paramvalue ="..." },
{ .paramnane = "dbnane", .paramvalue ="..." },

{ .paramnane = "user", .paramvalue ="..." },

{ .paramnane = "password", .paramvalue ="..." },

{ .paramnane = NULL }

}s

Thethird method also spellsout individual connection parameters. Thisallowsremote database connection
using thehost and port parameters. Only the dbnane parameter is mandatory, others are optional.

ocrpt _input_connect _paraneter conn_parans[] = {

{ .param.name = "dbnane", .paramvalue ="..." },

{ .paramname = "host", .paramvalue ="..." },

{ .paramnane = "port", .paramvalue ="..." },

{ .paramname = "user", .paramvalue ="..." },

{ .paramnane = "password", .paramvalue ="..." },
{ .param.name = NULL }

1

There are aso two optional parameters that control the behaviour of the PostgreSQL driver in
OpenCReports, rather than being actual connection parametersto a PostgreSQL server. These parameters
may be used with any of the above connection methods.

» The parameter usecur sor may have aboolean value: t r ue, f al se, yes, no, or anumeric value
interpreted as a boolean value: non-zero valuesmean't r ue, zero meansf al se.

When usecur sor isenabled, the SQL query will be wrapped in a cursor, and the result is retrieved
in parts. Otherwise, the SQL query is executed asis and the result isretrieved in whole.

The default valueisusually t r ue but this can be controlled when OpenCReportsis built.

* When usecur sor is enabled, the parameter f et chsi ze controls the number of rows retrieved at
once. Default value is 1024.

Using a cursor as aregular SQL query is a PostgreSQL extension. Other SQL databases only alow it in
stored procedures. But this allows atrade-off: queriesthat return alarge number of rows may be processed
without the risk of running out of memory, with marginally lower performance.

SQL queries added to the same PostgreSQL datasource (connection) will behave the same way. Either all
of them are executed asis, or all of them will use a cursor.

These connection parameters can be used as XML node attributes, see PostgreSQL database connection.
10.1.3.1.3. ODBC connection parameters

There are two methods to connect to an ODBC database.

105

Low level C language API reference

The first method uses the ODBC specific connection string. It is the only setting, and as such, it's
mandatory. Its content is defined by the ODBC knowledge base with optional elements. See Microsoft
Open Database Connectivity? and Connection string examples °.

ocr pt _i nput _connect _par amet er conn_par ans| |
{ .paramnane = "connstr", .paramval ue
{ .paramnanme = NULL }

b

The second method spellsout someindividual connection parameters. It requiresthat an ODBC datasource
(DSN) is aready configured. Whether the database connections is local or remote depends on the pre-
configured DSN. The dbnarmne parameters is mandatory, others are optional.

ocrpt _i nput_connect _paraneter conn_parans[] = {

{ .paramname = "dbnanme", .paramvalue ="..." },

{ .paramname = "user", .paramvalue ="..." },

{ .paramnane = "password", .paramvalue ="..." },
{ .paramname = NULL }

b

These connection parameters can be used as XML node attributes, see ODBC database connection.
10.1.3.1.4. Spreadsheet connection parameters

Thereis only one connection parameter for spreadsheet based datasources, the file name.

ocrpt _input_connect _paraneter conn_parans[] = {

{ .paramnane = "filenane", .paramvalue ="..." },
{ .paramnanme = NULL }

b
This parameter can be used as an XML node attribute, see Spreadsheet file type.

10.1.3.2. Find a datasource

Find the data source using its name. It returns NULL if the named data source is not found.

ocr pt _datasource *
ocr pt _dat asour ce_get (opencreport *o,
const char *source_nane);

10.1.3.3. Set the encodi ng of a datasource

Set the encoding of a datasource in case if it's not already UTF-8, so data provided by it is automatically
converted.

voi d

ocr pt _dat asource_set encodi ng(ocrpt_dat asource *source,
const char *encoding);

10.1.3.4. Free a dat asource

Free adatasource from the opencreport structureit was added to. It'snot needed to be called, all datasources
are automatically freewithocr pt _free()

2 https://docs.microsoft.com/en-us/sgl/odbc/mi crosoft-open-database-connectivity-odbc
s https://www.connectionstrings.com/

106

https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://www.connectionstrings.com/
https://docs.microsoft.com/en-us/sql/odbc/microsoft-open-database-connectivity-odbc
https://www.connectionstrings.com/

Low level C language API reference

voi d
ocr pt _dat asource_free(ocrpt_datasource *source);

10.1.3.5. Add a direct data based query

Add adirect (application internal) data based query to the report handler.

ocrpt_query *

ocrpt _query_add_dat a(ocr pt _dat asource *sour ce,
const char *nane,
const void *dat a,
int32_t rows, int32 t cols,
const int32_t *types,
int32_t types_cols);

The built-in ar r ay datasource interpretsvoi d * dat a as atwo-dimensional array containing pointers
to C strings, ak.a.

char *array[rows + 1][cols]

Thefirst row of thearray arethe column (field) names. Thet ypes array containscol s (or fewer) number
of enum ocr pt_result _type elementsto indicate the column data types.

If thet ypes pointer is NULL, the column values aretreated as st r i ng data. Thisishow RLIB worked.

Thecall isonly successful if the datasourceisdirect data based. See Section 10.1.3.9 and Datasource input
driver details.

10.1.3.6. Add a symbolic data based query
Add a"symbolic" (discoverable by name) data based query.

ocrpt_query *

ocrpt _query_add_synbol i c_dat a(ocr pt _dat asource *source,
const char *nane,
const char *data_nane,
int32_t rows, int32 t cols,
const char *types_nane,
int32_t types_cols);

Symbols of the application can be discovered viadl sym() if the application was built with the compiler
option - rdynam c.

The call isonly successful if the datasource is symbolic data based. See Section 10.1.3.10 and Datasource
input driver details.

10.1.3.7. Add afile based query

Add afile based query to the report handler.

ocrpt_query *

ocrpt _query_add_fil e(ocrpt_datasource *source,
const char *nane,
const char *fil enane,
const int32_t *types,
int32_t types_cols);

107

Low level C language API reference

The cal is only successful if the datasource is file based. See Section 10.1.3.11 and Datasource input
driver details.

The t ypes array pointer may be NULL. For file based datasource types that don't support data type
specifiers internally (or they are optional and omitted), this means that the column values are of the
stri ng datatype. Thisis how RLIB worked. In this case, conversion functions like Section 4.12.4,
Section 4.10.16 and Section 4.10.10 are needed to process the values using their actual datatype.

Whenthet ypes array pointer isnot NULL, it isused to set the data type specifiersfor built-in file based
datasources, even if the file contains type specifiers.

The JSON file format expected by OpenCReports is defined in JSON file type.

The XML file format expected by OpenCReportsis defined in XML file type.

10.1.3.8. Add an SQL statement based query

Add an SQL statement based query to the report handler.
ocrpt_query *
ocrpt _query_add_sql (ocrpt _dat asource *source,

const char *nane,
const char *querystr);

The call is only successful if the datasource is SQL based. See Section 10.1.3.12 and Datasource input
driver details.

10.1.3.9. Test whether a datasource is direct data based

bool
ocrpt _datasource_is_data(ocrpt_datasource *source);

10.1.3.10. Test whether a datasource is direct data based

bool
ocrpt _datasource_is_synbolic_data(ocrpt_datasource *source);

10.1.3.11. Test whether a datasource is file based

bool
ocrpt _datasource_is fil e(ocrpt_datasource *source);

10.1.3.12. Test whether a datasource is SQL based

bool
ocrpt _datasource_is_sqgl (ocrpt_datasource *source);

10.1.3.13. Fi nd a query
Find a query using its name.
ocrpt_query *

ocr pt _query_get (opencreport *o,
const char *nane);

108

Low level C language API reference

10.1.3.14. Get the current data row from a query

Create (first call) or gettheocr pt _query_resul t array fromaquery. Output parameter col s returns
the number of columnsintheresult array. It must bere-run after ocrpt_navigate next() sincethe previously
returned pointer becomesinvalid.

ocrpt_query_result *
ocrpt_query_get _result(ocrpt_query *q,
int32_t *cols);

10.1.3.15. Get col umm nane

Using the ocrpt _query_result * result from ocrpt _query_get result(), the column
names can be discovered from a query.

const char *
ocrpt _query_result_colum_nane(ocrpt_query _result *qr,
int32_t col);

10.1.3.16. Get col um dat a

Usingtheocr pt _query_result * resultfromocrpt_query_get _resul t (), get apointer to
the column dataiin itsinternal (hidden) representation.

ocrpt_result *
ocrpt_query_result_columm_result(ocrpt_query result *qr,
int32_t col);

10.1.3.17. Add a fol | oner query

Addaf ol | ower query tothel eader query. Theleader isthe primary query and the follower will run
in parallel with it until the leader runs out of rows. In case the leader has more rows than the follower, then
for rowsin the leader where there are no follower rows, the follower fields are set to NULL.

bool
ocrpt _query_add foll ower(ocrpt_query *| eader,
ocrpt _query *follower);

10.1.3.18. Add an N: 1 foll ower query

Addan N:1f ol | ower query tothel eader query. The leader isthe primary query and rows from the
follower will be matched using the mat ch expression. If there are multiple rowsin the follower matching
the leader row, then the leader row will belisted that many times. For rowsin the |leader where there are no
matching rows in the follower, the follower fields are set to NULL. It issimilar to LEFT OUTER JO N
in SQL databases. For creating an ocr pt _expr expression pointer, see the next section.

bool

ocrpt _query add follower _n to 1(ocrpt_query *|eader,
ocrpt _query *foll ower,
ocrpt _expr *match);

10.1.3.19. Refresh query contents

Call the ocrpt_input::refresh() method for datasources that support it. It returnst r ue if all queries were
successfully refreshed.

109

Low level C language API reference

bool
ocrpt _query_refresh(opencreport *o);

10.1.3.20. Free a query

Free aquery and removeit from thereport handler. It'soptional. ocr pt _f r ee() freesthe queriesadded
totheopencr eport structure.

voi d
ocrpt _query_free(ocrpt_query *q);

10.1.3.21. Start the main query

Start query (or query set) navigation. q should be the primary query of the report.

voi d
ocrpt _query_navi gate_start(ocrpt_query *q);

10.1.3.22. Navi gate to the next query row

Navigate the query (or query set) to the next row. Returns f al se if there was no more rows. in
which case the ocr pt _query_resul t arrays for al queries in the query set (returned by previous
ocrpt _query_get _result() calscontaininvalid data

bool
ocr pt _query_navi gat e_next (ocrpt _query *q);

10.1.3.23. Navi gat e use previ ous/ next row

These functions expose an implementation detail of the data traversal in OpenCReports. Thereisa 3-row
data cache in which there is aways the current row. One past row is kept so e.g. break boundaries can
be detected and there is one row read-ahead to detect the end-of-data condition early. These functions
allow to switch back and forth in the 3-row data cache, making the previous or next row the "current”
one momentarily. The query must always be the primary query of the report. Used by unit tests that don't
useocr pt _execute().

voi d
ocr pt _query_navi gate_use_prev_rowocrpt_query *q);

voi d
ocr pt _query_navi gate_use_next _row(ocrpt_query *q);

10.1.3.24. APl specific data discovery function

For direct (application internal) data based data sources and queries, OpenCReports needs a way to to
find the data pointer and the supplementary type identifier array. These are language specific. The below
ones are the C specific ones. An override function is also provided to set a new discovery function. The
discovery function should return the dimensions for both the (usuall 2D array) dat a andthe 1D t ypes
array. It also returns whether t ypes must be freed by the caller.

typedef void

(*ocrpt_query_di scover_func)(const char *,
voi d **,
int32_t *,

110

Low level C language API reference

int32_t *,
const char *,
void **,
int32_t *,
bool *);

voi d
ocrpt _query_set _di scover_func(ocrpt_query_di scover_func func);

extern ocrpt_query_di scover_func ocrpt_query_di scover_array;

voi d

ocrpt _query_di scover _array_c(const char *arraynane,
void **array,
int32_t *rows,
int32_t *cols,
const char *typesnane,
void **types,
int32_t *types_col s,
bool *free_types);

Note that the C specific generic discovery function does not and cannot return the array dimensions, since
thereisno official API relatedtodl syn{) that would return the size associated with a symbol. It'sup to
the application writersto come up with a smarter (application specific) discovery function that also returns
the array dimensions. With such a smart discovery function, one can specify the array and the column
types array name without the related dimensions, i.e. ther ows and col s specifiersin Array queries and
File based queries.

10.1.4. Expression related functions

Expressions in OpenCReportsis explained in the Expressions chapter.
10.1.4.1. Parse an expression string

This function parses an expression string and creates an expression tree. It returns a pointer to the
ocr pt _expr structure.

If anerror occurs, it returnsNULL and optionally returnsthe error messageiner r pointer if it'snot NULL.
ocr pt _expr *
ocr pt _expr _par se(opencreport *o,

const char *expr_string,

char **err);

The returned pointer must be freed with ocr pt _expr _free().

10.1.4.2. Parse an expression string and bind it to a report

This function parses an expression string, creates an expression tree and binds it to areport. It returns a
pointer totheocr pt _expr structure.

If an error occurs, it returnsNULL and optionally returnsthe error messageiner r pointer if it'snot NULL.

ocr pt _expr *

111

Low level C language API reference

ocrpt _report_expr_parse(ocrpt_report *r,
const char *expr_string,
char **err);

The returned pointer is automatically freed by ocr pt _free()

10.1.4.3. Free an expression parse tree

Free an expression parse tree. If it was bound to the passed-in ocr pt _r eport , this association is also
deleted. Alternatively, the expression doesn't need to befreed if it was bound to areport when it was parsed,
asit will be automatically freed when freeing either the report, or the global opencr eport structure.

voi d
ocrpt _expr_free(ocrpt_expr *e);

10.1.4.4. Get the original expression string

Get the original expression string from an expression parse tree.

const char *
ocr pt _expr_get _expr_string(ocrpt_expr *e);

10.1.4.5. Resolve expression references

This function resolves variable (identifier) references in the expression. This is needed to bind query
columns to expressions that use them.

voi d
ocr pt _expr_resol ve(ocrpt_expr *e);

10.1.4.6. Optimize an expression

This function optimizes an expression so it may needs fewer computation steps during report execution.

voi d
ocr pt _expr_optin ze(ocrpt_expr *e);

10.1.4.7. Evaluate an expression

This function evaluates the expression. It returns the expression'socr pt _r esul t result structure. The
result must not be freed withocr pt _result _free().ltwill bedoneby ocrpt _expr _free()

For expressions with query column references, this function must be called after
ocr pt _query_navi gat e_next otherwisethe result isnot valid.

ocrpt_result *
ocr pt _expr_eval (ocrpt_expr *e);

10.1.4.8. Get expression result without evaluation

This function returns the expression result if it was already evaluated. The result must not be freed with
ocrpt _result _free().Itwill bedoneby ocrpt _expr_free().Usedby unit tests.

ocrpt_result *

112

Low level C language API reference

ocrpt _expr_get_result(ocrpt_expr *e);
10.1.4.9. Print an expression tree

Print an expression treein its processed form on the standard output. Used by unit tests.

voi d

ocrpt _expr_print(ocrpt_expr *e);
10.1.4.10. Print an expression tree with subexpressions and their
results

Print an expression tree with subexpressions and their resultsin its processed form on the standard output.
Used by unit tests.

voi d
ocrpt _expr_result_deep_print(ocrpt_expr *e);

10.1.4.11. Count the number of expression nodes

This function returns the number of expression nodes. Used by unit tests to validate optimizazion.

int32_t
ocr pt _expr _nodes(ocrpt_expr *e);

10.1.4.12. Initialize expression result type

OpenCReports keeps track of the last three query rows and computes three result values for expressions
for internal reasons. These functions initialize the type for either the current result or all results of the
expression.

enum ocrpt _result_type {
OCRPT_RESULT_ERROR,
OCRPT_RESULT_STRI NG,
OCRPT_RESULT_NUMBER,
OCRPT_RESULT_DATETI ME

b

bool ocrpt_expr_init_result(ocrpt_expr *e,
enum ocrpt _result_type type);

void ocrpt_expr_init_results(ocrpt_expr *e,
enum ocrpt _result_type type);

10.1.4.13. Set an error string as expression result
ocrpt_result *

ocr pt _expr_nake_error_result (ocrpt_expr *e,
const char *format, ...);

10.1.4.14. Set start value flag for an iterative expression

Set whether the iterative expression's first value is computed from its base expression or from its result
expression.

113

Low level C language API reference

voi d
ocrpt_expr_set _iterative_start_val ue(ocrpt_expr *e,
bool start_wth_init);

10.1.4.15. Get current value of an expression in base type

Get the current value of an expression in a C base type. Used by parsing report description XML files
and unit tests.

const char *
ocrpt _expr_get _string(ocrpt_expr *e);

| ong
ocrpt _expr_get | ong(ocrpt_expr *e);

doubl e
ocr pt _expr _get _doubl e(ocrpt_expr *e);

10.1.4.16. Set current value of an expression in a base type
Used by unit tests.
voi d

ocr pt _expr_set_string(ocrpt_expr *e,
const char *s);

voi d
ocr pt _expr_set _| ong(ocrpt_expr *e,
long 1);
voi d
ocr pt _expr_set _doubl e(ocrpt_expr *e,
doubl e d);

10.1.4.17. Set nth value of an expression in a base type

Expressions use OCRPT_EXPR_RESULTS number of values. With these functions, any of them can be
set. Used by unit tests.

voi d
ocrpt _expr_set_nth_result_string(ocrpt_expr *e,
i nt which,
const char *s);
voi d
ocrpt _expr_set_nth_result_| ong(ocrpt_expr *e,
i nt which,
long I');
voi d
ocrpt _expr_set_nth_result_doubl e(ocrpt _expr *e,
i nt which,
doubl e d);

114

Low level C language API reference

10.1.4.18. Compare the current of an expression with its previous
value

Compare the current value of an expression with its previous value and return t r ue if they are equd. It's
used to implement Report breaks.

bool
ocr pt _expr_cnp_resul ts(ocrpt_expr *e);

10.1.4.19. Set delayed flag of an expression
voi d

ocr pt _expr_set _del ayed(ocrpt _expr *e,
bool del ayed);

10.1.4.20. Set field expression reference for an expression
If e containsr . val ue, the expression r val ue will be used to resolve this reference.
voi d

ocrpt _expr_set field expr(ocrpt_expr *e,
ocrpt _expr *rval ue);

10.1.5. Column data or expression result related
functions

Theinterna typeocr pt _r esul t holds values either for query columns or expression results.

10.1.5.1. Create an expression result
The returned pointer must be freed withocr pt _result _free().

ocrpt_result *
ocrpt _result_new opencreport *0);

10.1.5.2. Get expression result type

enum ocrpt_result_type
ocrpt_result_get _type(ocrpt_result *result);

10.1.5.3. Copy an expression result

Copy expression result from source to destination. Both results must have been created for the
same opencr eport structure, either explicitly with ocr pt _resul t _new() or implicitly with an
expression parsed for thisopencr epor t structure or areport structure owned by it.

voi d

ocrpt _result_copy(ocrpt_result *dst,
ocrpt_result *src);

10.1.5.4. Print an expression result

Used by unit tests.

115

Low level C language API reference

voi d
ocrpt_result_print(ocrpt_result *r);

10.1.5.5. Free an expression result

voi d
ocrpt _result free(ocrpt_result *r);

10.1.5.6. Detect whether a column result is NULL

Using theocr pt _result * result from aquery column or an expression, detect whether the column
valueisNULL.

bool
ocrpt _result _isnull(ocrpt_result *result);

10.1.5.7. Detect whether a column result is numeric

Using theocr pt _result * result from aquery column or an expression, detect whether the column
valueis numeric.

bool
ocrpt_result_isnunber(ocrpt _result *result);

10.1.5.8. Get the numeric value of a column result

Using the ocr pt _result * result from a query column or an expression, get the numeric column
value. It returns NULL if the column is;

* not anumeric result

* NULL

npfr_ptr
ocrpt _result_get number(ocrpt_result *result);

10.1.5.9. Detect whether a column result is string

Usingtheocr pt _result * result from aquery column or an expression, detect whether the column
valueis string.

bool
ocrpt_result_isstring(ocrpt_result *result);

10.1.5.10. Get the string value of a column result

Usingtheocr pt _resul t * result from aquery column or an expression, get the string column value.
It returns NULL if thecolumnis

* not astring result
* NULL

ocrpt_string *
ocrpt_result_get_string(ocrpt_result *result);

116

Low level C language API reference

10.1.5.11. Detect whether a column result is datetime

Usingtheocr pt _result * result from aquery column or an expression, detect whether the column
value is datetime.

bool
ocrpt_result_isdatetime(ocrpt_result *result);

10.1.5.12. Get the datetime value of a column result

Using the ocr pt _resul t * result from a query column or an expression, get the datetime column
value. It returns NULL if the columnis

» not adatetime result
e NULL

const struct tm?*
ocrpt_result_get _datetinme(ocrpt_result *result);

10.1.5.13. Detect whether a datetime column result is interval

Usingtheocr pt _result * result from aquery column or an expression, detect whether the datetime
column valueisinterval.

bool
ocrpt_result_datetime_is_interval (ocrpt_result *result);

10.1.5.14. Detect whether a datetime column result has valid date

Usingtheocr pt _resul t * result from aquery column or an expression, detect whether the datetime
column value has valid date.

bool
ocrpt _result _datetime_is date valid(ocrpt _result *result);

10.1.5.15. Detect whether a datetime column result has valid time

Usingtheocr pt _result * result from aquery column or an expression, detect whether the datetime
column value has valid time.

bool
ocrpt _result datetime_is time_valid(ocrpt _result *result);

10.1.6. Variable related functions

Variables can be created for areport using the API.

10.1.6.1. Create a basic variable

Using thisfunction, any variabletype except OCRPT_VARI ABLE_CUSTOMmay be created. For acustom
variable, seethe next function.

enum ocr pt _var_type {
OCRPT_VARI ABLE_| NVALI D,

117

Low level C language API reference

OCRPT_VARI ABLE_EXPRESSI ON,

OCRPT_VARI ABLE_COUNT,
OCRPT_VARI ABLE_COUNTALL,
OCRPT_VARI ABLE_SUM
OCRPT_VARI ABLE_AVERAGE,

OCRPT_VARI ABLE_AVERAGEALL,

CCRPT_VARI ABLE_LOWEST,
CCRPT_VARI ABLE_HI GHEST,
OCRPT_VARI ABLE_CUSTOM

b

typedef enum ocrpt_var_type ocrpt_var_type;

ocrpt_var *

ocrpt _vari abl e_new(ocrpt _report

*r'

ocrpt_var_type type,

*name,

const char *expr,

const char *ignoreexpr,

const char *reset_on_break_nane,
bool precal cul ate);

const char

10.1.6.2. Create a custom variable

Create a custom variable of the specified type with the specified subexpressions.

ocrpt_var *

ocrpt _variable_new full (ocrpt_report *r,
enum ocrpt_result_type type,

const
const
const
const
const
const
const
bool

10.1.6.3. Get the variable type
Get the type of the variable.

ocrpt_var _type

char
char
char
char
char
char
char

*nane,

*baseexpr,

*i gnor eexpr,

*int er nedexpr,

*int er med2expr,
*resul t expr,

*reset _on_break nane,

precal cul ate);

ocrpt _variabl e_get _type(ocrpt_var *v);

10.1.6.4. Get subexpressions of a variable

Get subexpressions of a previously created basic or custom variable.

ocr pt _expr *

ocr pt _vari abl e_baseexpr (ocrpt _var *v);

ocr pt _expr *

ocr pt _vari abl e_i gnor eexpr (ocrpt _var *v);

118

Low level C language API reference

ocr pt _expr *
ocr pt _vari abl e_i nt er medexpr (ocrpt _var *v);

ocr pt _expr *
ocrpt _vari abl e_i nt er med2expr (ocr pt _var *v);

ocr pt _expr *
ocrpt _vari abl e_resul t expr(ocrpt_var *v);

10.1.6.5. Get precalculate flag for a variable

bool
ocrpt _variabl e_get _precal cul ate(ocrpt_var *var);

10.1.6.6. Resolve a variable
Resolve subexpressions of avariable so it can be evaluated correctly.

voi d
ocrpt_vari abl e_resol ve(ocrpt _var *v);

10.1.6.7. Evaluate a variable
After evaluation, the result isin the expression returned by ocr pt _vari abl e_resul t expr ().

voi d
ocrpt _vari abl e_eval uat e(ocrpt _var *v);

10.1.6.8. Iterate over variables of a report
Iterate over variables of areport. Thefirst call needs the iterator list pointer to be set to NULL.
ocrpt_var *

ocrpt _vari abl e_get _next (ocrpt_report *r,
ocrpt_list **list);

10.1.7. Break related functions

10.1.7.1. Create a break
Create abreak. No need to freeit, ocr pt _f r ee() doesit.
ocrpt _break *

ocr pt _break_new(ocrpt_report *r,
const char *nane);

10.1.7.2. Set attribute flag expressions for a break

Set break attributesfrom expression stringsfor header newpage and suppr essbl ank. Thereisa3rd
flag accepted in the report XML DTD called newpage which is not represented (ignored) in the API,
becauseit'saso ignored in RLIB and isonly handled for RLIB compatibility.

voi d
ocr pt _break_set _header newpage(ocr pt _break *br,

119

Low level C language API reference

const char *header newpage);

voi d
ocr pt _break_set _suppressbl ank(ocrpt_break *br,

const char *suppressbl ank);
header newpage="yes" instructs the layout to render <Br eakHeader > on anew page.

suppresshl ank="yes" insructs the layout to suppress <Br eakHeader> if any of the
<Br eakFi el d>sare NULL vaue or an empty string, if the break field is of the string type.

10.1.7.3. Get break using its name

Get the pointer to the break using its name.
ocrpt_break *

ocrpt _break_get (ocrpt_report *r,
const char *nane);

10.1.7.4. Get the name of a break

Get the name of the break using its structure pointer.

const char *
ocr pt _break_get _name(ocrpt_break *br);

10.1.7.5. Add a watched expression to a break

bool
ocrpt _break_add_breakfiel d(ocrpt_break *br,
ocrpt _expr *bf);

10.1.7.6. Iterate over breaks of a report
Iterate over breaks of areport. Thefirst call needs the iterator list pointer to be set to NULL.
ocrpt_break *
ocrpt _break_get next(ocrpt_report *r,
ocrpt_list **list);

10.1.7.7. Resolve and optimize break fields

voi d
ocrpt _break_resolve_fields(ocrpt_break *br);

10.1.7.8. Check whether the break triggers

bool
ocrpt _break_check_fiel ds(ocrpt_break *br);

10.1.7.9. Check whether break field values are blank

The second parameter eval uat e allows skipping evaluating the breakfield values. (This is an
optimization in case it's executed after ocr pt _break_check_fi el ds() which aready evauated
the breakfields.)

120

Low level C language API reference

bool
ocr pt _break_check_bl ank(ocr pt _break *br,
bool eval uate);

10.1.7.10. Reset variables for the break

voi d
ocrpt _break_reset_vars(ocrpt_break *br);

10.1.8. Function related functions
10.1.8.1. Add a user defined function

Add auser defined function by specifying the name, the function pointer that contains the implementation,
the number of operands (0 or greater for fixed number or operands, -1 is varying number of operands) and
the function mathematical properties that help optimizing it.

bool

ocrpt _function_add(opencreport *o,
const char *fnane,
ocrpt_function_call func,
voi d *user_dat a,
int32_t n_ops,
bool comutati ve,
bool associ ati ve,
bool |eft_associative,
bool dont_optim ze);

Adding a user defined function with a name of a pre-existing function will override it.
OpenCReports functions are called with the parameters as declared below.

#defi ne OCRPT_FUNCTI ON_PARANS \
ocrpt_expr *e, void *user_data

OpenCReports functions may be declared with these convenience symbols below.

#defi ne OCRPT_FUNCTI ON(nane) \
voi d name(OCRPT_FUNCTI ON_PARAMS)

#defi ne OCRPT_STATI C_FUNCTI ON(nane) \
static voi d nane(OCRPT_FUNCTI ON_PARANMS)

The above function (ocr pt _functi on_add()) iscaled with afunction pointer which has this type:

t ypedef void
(*ocrpt_function_call) (OCRPT_FUNCTI ON_PARANS) ;

10.1.8.2. Find a named function

const ocrpt_function *
ocrpt _function_get (opencreport *o,
const char *fnane);

121

Low level C language API reference

10.1.8.3. Get number of operands for an expression (function)

In an expression tree, functions are represented as subexpressions with operands. This call may be used
by OpenCReports functions to inspect whether the number of operandsisin the expected range.

int32_t
ocr pt _expr _get_num operands(ocrpt_expr *e);

10.1.8.4. Get current value of a function operand
Thisfunction is used by OpenCReports functions internally to compute the result from its operands.
ocrpt_result *

ocr pt _expr_operand_get _result(ocrpt_expr *e,
int32_t opnum;

10.1.9. Report part and report related functions

10.1.9.1. Create areport part

ocrpt_part *
ocr pt _part_new opencreport *o0);

10.1.9.2. Create arow in areport part

ocrpt_part_row *
ocrpt _part_new row(ocrpt_part *p);

10.1.9.3. Create a column in report part row

ocrpt_part_colum *
ocrpt _part_row_new_col um(ocrpt_part_row *pr);

10.1.9.4. Create a new report in a part column

ocrpt_report *
ocrpt_part_columm_new report (ocrpt_part_colum *pd);

10.1.9.5. Report part related iterators

Iteratorsfor getting report parts, part rows, columnsin rowsand reportsin columns. Every iterator function
must be called the first time with the list pointer set to NULL.

ocrpt_part *
ocr pt _part_get_next (opencreport *o,
ocrpt _list **list);

ocrpt_part_row *
ocrpt _part_row get_next(ocrpt_part *p,
ocrpt _list **list);

ocrpt_part_colum *

122

Low level C language API reference

ocr pt _part_col unm_get _next (ocrpt_part_row *pr,
ocrpt_list **list);

ocrpt_report *
ocrpt _report_get _next (ocrpt_part_col utm *pd,
ocrpt_list **list);

10.1.9.6. Set the main query for a report

Set the main query for a report either by the query structure pointer, or from expression. The expression
must resolve to a string value, with fallback to aplain string.

voi d
ocrpt _report_set _mai n_query(ocrpt_report *r,
const ocrpt_query *query);
voi d
ocrpt _report_set _nmain_query fromexpr(ocrpt_report *r,
const char *expr_string);

See Report query name. Unlike with the XML description, where the first globally declared query is used
for the report if its main query is not set, the default viathe low level API is unset.

10.1.9.7. Get the current row number of the main query

The row number starts from 1.

| ong
ocrpt _report_get _query_rownum(ocrpt_report *r);

10.1.9.8. Resolve all report variables

voi d
ocrpt _report_resolve_variabl es(ocrpt_report *r);

10.1.9.9. Evaluate all report variables

voi d
ocrpt _report_eval uate_vari abl es(ocrpt_report *r);

10.1.9.10. Resolve all report breaks

voi d
ocrpt _report_resol ve_breaks(ocrpt_report *r);

10.1.9.11. Resolve all report expressions

voi d
ocrpt _report_resol ve_expressions(ocrpt_report *r);

10.1.9.12. Evaluate all report expressions

voi d

123

Low level C language API reference

ocrpt _report_eval uate_expressi ons(ocrpt_report *r);
10.1.10. Layout related functions
10.1.10.1. Global layout options

10.1.10.1.1. Set or get "size unit" option

See Size unit attribute. The expression string must evaluate to a string value, where poi nt s will set
the layout rendering to use points for size units. Any other value will make the layout rendering use the
convoluted RLIB compatible size units, mostly based on font sizes.

ocr pt _expr *
ocrpt _set_size unit(opencreport *o,
const char *expr_string);

The expression also has a getter function, so its result (value) can be queried. Which may be useful, in
caseit's set in the report XML description and callbacks and the report processing needs to inspect it.

ocr pt _expr *
ocrpt _get _size unit(opencreport *o);

10.1.10.1.2. Set or get "no query show NoData" option
See No query show NoData attribute. The expression string should eval uate to a boolean val ue.
ocr pt _expr *
ocr pt _set _noquery_show nodat a(opencreport *o,

const char *expr_string);

ocr pt _expr *
ocr pt _get _noquery_show nodat a(opencreport *0);

10.1.10.1.3. Set or get "report height after last” option
See Report height after last attribute. The expression string should evaluate to a boolean value.
ocr pt _expr *
ocrpt _set _report_height_after | ast (opencreport *o,

const char *expr_string);

ocr pt _expr *
ocrpt _get _report_height _after | ast (opencreport *0);

10.1.10.1.4. Set "follower match single" option
See Follower match single attribute. The expression string should evaluate to a boolean value.
ocr pt _expr *
ocrpt _set_foll ower _mat ch_si ngl e(opencreport *o,

const char *expr_string);

ocr pt _expr *
ocrpt _get_foll ower_mat ch_si ngl e(opencreport *0);

124

Low level C language API reference

10.1.10.1.5. Set or get "follower match single" option directly

See above and Follower match single attribute. The differenceisthat the modified behaviour is set directly
and immediately. Used by unit tests.

voi d

ocrpt_set_foll ower_match_singl e_direct(opencreport *o,
bool val ue);

bool
ocrpt _get_foll ower_match_singl e_direct(opencreport *o);

10.1.10.2. Report part options

10.1.10.2.1. Set or get part iterations
See Part iterations attribute. The expression string must evaluate to a numeric value.
ocr pt _expr *

ocrpt_part_set_iterations(ocrpt_part *p,
const char *expr_string);

ocr pt _expr *
ocrpt_part_get_iterations(ocrpt_part *p);

10.1.10.2.2. Set or get part font name
See Part font name.
ocr pt _expr *

ocrpt_part_set font_nane(ocrpt_part *p,
const char *expr_string);

ocr pt _expr *
ocrpt _part_get font_nane(ocrpt_part *p);

10.1.10.2.3. Set or get part font size
See Part font size.
ocr pt _expr *

ocrpt_part_set font_size(ocrpt_part *p,
const char *expr_string);

ocr pt _expr *
ocrpt_part_get font_size(ocrpt_part *p);

10.1.10.2.4. Set or get part paper type
See Paper type.
ocr pt _expr *

ocrpt _part_set _paper_type(ocrpt_part *p,
const char *expr_string);

ocr pt _expr *

125

Low level C language API reference

ocrpt _part_get_paper_type(ocrpt_part *p);
10.1.10.2.5. Set or get part paper's orientation

See Part page orientation. The expression string must evaluate to a string value, with possible options of
portrait andl andscape. By default, the part usespor t r ai t orientation.

ocr pt _expr *
ocrpt_part_set_orientation(ocrpt_part *p,
const char *expr_string);

ocr pt _expr *
ocrpt_part_get_orientation(ocrpt_part *p);

10.1.10.2.6. Set or get part margins
See Margin settings. The margin values must be passed in via strings as they can be expressions.
ocr pt _expr *

ocrpt _part_set _top_margi n(ocrpt_part *p,
const char *expr_string);

ocr pt _expr *
ocrpt _part_get _top_margi n(ocrpt_part *p);

ocr pt _expr *
ocrpt_part_set _bottom nmargi n(ocrpt_part *p,
const char *expr_string);

ocr pt _expr *
ocrpt_part_get _bottom margi n(ocrpt_part *p);

ocr pt _expr *

ocrpt _part_set left _nargin(ocrpt_part *p,
const char *expr_string);

ocr pt _expr *
ocrpt_part_get left _nargin(ocrpt_part *p);

ocr pt _expr *

ocrpt_part_set _right_margin(ocrpt_part *p,
const char *expr_string);

ocr pt _expr *
ocrpt_part_get right _margin(ocrpt_part *p);

10.1.10.2.7. Set or get part suppression
See Part suppress attribute. The expression string must evaluate to a numeric (boolean) value.
ocr pt _expr *

ocrpt _part_set_suppress(ocrpt_part *p,
const char *expr_string);

ocr pt _expr *

126

Low level C language API reference

ocrpt _part_get_suppress(ocrpt_part *p);
10.1.10.2.8. Set or get part's page header suppressed on the first page

See Suppress page header on the first page. The expression string must evaluate to a numeric (boolean)
value.

ocr pt _expr *

ocrpt _part_set_suppress_pageheader firstpage(ocrpt_part *p,
const char *expr_string);

ocr pt _expr *
ocrpt _part_get_suppress_pageheader firstpage(ocrpt_part *p);

10.1.10.3. Part row options

10.1.10.3.1. Set or get part row suppression
See Part row suppress attribute. The expression string must evaluate to a numeric (boolean) value.
ocr pt _expr *

ocrpt _part_row_set_suppress(ocrpt_part_row *pr,
const char *expr_string);

ocr pt _expr *
ocrpt_part_row_get _suppress(ocrpt_part_row *pr);

10.1.10.3.2. Set or get part row new page
See Part row new page attribute. The expression string must evaluate to a numeric (boolean) value.
ocr pt _expr *
ocrpt _part_row_set_newpage(ocrpt_part_row *pr,

const char *expr_string);

ocr pt _expr *
ocr pt _part_row_get _newpage(ocrpt_part_row *pr);

10.1.10.3.3. Set or get part row layout mode

See Part row layout attribute. The expression string must evaluate to a string value, with possible options
fl owandfi xed. Thissetting isignored, it's only accepted for RLIB compatibility.

ocr pt _expr *
ocrpt _part_row set | ayout (ocrpt_part_row *pr,
const char *expr_string);

ocr pt _expr *
ocrpt _part_row get | ayout (ocrpt_part_row *pr);

10.1.10.4. Part column options

10.1.10.4.1. Set or get part column suppression

See Part column suppress attribute. The expression must evaluate to a numeric (boolean) value.

127

Low level C language API reference

ocr pt _expr *
ocr pt _part_col unm_set _suppress(ocrpt_part_col um *pd,
const char *expr_string);

ocr pt _expr *
ocr pt _part_col umm_get _suppress(ocrpt_part_col um *pd);

10.1.10.4.2. Set or get part column width
See Part column width attribute. The expression must evaluate to a numeric value.
ocr pt _expr *

ocrpt _part_columm_set _wi dt h(ocrpt_part_col um *pd,
const char *expr_string);

ocr pt _expr *
ocrpt _part_col umm_get _wi dt h(ocrpt_part_col um *pd);

10.1.10.4.3. Set or get part column height
See Part column height attribute. The expression must evaluate to a numeric value.
ocr pt _expr *

ocr pt _part_col umm_set _hei ght (ocrpt _part_col um *pd,
const char *expr_string);

ocr pt _expr *
ocr pt _part_col umm_get _hei ght (ocrpt _part_col um *pd);

10.1.10.4.4. Set or get part column border width
See Part column border width. The expression must evaluate to a numeric value.
ocr pt _expr *

ocrpt _part_col umm_set border_w dt h(ocrpt_part_col utm *pd,
const char *expr_string);

ocr pt _expr *
ocr pt _part_col umm_get border_w dt h(ocrpt_part_col utmm *pd);

10.1.10.4.5. Set or get part column border color

See Part column border color. The expression must evaluate to a string value with a valid color name or
specification.
ocr pt _expr *

ocrpt _part_col umm_set border_col or (ocrpt_part_col utm *pd,
const char *expr_string);

ocr pt _expr *
ocr pt _part_col umm_get border_col or (ocrpt_part_col utm *pd);

10.1.10.4.6. Set or get part column's number of detail columns
See Detail columns. The expression must evaluate to a numeric value.

ocr pt _expr *

128

Low level C language API reference

ocrpt _part_columm_set detail _col ums(ocrpt_part_col um *pd,
const char *expr_string);

ocr pt _expr *
ocrpt _part_columm_get detail _columms(ocrpt_part_col um *pd);

10.1.10.4.7. Set or get part column's detail column padding
See Column padding. The expression must evaluate to a numeric value.
ocr pt _expr *

ocrpt _part_col unm_set col um_paddi ng(ocrpt _part_col um *pd,
const char *expr_string);

ocr pt _expr *
ocrpt _part_colum_get col unm_paddi ng(ocrpt_part_col utmm *pd);

10.1.10.5. Report options

10.1.10.5.1. Set or get report suppression
See Report suppress attribute. The expression must evaluate to a numeric (boolean) value.
ocr pt _expr *

ocrpt _report_set_suppress(ocrpt_report *r,
const char *expr_string);

ocr pt _expr *
ocrpt_report_get _suppress(ocrpt_report *r);

10.1.10.5.2. Set or get report iterations
See Report iterations attribute. The expression must evaluate to a numeric value.
ocr pt _expr *

ocrpt_report_set _iterations(ocrpt_report *r,
const char *expr_string);

ocr pt _expr *
ocrpt _report_get _iterations(ocrpt_report *r);

10.1.10.5.3. Set or get report font name

See Report font name. The expression must evaluate to astring value, with fallback to plain string: in case
of aparsing error, the value string istaken as is.

ocr pt _expr *

ocrpt_report_set _font_name(ocrpt_report *r,
const char *expr_string);

ocr pt _expr *
ocrpt _report_get_font_nane(ocrpt_report *r);

10.1.10.5.4. Set or get report font size

See Report font size. The expression must evaluate to a numeric value.

129

Low level C language API reference

ocr pt _expr *
ocrpt_report_set _font_size(ocrpt_report *r,
const char *expr_string);

ocr pt _expr *
ocrpt_report_get _font_size(ocrpt_report *r);

10.1.10.5.5. Set or get report height
See Report height. The expression must evaluate to a numeric value.
ocr pt _expr *

ocrpt _report_set _hei ght (ocrpt_report *r,
const char *expr_string);

ocr pt _expr *
ocrpt _report_get hei ght (ocrpt_report *r);

10.1.10.5.6. Set or get report's field header priority

See Report field header priority attribute. The expression must evaluate to a string value with the options
of hi gh and | ow. Defaultis| ow.

ocrpt _expr *

ocrpt_report_set_fiel dheader_priority(ocrpt_report *r,
const char *expr_string);

ocrpt _expr *
ocrpt_report_get _fiel dheader_priority(ocrpt_report *r);

10.1.10.6. Get part layout sections
Get the part's <Qut put > sections for <PageHeader > or <PageFoot er >.

ocr pt _out put *
ocrpt | ayout _part_page_ header (ocrpt_part *p);

ocr pt _out put *
ocrpt _layout _part_page footer(ocrpt_part *p);

10.1.10.7. Set report for part layout sections
Set the report pointer for the part's <Qut put > sections for <PageHeader > or <PageFoot er >.
voi d
ocrpt _layout part_page header_set report(ocrpt_part *p,
ocrpt_report *r);
voi d

ocrpt _layout part_page footer_set report(ocrpt_part *p,
ocrpt_report *r);

10.1.10.8. Get report layout sections

Get the report's <Qut put > sections for <NoDat a>, <Report Header >, <Report Foot er >,
<Fi el dHeader s> or <Fi el dDet ai | s>.

130

Low level C language API reference

ocr pt _out put *
ocrpt _| ayout _report_nodata(ocrpt_report *r);

ocr pt _out put *
ocrpt _| ayout _report_header (ocrpt_report *r);

ocr pt _out put *
ocrpt | ayout _report_footer(ocrpt_report *r);

ocr pt _out put *
ocrpt _layout _report_fiel d_header(ocrpt_report *r);

ocr pt _out put *
ocrpt _layout _report_field_detail s(ocrpt_report *r);

10.1.10.8.1. Miscellaneous report layout and line element functions
It is possible to load areport XML descriptor and modify the layout contents defined by it using code.

The first iterator function loops through toplevel output elements: line, horizontal line, image, barcode.
An abstract opaque pointer type isreturned by the iterator. Further boolean functions determine the actual
element type. Thevoi d **i t er pointer must point to aNULL pointer initially and the iterator function
returns NULL when there are no more elements in the output section. Depending on the boolean function
results, the abstract opaque pointer type can be case to the actual output element type: ocrpt _| i ne *,
ocrpt _hline *,ocrpt_inmage * orocrpt_barcode *.

struct ocrpt_out put_el ement;
typedef struct ocrpt_out put_el ement ocrpt_out put _el emrent;

ocr pt _out put _el emrent *
ocr pt _out put _el ement _get _next (ocr pt _out put *out put, ocrpt_list
**jter);

bool
ocrpt _out put _el enment _is_line(ocrpt_output_el emrent *elen);

bool
ocrpt _out put _el enment _is_hline(ocrpt_output_elenent *elem;

bool
ocrpt _out put _el ement _i s_i nage(ocr pt_out put _el enent *elem;

bool
ocr pt _out put _el ement _i s_bar code(ocr pt _out put _el enent *el em;

The second iterator function loops through line elements: text, image and barcode. An abstract opaque
pointer type is returned by the iterator. Further boolean functions determine the actual element type. The
voi d **i t er pointer must pointtoaNULL pointer initially and theiterator function returns NULL when
there are no more elements in the output section. Depending on the boolean function results, the abstract
opaque pointer type can be cast to the actual output element type: ocr pt _t ext *,ocrpt _i mage *

orocr pt _barcode *.

struct ocrpt_line_el ement;
typedef struct ocrpt_line_elenment ocrpt_line_el enent;

131

Low level C language API reference

ocrpt_line_elenent *
ocrpt_line_element_get_next(ocrpt_line *line, void **iter);

bool
ocrpt_line_element _is text(ocrpt_line_elenent *elem;

bool
ocrpt_line_elenent_is_imge(ocrpt_line_elenment *elenj;

bool
ocrpt_line_elenment_is_barcode(ocrpt_line_element *elem;

10.1.10.9. Get break layout sections

Get the break's <Qut put > sectionsfor <Br eakHeader > or <Br eakFoot er >.

ocr pt _out put *
ocrpt _break _get header (ocrpt_break *br);

ocr pt _out put *
ocrpt _break _get footer(ocrpt_break *br);

10.1.10.10. Set output section global settings

Notethat part (page) header and footer, and report header and footer sections must be constant expressions.
Other sections may depend on data derived from query columns. See Expressions.

10.1.10.10.1. Set or get output section suppression
Set suppression from an expression string.
ocr pt _expr *
ocr pt _out put _set _suppress(ocrpt_out put *out put,

const char *expr_string);

ocr pt _expr *
ocr pt _out put _get _suppress(ocrpt_out put *output);

10.1.10.11. Add a text line to an output section

ocrpt_line *
ocr pt _out put _add_l i ne(ocr pt_out put *output);

10.1.10.12. Text line settings

Note that settings in the part (page) header and footer sections must be constant expressions. Settings in
other sections may depend on data derived from query columns. See Expressions.

10.1.10.12.1. Set or get line font name
Set the text line's font name from an expression string.

ocr pt _expr *
ocrpt_line_set_font_nane(ocrpt_line *line,

132

Low level C language API reference

const char *expr_string);

ocr pt _expr *
ocrpt_line_get_font_nane(ocrpt_line *line);

10.1.10.12.2. Set line font size
Set the text ling's font size from an expression string.

ocr pt _expr *
ocrpt_line_set_font_size(ocrpt_line *line,
const char *expr_string);

ocr pt _expr *
ocrpt_line_get_font_size(ocrpt_line *line);

10.1.10.12.3. Set or get line bold value
Set the text line's bold value from an expression string.

ocr pt _expr *
ocrpt _line_set_bold(ocrpt_line *line,
const char *expr_string);

ocr pt _expr *
ocrpt_line_get_bold(ocrpt_line *line);

10.1.10.12.4. Set or get line italic value

Set the text ling's italic value from an expression string.

ocr pt _expr *
ocrpt_line_set_italic(ocrpt_line *line,
const char *expr_string);

ocr pt _expr *
ocrpt _line_get_italic(ocrpt_line *line);

10.1.10.12.5. Set or get line suppression

Set the text line's suppression value from an expression string.

ocr pt _expr *
ocrpt _line_set_suppress(ocrpt_line *line,
const char *expr_string);

ocr pt _expr *
ocrpt _line_get_suppress(ocrpt_line *line);

10.1.10.12.6. Set or get line text color
Set the text ling's text color from an expression string.

ocr pt _expr *
ocrpt_line_set_color(ocrpt_line *line,
const char *expr_string);

133

Low level C language API reference

ocr pt _expr *
ocrpt_line_get_color(ocrpt_line *line);

10.1.10.12.7. Set or get line background color
Set or get the text line's background color from an expression string.
ocr pt _expr *
ocrpt _line_set _bgcol or(ocrpt_line *line,

const char *expr_string);

ocr pt _expr *
ocrpt _line_get bgcolor(ocrpt_line *line);

10.1.10.13. Add a text element to a text line

ocrpt_text *
ocrpt _line_add text(ocrpt_|line *line);

10.1.10.14. Text element settings

Note that settings in the part (page) header and footer sections must be constant expressions. Settings in
other sections may depend on data derived from query columns. See Expressions.

10.1.10.14.1. Set text element literal value

Set the text element's literal value from a string.

ocr pt _expr *

ocrpt _text_set value_string(ocrpt_text *text,

const char *string);

10.1.10.14.2. Set or get text element value

Set the text element's value from an expression string.

ocr pt _expr *

ocrpt _text_set_val ue_expr(ocrpt_text *text,

const char *expr_string);

The getter function for the text element's value also works when the text value is set as aliteral .

ocr pt _expr *
ocrpt _text_get_val ue(ocrpt_text *text);

10.1.10.14.3. Set or get text element value's delayed property
Set the text element value's delayed property from an expression string.
ocr pt _expr *

ocrpt _text_set_val ue_del ayed(ocrpt _text *text,
const char *expr_string);

134

Low level C language API reference

ocr pt _expr *
ocrpt _text_get_val ue_del ayed(ocrpt _text *text);

10.1.10.14.4. Set or get text element format string
Set the text element's format string from an expression string.
ocr pt _expr *

ocrpt_text _set format(ocrpt_text *text,
const char *expr_string);

ocr pt _expr *
ocrpt _text get format(ocrpt_text *text);

10.1.10.14.5. Set or get text element translation
Set the text element's translation from an expression string.
ocr pt _expr *

ocrpt _text_set_translate(ocrpt_text *text,
const char *expr_string);

ocr pt _expr *
ocrpt_text_get_translate(ocrpt_text *text);

OpenCReports will attempt to tranglate both the format string and the text element's value.
10.1.10.14.6. Set or get text element field width

Set the text element's field width from an expression string.

ocr pt _expr *

ocrpt _text_set _w dth(ocrpt_text *text,
const char *expr_string);

ocr pt _expr *
ocrpt _text_get _w dth(ocrpt_text *text);

10.1.10.14.7. Set or get text element alignment
Set the text element’s alignment from a string or an expression string.
ocr pt _expr *

ocrpt _text_set_alignnent (ocrpt_text *text,
const char *expr_string);

ocr pt _expr *
ocrpt _text _get_alignnent (ocrpt_text *text);

String values| ef t ,ri ght,center andj usti fi ed are accepted either asis, or as an expression.
10.1.10.14.8. Set or get text element text color
Set the text element'’s text color from an expression string.

ocr pt _expr *

135

Low level C language API reference

ocrpt _text_set_col or(ocrpt_text *text,
const char *expr_string);

ocr pt _expr *
ocrpt _text_get_col or(ocrpt_text *text);

10.1.10.14.9. Set or get text element background color
Set the text element's background color from an expression string.
ocr pt _expr *
ocrpt _text_set_bgcol or (ocrpt _text *text,

const char *expr_string);

ocr pt _expr *
ocrpt _text_get_bgcol or(ocrpt _text *text);

10.1.10.14.10. Set or get text element font name
Set the text element's font name from an expression string.
ocr pt _expr *
ocrpt _text_set_font_nane(ocrpt_text *text,

const char *expr_string);

ocr pt _expr *
ocrpt _text_get_font_nane(ocrpt_text *text);

10.1.10.14.11. Set or get text element font size
Set the text element's font size from an expression string.
ocr pt _expr *
ocrpt _text_set_font_size(ocrpt_text *text,

const char *expr_string);

ocr pt _expr *
ocrpt_text_get_font_size(ocrpt_text *text);

10.1.10.14.12. Set or get text element bold value
Set the text element's bold value from an expression string.
ocr pt _expr *
ocrpt _text_set bol d(ocrpt_text *text,

const char *expr_string);

ocr pt _expr *
ocrpt _text_get_bol d(ocrpt_text *text);

10.1.10.14.13. Set or get text element italic value
Set the text element'sitalic value from an expression string.

ocr pt _expr *

136

Low level C language API reference

ocrpt_text_set_italic(ocrpt_text *text,
const char *expr_string);

ocr pt _expr *
ocrpt_text _get_italic(ocrpt_text *text);

10.1.10.14.14. Set or get text element link URL
Set the text element’s link URL from an expression string.

ocr pt _expr *
ocrpt _text_set link(ocrpt_text *text,
const char *expr_string);

ocr pt _expr *
ocrpt_text _get link(ocrpt_text *text);

10.1.10.14.15. Set or get text element multiline property

Set the text element's multiline property from an expression string. The expression must evaluate to a
numeric (boolean) value.

ocr pt _expr *
ocr pt _text_set_neno(ocrpt_text *text,
const char *expr_string);

ocr pt _expr *
ocrpt _text_get_neno(ocrpt_text *text);

10.1.10.14.16. Set or get text element "hyphenate" property

Set the text element's "hyphenate" property from an expression string. The expression must evaluate to
a numeric (boolean) value. This setting is only used for multiline fields. When set to f al se, words at
the end of the lines in the multiline text field would break over to the next line as a whole. When set to
t r ue, the word will be hyphenated. Default ist r ue. When character wrapping is in used (see below),
this setting in not used.

ocr pt _expr *
ocrpt _text _set nmeno_hyphenate(ocrpt _text *text,
const char *expr_string);

ocr pt _expr *
ocrpt _text _get nmeno_hyphenate(ocrpt _text *text);

10.1.10.14.17. Set or get text element "wrap at characters" property
Set the text element's "wrap at characters' property from an expression string. The expression must
evaluate to a numeric (boolean) value. This setting is only used for multiline fields. When unset or set to
f al se, multiline text fields wrap at word boundaries.
ocr pt _expr *

ocrpt _text_set_meno_wrap_chars(ocrpt_text *text,
const char *expr_string);

ocr pt _expr *

137

Low level C language API reference

ocrpt _text_get_nmeno_wrap_chars(ocrpt_text *text);
10.1.10.14.18. Set or get text element maximum lines

Set the text el ement's maximum lines property from an expression string. The expression must evaluate to
anumeric value. Thissetting isonly used for multiline fields. When unset or set to 0, the whole content of
themultilinefield isrendered. Otherwise, not morethan the maximum linesare rendered from the multiline
field value. The used font size, the field's width and word/character wrapping influence the number of
lines the field value is rendered into.

ocr pt _expr *

ocrpt _text_set_nmeno_max_lines(ocrpt_text *text,
const char *expr_string);

ocr pt _expr *
ocrpt _text_get_nmeno_nmax_lines(ocrpt_text *text);

10.1.10.15. Add a horizontal line to an output section

ocrpt_hline *
ocr pt _out put _add_hl i ne(ocrpt _out put *out put);

10.1.10.16. Horizontal line settings

Note that settings in the part (page) header and footer sections must be constant expressions. Settings in
other sections may depend on data derived from query columns. See Expressions.

10.1.10.16.1. Set or get horizontal line size (width)
Set the horizontal line's size (width) from an expression string.
ocr pt _expr *

ocrpt _hline_set_size(ocrpt_hline *hline,
const char *expr_string);

ocr pt _expr *
ocrpt _hline_get _size(ocrpt_hline *hline);

10.1.10.16.2. Set or get horizontal line alignment

Set the horizonta line's alignment from an expression string. Possibly values are | ef t, ri ght and
cent er. Default is| ef t aignment. The alignment is only applied if the line length is shorter than the
designated page or column width without the margins.

ocr pt _expr *

ocrpt _hline_set_alignnment(ocrpt_hline *hline,
const char *expr_string);

ocr pt _expr *
ocrpt _hline_get _alignnment(ocrpt_hline *hline);

10.1.10.16.3. Set or get horizontal line indentation

Set the horizontal line's indentation value from an expression string. The indentation is used if | ef t
alignment is set.

138

Low level C language API reference

ocr pt _expr *
ocrpt _hline_set_indentation(ocrpt_hline *hline,
const char *expr_string);

ocr pt _expr *
ocrpt _hline_get_indentation(ocrpt_hline *hline);

10.1.10.16.4. Set or get horizontal line length
Set the horizontal lin€'s length from an expression string.
ocr pt _expr *

ocrpt _hline_set_length(ocrpt_hline *hline,
const char *expr_string);

ocr pt _expr *
ocrpt _hline_get_length(ocrpt_hline *hline);

10.1.10.16.5. Set or get horizontal line font size

Set the horizontal ling'sfont size from an expression string. It's used in indentation and length cal cul ations
if Size unit attributeissettor | i b.

ocr pt _expr *

ocrpt _hline_set_font_size(ocrpt_hline *hline,
const char *expr_string);

ocr pt _expr *
ocrpt _hline_get_font_size(ocrpt_hline *hline);

10.1.10.16.6. Set or get horizontal line suppression
Set the horizontal lin€'s suppression from an expression string.
ocr pt _expr *

ocrpt _hline_set_suppress(ocrpt_hline *hline,
const char *expr_string);

ocr pt _expr *
ocrpt _hline_get_suppress(ocrpt_hline *hline);

10.1.10.16.7. Set or get horizontal line color
Set the horizontal lin€'s color from an expression string.
ocr pt _expr *

ocrpt _hline_set_col or(ocrpt_hline *hline,
const char *expr_string);

ocr pt _expr *
ocrpt _hline_get_col or(ocrpt_hline *hline);

10.1.10.17. Add a barcode to an output section

ocr pt _bar code *

139

Low level C language API reference

ocr pt _out put _add_bar code(ocr pt _out put *out put);
10.1.10.18. Add a barcode to a text line

ocr pt _bar code *
ocrpt _line_add_barcode(ocrpt_line *line);

10.1.10.19. Barcode settings

10.1.10.19.1. Set or get barcode value

Set the barcode's value from an expression string. The expression must evaluate to a string, whose value
is the string to be encoded as a barcode.

ocr pt _expr *

ocr pt _barcode_set _val ue(ocrpt _barcode *bc,
const char *expr_string);

ocr pt _expr *
ocr pt _barcode_get val ue(ocrpt _barcode *hc);

10.1.10.19.2. Set or get barcode value delayed
Set the barcode'svalue delayed from an expression string. The expression must evaluateto aboolean value.
ocrpt _expr *

ocr pt _barcode_set val ue_del ayed(ocr pt _barcode *bc,
const char *expr_string);

ocrpt _expr *
ocr pt _barcode_get val ue_del ayed(ocrpt _barcode *bc);

10.1.10.19.3. Set or get barcode suppression

Set the barcode's suppression value from an expression string. The expression must evaluate to a boolean
value.

ocr pt _expr *

ocr pt _barcode_set suppress(ocrpt_barcode *bc,
const char *expr_string);

ocr pt _expr *
ocr pt _barcode_get suppress(ocrpt_barcode *bc);

Default valueisf al se, i.e. no suppression.
10.1.10.19.4. Set or get barcode type

Set the barcode's type from an expression string.

ocr pt _expr *

ocr pt _barcode_set _type(ocrpt _barcode *bc,
const char *expr_string);

ocr pt _expr *

140

Low level C language API reference

ocr pt _barcode_get _type(ocrpt _barcode *bc);

The type may be optional, in which case it's autodetected and the barcode is rendered in the format that
first allows the val ue string to be rendered. Possible types (in the order of autodetection) are: upc-
a,ean- 13, upc- e, ean-8,i sbn,code39, code39ext,codel28b codel28c, or codel28. If
t ype isspecified, theval ue isrendered in that barcode type if the string isvalid for the type. If val ue
isinvalid for the specifiedt ype, or autodetection fails, becausetheval ue isinvalid for any of the above
listed types, the barcode is not rendered.

10.1.10.19.5. Set or get barcode width
Set the barcode's width from an expression string.
ocr pt _expr *

ocr pt _barcode_set _wi dth(ocrpt _barcode *bc,
const char *expr_string);

ocr pt _expr *
ocr pt _barcode_get _wi dth(ocrpt _barcode *bc);

Thewidth is set according to Size unit attribute, either in points (1/72th inch) or in (monospace) font width
units set by <Li ne>.

10.1.10.19.6. Set or get barcode width
Set the barcode's height from an expression string.
ocr pt _expr *

ocr pt _bar code_set _hei ght (ocr pt _barcode *bc,
const char *expr_string);

ocr pt _expr *
ocr pt _bar code_get _hei ght (ocr pt _barcode *bc);

Thissettingisawaysin points, i.e. 1/72th of aninch. Theline height will be determined by greatest height
of all the<fi el d>,<l it eral >and<Bar code>fieldsinthesame<Li ne>inaway that the elements
of the same line will appear (approximately) centered vertically.

10.1.10.19.7. Set or get barcode line color
Set the barcode's line color from an expression string.
ocr pt _expr *

ocr pt _barcode_set _col or (ocr pt _barcode *bc,
const char *expr_string);

ocr pt _expr *
ocr pt _barcode_get _col or (ocr pt _barcode *bc);

10.1.10.19.8. Set or get barcode background color
Set the barcode's background color from an expression string.
ocr pt _expr *

ocr pt _bar code_set _bgcol or (ocr pt _barcode *bc,
const char *expr_string);

141

Low level C language API reference

ocr pt _expr *
ocr pt _bar code_get _bgcol or (ocr pt _barcode *bc);

10.1.10.20. Add an image to an output section

ocrpt _inage *
ocr pt _out put _add_i mage(ocrpt _out put *out put);

10.1.10.21. Add an image to a text line

ocrpt _i mage *
ocrpt _line_add_i mage(ocrpt_line *line);

10.1.10.22. Image settings

Note that settings in the part (page) header and footer sections must be constant expressions. Settings in
other sections may depend on data derived from query columns. See Expressions.

10.1.10.22.1. Set or get image value
Set the image's value (filename) from an expression string.
ocr pt _expr *

ocrpt _i nage_set _val ue(ocrpt _i mage *i mage,
const char *expr_string);

ocr pt _expr *
ocr pt _i nage_get val ue(ocrpt _i mage *i nmage);

10.1.10.22.2. Set or get image suppression
Set the image's suppression from an expression string.
ocr pt _expr *

ocr pt _i nage_set _suppress(ocrpt_i mage *i mage,
const char *expr_string);

ocr pt _expr *
ocrpt _i nage_get suppress(ocrpt_i mage *i mage);

10.1.10.22.3. Set or get image type
Set the image's type from an expression string.
ocr pt _expr *
ocrpt i nage_set _type(ocrpt_inmage *inage,

const char *expr_string);

ocr pt _expr *
ocrpt _i nage_get type(ocrpt_inmage *inage);

10.1.10.22.4. Set or get image width

Set theimage'swidth from an expression string. Used when theimageisdirectly added to an output section.

142

Low level C language API reference

ocr pt _expr *
ocrpt _i mage_set _wi dt h(ocr pt _i mage *i mage,
const char *expr_string);

ocr pt _expr *
ocr pt _i mage_get _wi dt h(ocr pt _i mage *i mage);

10.1.10.22.5. Set or get image height
Set theimage'swidth from an expression string. Used when theimageisdirectly added to an output section.
ocr pt _expr *
ocrpt _i nage_set hei ght (ocrpt i nage *i mage,

const char *expr_string);

ocr pt _expr *
ocrpt _i nage_get hei ght (ocrpt i nage *i mage);

10.1.10.22.6. Set or get image alignment
Set the image's alignment from an expression string. Used when the image is added to text line.
ocr pt _expr *
ocrpt i nage_set _al i gnment (ocrpt _i nage *i mage,

const char *expr_string);

ocr pt _expr *
ocrpt _i nage_get _al i gnment (ocrpt _i nage *i mage);

10.1.10.22.7. Set or get image background color
Set the image's background color from an expression string.
ocr pt _expr *
ocr pt _i nage_set _bgcol or (ocrpt _i mage *i nage,

const char *expr_string);

ocr pt _expr *
ocr pt _i nage_get _bgcol or (ocr pt _i mage *i nage) ;

10.1.10.22.8. Set or get image field width
Set the image's field width from an expression string. Used when the image is added to atext line.
ocrpt _expr *
ocrpt _inage_set _text_w dth(ocrpt_inmage *inage,

const char *expr_string);

ocrpt _expr *
ocrpt _inage_get text_w dth(ocrpt_inmage *i mage);

10.1.10.23. Add an image end marker to an output section

voi d

143

Low level C language API reference

ocr pt _out put _add_i mage_end(ocr pt _out put *out put);

10.1.11. Callback related functions

Certain stages of the report execution can notify the application about the stage being executed or finished.

Every "add a callback” function below returnt r ue for success, f al se for falure.

10.1.11.1. Add a "part added" callback

t ypedef void

(*ocrpt_part_ch) (opencreport *,
ocrpt_part *,
voi d *data);

bool

ocrpt _add_part_added_cb(opencreport *o,
ocrpt_part_cb func,
voi d *data);

10.1.11.2. Add a "report added" callback

typedef void

(*ocrpt_report_cb) (opencreport *,
ocrpt_report *,
voi d *data);

bool

ocrpt _add_report_added_cb(opencreport *o,
ocrpt _report_cb func,
voi d *data);

10.1.11.3. Add an "all precalculations done" callback

t ypedef void
(*ocrpt_cb) (opencreport *,
voi d *data);

bool

ocrpt _add_precal cul ati on_done_cbh(opencreport *o,
ocrpt_cb func,
voi d *data);

10.1.11.4. Add a "part iteration" callback

bool

ocrpt_part_add_iteration_cb(ocrpt_part *r,
ocrpt _part_cb func,
void *data);

bool
ocrpt_part_add_iterati on_cb2(opencreport *o,
ocrpt _part_cb func,

144

Low level C language API reference

voi d *data);

The second variant adds the callback in the opencr epor t structure context, making the callback apply
to every report part. It'sfor RLIB compatibility.

10.1.11.5. Add a "report started" callback

bool

ocrpt_report_add_start_cb(ocrpt_report *r,
ocrpt _report_cb func,
voi d *data);

bool

ocrpt_report_add_start_cb2(opencreport *o,
ocrpt _report_cb func,
voi d *data);

The second variant adds the callback in the opencr epor t structure context, making the callback apply
to every report. It'sfor RLIB compatibility.

10.1.11.6. Add a "report done" callback

bool

ocrpt _report_add_done_cb(ocrpt_report *r,
ocrpt _report_cb func,
voi d *data);

bool

ocrpt _report_add_done_cb2(opencreport *o,
ocrpt _report_cb func,
voi d *data);

The second variant adds the callback in the opencr epor t structure context, making the callback apply
to every report. It'sfor RLIB compatibility.

10.1.11.7. Add a "new row" callback

bool

ocrpt _report_add_new row cb(ocrpt_report *r,
ocrpt _report_cb func,
voi d *data);

bool

ocrpt _report_add_new row cb2(opencreport *o,
ocrpt _report_cb func,
voi d *data);

The second variant adds the callback in the opencr epor t structure context, making the callback apply
to every report. It'sfor RLIB compatibility.

10.1.11.8. Add a "report iteration done" callback

bool
ocrpt_report_add_iteration_cb(ocrpt_report *r,

145

Low level C language API reference

ocrpt _report_cb func,
voi d *data);

bool

ocrpt_report_add_iteration_cb2(opencreport *o,
ocrpt _report_cb func,
voi d *data);

The second variant adds the callback inthe opencr epor t structure context, making the callback apply
to every report. It'sfor RLIB compatibility.

10.1.11.9. Add a "report precalculation done" callback

bool

ocrpt _report_add _precal cul ati on_done_cb(ocrpt_report *r,
ocrpt _report_cb func,
void *data);

bool

ocrpt _report_add _precal cul ati on_done_cb2(opencreport *o,
ocrpt _report_cb func,
void *data);

The second variant adds the callback inthe opencr epor t structure context, making the callback apply
to every report. It'sfor RLIB compatibility.

10.1.11.10. Add a "break triggers" callback

t ypedef void

(*ocrpt_break _trigger_cb)(opencreport *,
ocrpt_report *,
ocrpt _break *,
void *);

bool

ocrpt _break_add_trigger_cb(ocrpt_break *br,

ocrpt_break _trigger_cb func,
voi d *data);

10.1.12. Environment related functions

10.1.12.1. Indirect function to get an environment variable
typedef ocrpt _result *
(*ocrpt_env_query_func) (opencreport *,
const char *);

extern ocrpt_env_query_func
ocr pt _env_get;

10.1.12.2. Set the environment query function

voi d

146

Low level C language API reference

ocrpt _env_set _query_func(ocrpt_env_query_func func);

10.1.12.3. C APl environment query function

ocrpt_result *
ocrpt _env_get _c(opencreport *o,
const char *env);

10.1.12.4. Add an "m" domain variable

Set an "m" domain variable. If such avariable nanme didn't exist yet, and val ue isnot NULL, then the
variableisset. If val ue isNULL, thevariableisremoved. Such an explicit variable takes precedence over
the environment variable of the same name when used in expressions.

voi d
ocrpt _set_mvari abl e(opencreport *o,

const char *nane,
const char *val ue);

10.1.13. File handling related functions

10.1.13.1. Return a canonical file path
The returned path contains only single directory separators and doesn't contains symlinks.

char *
ocr pt _canoni cal i ze_pat h(const char *path);

10.1.13.2. Add search path

Add anew directory path to the list of search paths. It's useful to find files referenced with relative path.

voi d
ocr pt _add_sear ch_pat h(opencreport *o,
const char *path);

10.1.13.3. Add search path (delayed variant)

Add a new directory path from an expression string to the list of search paths. It's useful to find files
referenced with relative path. The expression must evaluateto astring value. It isevaluated at the beginning
of the report execution. This function may be used explicitly but it's also used when parsing the <Pat h>
nodesin areport XML description.

voi d

ocrpt _add_search_path_from expr (opencreport *o,
const char *expr_string);

10.1.13.4. Resolve search paths

Resolve expressionsadded by ocr pt _add_search_pat h_from expr () . It'susedinternally when
executing the report.

voi d

147

Low level C language API reference

ocrpt _resol ve_search_pat hs(opencreport *o);

10.1.13.5. Find a file
Find afile and return the canonicalized path to it. This function takes the search paths into account.
char *
ocrpt_find_fil e(opencreport *o,

const char *fil enane);

Note that search paths added by ocr pt _add_sear ch_pat h() and
ocr pt _add_sear ch_pat h_from expr () areusedintheir order of appearance when searching for
files during executing the report.

10.1.14. Color related functions

10.1.14.1. Find a color by its name
Thefunction fillsinthe ocr pt _col or structure with RGB valuesin Cairo values (0.0 ... 1.0).
If the color name starts with # or Ox or 0X then it must bein HTML notation.

Otherwise, the color name islooked up in the color name database in a case insensitive way. If found, the
passed-in ocrpt_color structure is filled with the RGB color value of that name.

If not found or the passed-in color name is NULL, depending on the the expected usage (foreground or
background color), theocr pt _col or structureisfilled with either white or black.

voi d

ocrpt _get _col or(opencreport *o,
const char *cnane,
ocrpt _col or *col or,
bool bgcol or);

10.1.15. Paper size related functions

Paper size in OpenCReportsis handled viali bpaper"’.
This structure is used in OpenCReports to represent paper name and size:

struct ocrpt_paper {
const char *nane;
doubl e wi dt h;
doubl e hei ght;

b

typedef struct ocrpt_paper ocrpt_paper;

10.1.15.1. Get the system default paper

const ocrpt_paper *
ocr pt _get _system paper (void);

4 http://packages.qa.debian.org/libp/libpaper.html

148

http://packages.qa.debian.org/libp/libpaper.html
http://packages.qa.debian.org/libp/libpaper.html

Low level C language API reference

10.1.15.2. Get the paper specified by name

const ocrpt_paper *
ocrpt _get paper by nane(const char *paper);

10.1.15.3. Set the global paper

Set global paper using an ocr pt _paper structure. The contents of the structure is copied.
voi d

ocr pt _set _paper (opencreport *o,
const ocrpt_paper *paper);

10.1.15.4. Set global paper specified by name

Set paper for the report using a paper name. If the paper name is unknown, the system default paper is set.

voi d
ocr pt _set _paper _by_nane(opencreport *o,
const char *paper);

10.1.15.5. Get currently set global paper

const ocrpt_paper *
ocr pt _get paper (opencreport *o);

10.1.15.6. Iterate over paper sizes

Getthenextocr pt _paper structureintheiterator. For thefirst call, theiterator pointer must be NULL.
It returns NULL when there are no more papers known to the system.

const ocrpt_paper *
ocr pt _paper _next (opencreport *o,
void **iter);

10.1.16. Memory handling related functions

Memory handling is done through an indirection, to help with bindings (that may do their own memory
handling) override the default.

10.1.16.1. Indirect function pointers

typedef void *
(*ocrpt_memmalloc_t)(size_t);

typedef void *
(*ocrpt_memrealloc_t)(void *,
size_t);

typedef void *

(*ocrpt_memreallocarray_t)(void *,
size_t,
size_t);

149

Low level C language API reference

typedef void
(*ocrpt_memfree_t)(const void *);

typedef char *
(*ocrpt_memstrdup_t)(const char *);

typedef char *
(*ocrpt_mem strndup_t) (const char *,
size_t);

typedef void
(*ocrpt_memfree_size_t)(void *,
size_t);

extern ocrpt_memmalloc_t ocrpt_mem mall ocO;

extern ocrpt_memrealloc_t ocrpt_nemreallocO

extern ocrpt_memreal l ocarray_t ocrpt_nemreall ocarray0
extern ocrpt_memfree_t ocrpt_nemfreeO;

extern ocrpt_memstrdup_t ocrpt_mem strdupO;

extern ocrpt_mem strndup_t ocrpt_nem strndupO;

10.1.16.2. Allocate memory

void *
ocrpt_nem nal |l oc(size_t sz);

10.1.16.3. Reallocate memory
void *
ocrpt_memrealloc(void *ptr,
size_t sz);
10.1.16.4. Reallocate array of memory
void *
ocrpt_memreallocarray(void *ptr,
size_t nnenb,
size_t sz);

10.1.16.5. Free memory

voi d
ocrpt_mem free(const void *ptr);

10.1.16.6. Duplicate C string

void *
ocrpt _mem strdup(const char *ptr);

10.1.16.7. Duplicate C string up to the specified length

void *

150

Low level C language API reference

ocrpt _mem strndup(const char *ptr,
size_t sz);

10.1.16.8. Free a C string

It'a convenience aliasfor ocr pt _nem free().

voi d
ocrpt_strfree(const char *s);

10.1.16.9. Set indirect allocation functions
voi d
ocrpt _mem set _all oc_funcs(ocrpt_nmemmalloc_t rmalloc,
ocrpt_memrealloc_t rrealloc,
ocrpt_memreallocarray_t rreallocarray,
ocrpt_memfree_t rfree,

ocrpt _mem strdup_t rstrdup,
ocrpt _mem strndup_t rstrndup);

10.1.17. List related functions

These functions implement a single linked list. The list element structure is hidden:

struct ocrpt_list;
typedef struct ocrpt_list ocrpt_list;

10.1.17.1. Get the list length

si ze_t
ocrpt_list_length(ocrpt_list *I);

10.1.17.2. Make a list from one element

ocrpt list *
ocrpt _makelistl(const void *data);

10.1.17.3. Make a list from multiple elements
This function can be used with variable number of arguments.

ocrpt list *
ocrpt _makelist(const void *datal, ...);

10.1.17.4. Get the last element of a list

ocrpt list *
ocrpt _list _last(const ocrpt list *I);

10.1.17.5. Get the nth element of a list

ocrpt_list *
ocrpt_list_nth(const ocrpt_list *I, uint32_t n);

151

Low level C language API reference

10.1.17.6. Append a new element to a list

ocrpt_list *
ocrpt_list_append(ocrpt_list *I,
const void *data);

10.1.17.7. Append to list using the last element
This function make appending to the list work O(1) instead of O(n).
ocrpt _list *
ocrpt _list_end_append(ocrpt _list *I,

ocrpt _list **e,
const void *data);

10.1.17.8. Prepend a new element to a list

ocrpt _list *
ocrpt _list_prepend(ocrpt _list *I,
const void *data);

10.1.17.9. Remove a data element from a list

ocrpt _list *
ocrpt _list _renmove(ocrpt list *I,
const void *data);

10.1.17.10. Remove a data element from a list and update the last
link

ocrpt_list *

ocrpt _list_end_renove(ocrpt_list *I,

ocrpt_list **endptr,
const void *data);

10.1.17.11. Get next link in the list

This can be used to iterate through a list. It returns NULL if the passed-in link is the last list in the list
or it'san empty list.

ocrpt_list *
ocrpt _list_next(ocrpt_list *I);

10.1.17.12. Get the data element from a list

void *
ocrpt _list _get data(ocrpt _list *I);

10.1.17.13. Free a list

voi d
ocrpt_list_free(ocrpt_list *I);

152

Low level C language API reference

10.1.17.14. Free a list and its data elements

voi d
ocrpt _list free deep(ocrpt _list *I,
ocrpt_memfree_t freefunc);

10.1.18. String related functions

For memory safety and higher performance, awrapper structureis used over C functions.

struct ocrpt_string {
char *str;
size_t allocated_|en;
size_ t len;

b

typedef struct ocrpt_string ocrpt_string;

10.1.18.1. Create a new string

Create anew string from a C string. The ownership of the input string may be taken over, or the original
string's contents are copied.

ocrpt_string *

ocrpt_memstring _new(const char *str,
bool copy);

10.1.18.2. Create a new string with specified allocated length

Create anew string with specified allocated length so future growth can be done without reallocation. The
input string is always copied.

ocrpt_string *

ocrpt_memstring new with | en(const char *str,
size t len);

10.1.18.3. Create a string from a formatted string with maximum
length

ocrpt_string *

ocrpt_memstring_new vnprintf(size_t len,

const char *fornat,
va_list va);

10.1.18.4. Create a string from a formatted string

ocrpt_string *
ocrpt_memstring new printf(const char *format, ...);

10.1.18.5. Resize a string

Resize the string to the specified allocated length.

ocrpt_string *

153

Low level C language API reference

ocrpt_memstring_resize(ocrpt_string *string,
size_t len);

10.1.18.6. Free a string

char *
ocrpt_memstring free(ocrpt_string *string,
bool free_str);

10.1.18.7. Append a C string of the specified length to a string

voi d

ocrpt _mem string _append_ |l en(ocrpt_string *string,
const char *str,
const size_ t len);

10.1.18.8. Append a binary string of the specified length to a string

voi d

ocrpt _mem string_append_| en_bi nary(ocrpt_string *string,
const char *str,
const size_t len);

10.1.18.9. Append a C string of unspecified length to a string

voi d
ocrpt _mem string_append(ocrpt_string *string,
const char *str);

10.1.18.10. Append a byte to a string

voi d
ocrpt _mem string append _c(ocrpt_string *string,
const char c);

10.1.18.11. Append a formatted string to a string

voi d
ocrpt _mem string_append_printf(ocrpt_string *string,
const char *format, ...);

154

Chapter 11. Implement a datasource
Input driver

11.1. Datasource input driver registration API

A datasource driver can be implemented and registered with OpenCReports easily. In fact, al the built-
in datasource input drivers use the registration interface. A newly registered datasource input driver can
also replace the built-in ones.

11.1.1. Register a datasource input driver

bool
ocrpt _i nput _regi ster(const ocrpt_input * const input);

11.1.2. Get a datasource input driver

Get adatasource input driver using its name.

const ocrpt_input * const
ocrpt i nput_get(const char *nane);

11.2. Datasource input driver details

11.2.1. Datasource input driver interface

Below isthedriver interfacethat definesthedriver nanes, theconnect _par anet er s used by adding
a datasource (see Section 10.1.3.1) and the driver methods.

struct ocrpt_input {
const char **nanes;
const ocrpt_i nput_connect _paraneter **connect_paraneters;
bool (*connect) (ocrpt_dat asource *ds,
const ocrpt_i nput _connect _paraneter *parans);
ocrpt _query *(*query_add_sqgl) (ocrpt_dat asource *ds,
const char *nane,
const char *sql);
ocrpt_query *(*query_add_file)(ocrpt_datasource *ds,
const char *nane,
const char *fil enamne,
const int32_t *types,
int32_t types_cols);
ocrpt _query *(*query_add_dat a) (ocr pt _dat asource *ds,
const char *nane,
const void *data
int32_t rows,
int32_t cols,
const int32_t *types,
int32_t types_cols);

155

Implement a datasource input driver

ocrpt _query *(*query_add_synbol i c_dat a) (
ocr pt _dat asource *ds,
const char *nane,
const char *dat anane,
int32_t rows,
int32_t cols,
const char *types,
int32_t types_cols);

void (*describe)(ocrpt_query *query,

ocrpt_query result **result,
int32_t *result_cols);

bool (*refresh)(ocrpt_query *query);

void (*rew nd)(ocrpt_query *query);

bool (*next)(ocrpt_query *query);

bool (*popul ate_result)(ocrpt_query *query);

bool (*isdone)(ocrpt_query *query);

void (*free)(ocrpt_query *query);

bool (*set_encodi ng) (ocrpt_dat asource *ds,

const char *encoding);
void (*close)(const ocrpt_datasource *);
b

typedef struct ocrpt_input ocrpt_input;

The driver nanes is a NULL-terminated array of name strings. This allows the driver to be picked up
using either name. For example the built-in MariaDB driver does so:

static const char *
ocrpt _mariadb_i nput_nanes[] = {

"mari adb", "nysqgl", NULL
}

Theconnect _par anet er s datapointer andtheconnect method are either both set asvalid, or both
are NULL.

The query_add* () methods are optional. Some datasource drivers support direct or symbolic data,
some support file formats, some are SQL based. A datasource input driver must support at least one of
the interfaces.

Thedescri be() method is mandatory. It returns an array of ocr pt _query_resul t datatogether
with the number of columnsin the result set. The result array must contain elements 3 times the number
of columnsin total dueto theinternal operation of OpenCReports.

#defi ne OCRPT_EXPR_RESULTS (3)

Ther ef resh() method is optional. See the PHP module source code for its potential uses.

Ther ewi nd(),next (), popul ate result() andi sdone() methods are all mandatory as they
are required to traverse the result set.

Thefree() method isoptional. It's needed if the query uses private data.

The set _encodi ng() method is optional. It's needed if the datasource input driver can use data in
encodings other than UTF- 8.

Thecl ose() method isoptional. It's needed if the datasource connection uses private data.

156

Implement a datasource input driver

11.3. Helper functions to implement a
datasource input driver

11.3.1. Get the parent pointer of a datasource

opencreport *
ocr pt _dat asour ce_get _opencreport (const ocrpt_datasource *ds);

11.3.2. Get the name of a datasource

const char *
ocr pt _datasource_get name(const ocrpt_datasource *ds);

11.3.3. Get the input driver pointer of a datasource

const ocrpt_input *
ocr pt _datasource_get i nput (const ocrpt_datasource *ds);

11.3.4. Set the private pointer of a datasource
voi d
ocr pt _dat asource_set _private(ocrpt_datasource *ds,
void *priv);

11.3.5. Get the private pointer of a datasource

void *
ocr pt _datasource_get private(ocrpt_datasource *ds);

11.3.6. Allocate a query structure

Allocate a query structure and add the query name.

ocrpt_query *
ocrpt _query_all oc(const ocrpt_datasource *source,
const char *nane);

11.3.7. Get the query name

char *
ocrpt_query_get nanme(const ocrpt_query *query);

11.3.8. Get the datasource pointer of a query

ocr pt _datasource *
ocr pt _query_get _source(const ocrpt_query *query);

11.3.9. Set the private pointer of a query

voi d

157

Implement a datasource input driver

ocrpt _query_set_private(ocrpt_query *query,
const void *priv);

11.3.10. Get the private pointer of a query

void *
ocrpt _query_get private(const ocrpt_query *query);

11.3.11. Set current row of a query all NULL

voi d
ocrpt_query_result_set _values_null (ocrpt_query *q);

11.3.12. Set a column value of a query

Set the i th column value in the current row of a query. The value can be set to NULL if thei snul |
parameter ist r ue, or to avalid value using the st r and the length parameters.

voi d

ocrpt_query result_set val ue(ocrpt_query *q,
int32_t i,
bool isnull,

iconv_t conv,
const char *str,
size t len);

158

Chapter 12. PHP language API
reference

12.1. The OpenCReports PHP module

OpenCReports comes with a PHP module, which must be enabled in the PHP configuration:

ext ensi on=opencreports. so

12.2. The OpenCReport class

Themain classin OpenCReportsiscalled OpenCRepor t . (Notethat the project nameisused assingular.)

cl ass OpenCReport ({
public const RESULT_ ERROR;

public const RESULT_STRI NG
public const RESULT_NUVBER,
public const RESULT_DATETI ME;
public const VARI ABLE_EXPRESSI ON,
public const VAR ABLE_ COUNT;
public const VAR ABLE COUNTALL;
public const VAR ABLE SUM

public const VAR ABLE_ AVERAGE;
public const VAR ABLE AVERAGEALL,;
public const VAR ABLE LOWEST;
public const VAR ABLE H GHEST;
public final _ construct();

public final parse_xm (string $filename): bool;
public final parse_xm _frombuffer(string $buffer): bool;

public const QUTPUT_PDF;

public const OUTPUT_HTM;

public const QUTPUT_TXT;

public const QUTPUT_CSV;

public const QUTPUT_XM;

public const OUTPUT_JSON,

public final set_output_format(long $format): void;
public final get_output_format(): |ong;

public static final get_output_format_nane(long $format):

string;

public final set_output_paraneter(
string $param
string $val ue): void;

public final execute(): bool;
public final spool (): void;

159

PHP language API reference

publ i
publ i

publ i
publ i
publ i
publ i

publ i

publ i

publ i

publ i

publ i

publ i
publ i
publ i

publ i
publ i

publ i

publ i
publ i

publ i

publ i

f
f

nal
nal

stati

f

f

f

f

f

f

fi

fi

fi

fi

fi

fi
fi

fi

fi

fi

fi

fi

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal
nal

nal

nal

nal

nal

nal

get _output(): string|false;
get _content _type(): array]|false;

c final version(): string;

set _nuneric_precision_bits(

string $expr_string): void;
get _nuneric_precision_bits(): |ong;
set _roundi ng_node(

string $expr_string): void;

bi ndt ext domai n(

string $domai nnane,

string $dirnanme): void;
set_| ocal e(string $l ocale): void;

dat asour ce_add(string $source_nane,
string $source_type,
?array $conn_paranms =
?0penCReport\ Dat asour ce;

dat asource_get (string $source_nane):
?0penCRepor t\ Dat asour ce;

query_get (string $query_nane):
?0penCReport\ Query;

qguery_refresh(): void;

expr_parse(string $expr_string):
?0penCRepor t\ Expr;
expr_error(): 7?string;

part_new(): OpenCReport\Part;
part_get _next(): OpenCReport\Part;

function_add(
string $expr_func_nane,
string $zend_func_naneg,
 ong $n_ops,
bool $commut ati ve,
bool $associ ati ve,
bool $l eft_associative,
bool $dont _optim ze): bool

add_precal cul ati on_done_cb(

string $cal |l back): void;
add_part _added_ch(

string $cal |l back): void;
add_report_added_cb(

string $cal |l back): void;

env_get (string $var_nane):
OpenCReport\ Resul t;

nul 1) :

160

PHP language API reference

public final result_new():
OpenCReport\ Resul t;

public final set_mvari abl e(
string $nane,
?string $value = null): void;

public final add_search_pat h(

string $path): void;
public static final canonicalize_path(

string $path): string;
public final find_ file(string $path): $string;

public static final get_col or(
string $col or_nane,
?bool $bgcol or = false): array;

public final set_paper(string $paper): void;

public final set_size unit(string $expr_string):
?0penCRepor t\ Expr;

public final get_size unit():
?0penCRepor t\ Expr;

public final set_noquery_show nodat a(
string $expr_string):
?0penCRepor t\ Expr;

public final get_noquery_show nodata():
?0penCRepor t\ Expr;

public final set_report_height_after_I|ast(
string $expr_string):
?0penCRepor t\ Expr;

public final get_report_height_after_last():
?0penCRepor t\ Expr;

public final set_follower_match_single(
string $expr_string):
?0penCRepor t\ Expr;

public final get_follower_match_single():
?0penCRepor t\ Expr;

public final set_follower_match_single_direct(
bool $val ue): void;

public final get _follower_match_single direct()
bool

}

12.3. High level PHP API

Here is an example code using the high level PHP APl where everything concerning the report (including
the data source) is described in the report XML:

<?php
$0 = new OpenCReport();

if (!%o->parse_xm (o, "report.xm")) {

161

PHP language API reference

printf("XM parse error\n");
exit(1l);
}
$0- >set _out put _format (o, OpenCReport:: OQUTPUT_PDF);
$o- >execut e();
$- >spool ();

Thiscodewill load r eport . xm , set the output format to PDF, runs the report and dumps the result on
st dout , which ends up in your browser if the PHP code is run behind a webserver.

Most of the class methods are direct wrappers of the corresponding C API functions.

12.3.1. Constructor

The class constructor creates an OpenCRepor t object.

public final
OpenCReport:: construct();

12.3.2. Load a report XML description

These methods load the report description either from the specified XML file or from the XML content
provided in the string. They returnt r ue for success, f al se for failure.

public final
penCReport::parse_xm (string $filenane): bool;

public final
penCReport::parse_xm frombuffer(string $buffer): bool;

12.3.3. Set report output format

Defaultispubl i ¢ const OpenCReport:: OQUTPUT_PDF.

public const OpenCReport:: QUTPUT_PDF;
public const OpenCReport:: QUTPUT_HTM;
public const OpenCReport:: QUTPUT_TXT;
public const OpenCReport:: QUTPUT_CSV;
public const OpenCReport:: QUTPUT_XM;
public const OpenCReport:: QUTPUT_JSON,

public final
OpenCReport::set_output_format(int $format): void;

Note that these constants are not to be overridden in subclasses. With PHP 8.1 and newer, thef i nal flag
is added so overriding these constants will throw an exception.

12.3.4. Get report output format

This method returns the previously set output format, or the default if it wasn't set.

public final

162

PHP language API reference

OpenCReport::get_output_format(): |ong;

12.3.5.

Get report output format name

This method returns the name of the output format as string.

public static final
OpenCReport:: get_output _format_nane(l ong $f ormat):

12.3.6.

string;

Set report output parameter

public final
OpenCReport:: set _out put _paraneter(

string $param
string $val ue): void;

Possible parameters for the HTML output driver:

docunent _r oot setsthe document root for trimming path prefix from image paths.

met a extendsthe default <met a charset="utf-8">.literal (seeThepassed-in string vaue
may containthewhole<mnet a . . . >, inwhich casetheinner parametersare used only. Thechar set
specification isignored. Only therest is used.

suppr ess_head suppressesthe default <head> ... </ head> section. Possible valuesto enable
suppressing the default <head> ... </ head> areyes,true and on. Anything else disablesiit.

Be aware, that the default section contains importand CSS stylesheet settings that are needed for the
correct layout.

Possible parameters for the CSV output driver:

csv_fil enane setsthefilenamefor Cont ent - Di sposi ti on inthe HTTP metadata returned by
ocrpt _get _content _type().

csv_as_text sets the MIME type for Cont ent - Type in the HTTP metadata returned by
ocrpt_get _content _type().

csv_delinmiter (alsoaiased ascsv_del i net er according to the historical typo in RLIB) sets
the CSV field delimiter to the first character of the string. By default it's a comma.

no_quot es will create a CSV output with values unquoted. Possible values to enable it are yes,
true, on or any positive non-zero number. Anything else disables it. It takes precedence over
only quote_strings

only_quot e_stri ngs will create aCSV output with only string values quoted. Possible values to
enableit areyes, t r ue, on or any positive non-zero number. Anything else disablesiit.

Note that some languages (e.g German, Swedish and Hungarian) use comma as the decimal separator
instead of decimal point. For these languages, either set csv_del i mi t er or set neither no_quot es,
noronl y_quote_strings

Possible parameters for the XML output driver:

163

PHP language API reference

« xm _rlib_conpat setstheflagto createan RLIB compatible XML output. Possiblevaluesto enable
itareyes, t r ue, on or any positive non-zero number. Anything else disablesiit.

When enabled, the toplevel element will be<r | i b>and <Repor t >sinside <pd> won't be embedded
inareport element.

12.3.7. Run the report

This method executes the report, constructs the result in memory. It returnst r ue for success, f al se for
failure. Itisafailureif the output format is unset.

public final
OpenCReport: : execute(): bool;

12.3.8. Dump report result

Dump the report output on the program's standard output channel.

public final
OpenCReport: :spool (): void;

12.3.9. Get report result

Get thereport output. The application then can saveit asafile. Thismethod returnsthe outputinast ri ng
if report execution succeeded, otherwise it returnsf al se.

public final
OpenCReport::get_output(): string|false;

12.3.10. Get report content type

Get the report content type. The application then can add it as HTTP header line(s) to the request. This
method returns an array of stringswith Cont ent - Type: , Cont ent - Lengt h: and other header lines
if report execution succeeded. Otherwiseiit returnsf al se.

public final
penCReport::get _content type(): array|false;

12.3.11. Get library version

This method reports the OpenCReports library version.

public final static
OpenCReport::version(): string;

12.4. Low level PHP API

The High level PHP API is aso part of the low level API. The class methods described below alow
creating areport using program code, or simply fine tuning the report behavior by mostly using the High
level PHP API.

164

PHP language API reference

Note that whenever the method argument isst ri ng $expr _st ri ng, such arguments are treated as
Expressions and are only parsed when calling the method. Evaluation of the expressions is delayed to
report execution time.

Also note that for class methods that return objects, the parent object must not beunset () before using

such a derived object. These derived objects are merely wrappers over C pointersin their parent objects
C representation. Such a'use after free" is a sure way to crash the PHP process.

12.4.1. Numeric behavior related methods

12.4.1.1. Set nuneric precision
The default is 256 bits of floating point precision.
public final

OpenCReport::set_numeric_precision_bits(
string $expr_string): void;

12.4.1.2. Get nuneric precision

public final
OpenCReport::get_nuneric_precision_bits(): |ong;

12.4.1.3. Set rounding mode

The rounding modes may be nearest,to_mnus_inf,to inf,to _zero,away fromzero
andf ai t hf ul . Thedefaultisnear est .

final public

OpenCReport::set_roundi ng_node(
string $expr_string): void;

12.4.2. Locale related methods

12.4.2.1. Set up translation

Setting up the translation needs two parameters:. the so called trandlation domain and the toplevel directory
for the trandations. It relies on GNU Gettext.

public final

OpenCReport: : bi ndt ext domai n(
string $domai nnane,
string $dirnane): void;

12.4.2.2. Set report locale

Setting the local e for the report does not affect the main program or other threads. L ocale setting includes
the language, the country. The UTF-8 suffix is necessary. E.g.: en_GB. UTF- 8 or de_DE. UTF- 8

public final
OpenCReport::set | ocal e(string $locale): void;

165

PHP language API reference

12.4.3. Data source and query related methods
12.4.3.1. Add a datasource

For the OpenCRepor t \ Dat asour ce class methods, see The OpenCReport\Datasource class

public final
penCReport: : dat asource_add(stri ng $source_nane,
string $source_type,
?array $conn_paranms = null):
?0penCRepor t\ Dat asour ce;

Thismethod adds adatasource of the specified typeto the report, using the optional connection parameters.

The possible datasource types are: array, csv, j son, xm , nari adb (also aiased as nmysql),
post gresql and odbc.

The connection parameter array is an associative array which contains keys and value pairs. The contents
of thisarray is needed to connect to SQL databases. For example:

$conn_parans = [
"dbname" => "mydat abase",
"user" => "nyuser"”

1
Thearray, csv,j son,andxm datasource types do not need connection parameters.

The list of connection parameters to establish database connection for mar i adb, post gr esqgl , and
odbc arelisted at Section 10.1.3.1, in the Low level C API Reference.

12.4.3.2. Get a named datasource

For the OpenCRepor t \ Dat asour ce class methods, see The OpenCReport\Datasource class.

public final
OpenCReport:: datasource_get(string $source_name):
?0OpenCReport\ Dat asour ce;

12.4.3.3. Get a named query
For the OQpenCRepor t \ Quer y class methods, see The OpenCReport\Query class.
public final

OpenCReport::query _get(string $query nane):
?0penCReport\ Query;

12.4.3.4. Refresh the internal representation of array queries

A two dimensiona array (actualy, a one dimensional array of one dimensional arrays) can be used in
PHP as an array query.

The PHP array may be modified during executing the report, e.g. in an event callback called after one
iteration of areport part. This method refreshes the the query's internals to be aware of the new contents
of the array.

166

PHP language API reference

public final
query_refresh(): void;

There are some limitations what may be done to the source PHP array, though.

» Thearray contents must not change during areport iteration, i.e. in anew row callback and some others.
Thiswould invalidate the contents of the PHP internal representation in away that OpenCReports may
break in subtle ways.

» Changesto thefirst row of the array (i.e. the column names) are ignored.

» The number of columnsin the array must not change.

12.4.4. Expression related methods

Expressions in OpenCReportsis explained in the Expressions chapter.
12.4.4.1. Parse an expression

The expression string may not reference report specific identifiers.

public final
OpenCReport: : expr_parse(string $expr_string):
?0penCRepor t\ Expr;

If the expression isin any way invalid, OpenCReport : : expr_parse() returnsnul | . The error is
returned by:

public final
OpenCReport::expr_error(): ?string;

12.4.4.2. Add a custom report function

public final
OpenCReport: : function_add(

string $expr_func_naneg,

string $zend_func_naneg,

l ong $n_ops,

bool $commutati ve,

bool $associ ati ve,

bool $l eft_associati ve,

bool $dont _optim ze): bool;
After this function returns with success, subsequently parsed expressions may use the function named as
the value of $expr _f unc_name. During evaluation of the function, the PHP function named as the
valueof $zend_f unc_nane iscalled. The expressionsthat use the new function may call it with either
the number of arguments givenin $n_ops, or if thevalueis- 1, any number of arguments.

Theremainingbool argumentsindicate the named properties of the function that the expression optimizer
considers.

The declaration of the PHP function named as the value of $zend_f unc_nane must follow this:

function ny_function(OpenCReport\Expr $e)

167

PHP language API reference

The function implementation may return any PHP base type (st ri ng, | ong, doubl e or bool) or it
may not return avalue at al (i.e. voi d). In the latter case, the function must set the return value in the
passed-in $e object.

For class methods of OpenCRepor t \ Expr , please see The OpenCReport\Expr class.

12.4.5. Layout part related methods
12.4.5.1. Add a new report (layout) part

For class methods of OpenCRepor t\ Par t , see The OpenCReport\Part class.

public final
OpenCReport::part_new): OpenCReport\Part;

12.4.5.2. Get first (layout) part

This function returns an object of the OpenCRepor t \ Part class. The object isinternally marked as an
"iterator object”, so OQpenCReport\ Part: : get _next () may becalled onit again to iterate through
every report part of the parent QpenCReport object.

public final
OpenCReport::part_get_first(): OpenCReport\Part;

12.4.5.3. Set paper type

Set the paper type using the paper name, i.e.' | etter' ,' Ad4' , etc.

public final
OpenCReport::set_paper(string $paper): void;

12.4.5.4. Set or get size unit

Set the size unit. See Size unit attribute. Possible settings are poi nts andrli b. Defaultisrl i b for
RLIB compatibility.

public final
OpenCReport::set_size unit(string $expr_string):
?0OpenCRepor t\ Expr;

public final
OpenCReport::get_size unit():
?0OpenCRepor t\ Expr;

12.4.5.5. Set or get "no query show NoData" property

public final

OpenCReport: :set_noquery_show nodat a(
string $expr_string):
?0penCRepor t\ Expr;

public final
OpenCReport: : get _noquery_show nodata():

168

PHP language API reference

?0penCRepor t\ Expr;
12.4.5.6. Set or get "report height after last" property

public final

OpenCReport::set_report_hei ght _after | ast(
string $expr_string):
?0penCRepor t\ Expr;

public final
OpenCReport::set _report_height _after last():
?0penCRepor t\ Expr;

12.4.5.7. Set or get "follower match single" property

See Follower match single attribute.

public final

OpenCReport::set_foll ower_match_singl e(
string $expr_string):
?0penCRepor t\ Expr;

public final

OpenCReport::get _follower_nmatch_single():
?0penCRepor t\ Expr;

public final

OpenCReport::set _foll ower_match_single direct(
bool $val ue): void;

public final
OpenCReport::get follower_match single direct():
bool ;

12.4.6. Callback related methods

These methods add a callback function that are called at certain points during executing the report.

public final
OpenCReport: :add_precal cul ati on_done_cb(
string $cal |l back): void;

public final
OpenCReport::add_part _added_ch(
string $cal |l back): void;

public final
OpenCReport::add_report_added_cb(
string $cal |l back): void;

The "precalculation done" callback is called after the first phase of the report is finished. The interface of
the callback function must follow this:

function
ny_cal | back(OpenCReport $0)

169

PHP language API reference

The "part added" callback is called when either OpenCReport::part_new() is caled,
or a report XML description is parsed via either OpenCReport::parse xm () or
OpenCReport::parse_xm from buffer() anda<Part > nodeisbeing parsed. Theinterface
of the callback function must follow this:

function
ny_cal | back(QpenCReport $o,
OpenCReport\Part $p)

The "report added" callback is caled when either OpenCReport\ Col um: :report_new)
is called, or a report XML description is parsed via either QpenCReport: : parse_xm () or
penCReport::parse_ xm frombuffer() and a <Report> node is being parsed. The
interface of the callback function must follow this:

function
ny_cal | back(OpenCReport $o,
OpenCReport\ Report $r)

12.4.7. Environment related methods

In PHP, the "environment" includes both global variables and actual environment variables. If a global
variable name exists in the PHP environment, its value is returned as OpenCRepor t \ Resul t . If such
a PHP global variable doesn't exist, the variable from operating (e.g. UNIX) environment is used and its
valueisreturned if it exists. Otherwise NULL is returned.

public final
OpenCReport::env_get(string $var_nane):
OpenCReport\ Resul t;

12.4.8. Add "m" domain variable

Add an "m" domain variable. If such avariable name didn't exist yet, and val ue isnot NULL, then the
variable is set. If val ue is NULL or omitted, the variable is removed. Such an explicit variable takes
precedence over the PHP global variable or the environment variable of the same name when used in
expressions.

public final
OpenCReport::set_nvari abl e(
string $nane,
string $val ue): void;

12.4.9. Result related methods

This method creates an uninitialized OQpenCRepor t\ Resul t with no value. See The OpenCReport
\Result class to set the value.

public final
OpenCReport::result_new(): OpenCReport\Result;

12.4.10. Path related methods
12.4.10.1. Add a search path

public final

170

PHP language API reference

OpenCReport::add_search_path(string $path): void;
12.4.10.2. Canonicalize path

This method returns (a possibly modified) path that will create a canonical absolute path that doesn't
contain. and . . references, symlinks are replaced with the actual target directory, etc.

public static final
OpenCReport::canonicalize_path(string $path): string;

12.4.10.3. Find a file

Find a (possibly relative) file using the search paths and return the canonical absolute path if found.

public final
penCReport::find file(string $path): $string;

12.4.11. Color related methods

Get an array with doubl e components for the color name or color specification.

public static
OpenCReport::final get_col or(
string $col or _nane,
?bool $bgcolor = false): array;

12.5. The OpenCReport\Datasource class

This class has no constructor, so such an object cannot be created or used on its own. A datasource only
isonly useful as part of areport. The QpenCReport : : dat asour ce_add() method return an object
of thisclass.

cl ass OpenCReport\ Dat asource {
public final free(): void;

public final query_add(string $nane,
string $array_or file or_sql,
?string $coltypes = null):
OpenCReport\ Query;

public final set_encodi ng(string $encoding): void;

}
12.5.1. Free a datasource

The datasourceis freed for the parent QpenCReport object.

public final
OpenCReport\ Dat asource: :free(): void,

12.5.2. Add a query to the datasource

Add a query to the parent OpenCRepor t object associated with the OpenCRepor t \ Dat asour ce.

171

PHP language API reference

public final

OpenCRepor t\ Dat asour ce: : query_add(string $nane,
string $array_or_file_or_sql,
?string $coltypes = null):
OpenCReport\ Query;

$nane isthe query name that Expressions may use as the identifier domain.

$array_or_file_or_sql contansthearray name (for an array datasource), the file name (for afile
based datasource, like JSON, CSV or XML), or the SQL query statement for SQL based datasources (like
MariaDB, PostgreSQL or ODBC).

Passing $col t ypes is optional and is only valid for array or file based datasources. File based
datasources may or may not include column type specification. Array datasourcesdon't. The$col t ypes
array containslongvaluesOpenCReport : : RESULT_*. See The OpenCReport class. It helpstheengine
to add automatic data conversion for query column data. SQL based datasources provide the data type
for query columns.

12.5.3. Set datasource encoding

Set encoding for the datasource. By default, UTF-8 is expected.

public final
OpenCReport\ Dat asource: : set _encodi ng(string $encodi ng): voi d;

12.6. The OpenCReport\Query class

cl ass OpenCReport\ Query {
public final get_result():
OpenCReport\ QueryResul t;

public final navigate_start(): void;
public final navigate_next(): bool;

public final navigate_use_prev_row): void;
public final navigate use next_row(): void;

public final add_follower(
OpenCReport\ Query $foll ower):
bool ;

public final add_follower_n_to_1(
OpenCRepor t\ Query $fol | owner,
OpenCRepor t\ Expr $mat ch):
bool ;

public final free(): void,;

}
12.6.1. Get result for a query's current row

Theresult isOpenCRepor t \ Quer yResul t . See Section 12.7.

public final

172

PHP language API reference

OpenCReport\ Query::get_result():
OpenCReport\ QueryResul t;

12.6.2. Start navigation for a query

Reset query (and al its followers) to go before the first row.

public final
OpenCReport\ Query: : navigate_start(): void;

12.6.3. Navigate to the next row

Navigate the query to the next row and return if the new row is valid. The current row of the query's
follower queries are also moved to the next valid row.

public final
OpenCReport\ Query: : navigate next(): bool;

Usually queries do not have a uniform way to report the total number of rows, although some datasource
types may have such afacility. Instead, they can report that the dataset has ended.

12.6.4. Navigate use previous/next row

These functions expose an implementation detail of the data traversal in OpenCReports. Thereis a 3-row
data cache in which there is aways the current row. One past row is kept so e.g. break boundaries can
be detected and there is one row read-ahead to detect the end-of-data condition early. These functions
allow to switch back and forth in the 3-row data cache, making the previous or next row the "current”
one momentarily. The query must always be the primary query of the report. Used by unit tests that don't
useocr pt _execute().

public final
OpenCReport\ Query: : navi gate_use_prev_row): bool;

public final
OpenCReport\ Query: : navi gate_use_next _row(): bool;

Usually queries do not have a uniform way to report the total number of rows, although some datasource
types may have such afacility. Instead, they can report that the dataset has ended.

12.6.5. Add a query follower

Add aquery as an 1:1 follower to the main query object. The method returns whether the call succeeded.

public final

OpenCReport\ Query: : add_fol | ower (
OpenCReport\ Query $foll ower):
bool ;

Adding a circular reference between queries would fail.

12.6.6. Add an N:1 query follower

Add a query and the matching expression as a follower to the main query object. The method returns
whether the call succeeded.

173

PHP language API reference

public final

OpenCReport\ Query: :add_foll ower_n_to_1(
OpenCReport\ Query $foll ower,
OpenCReport\ Expr $match):
bool ;

Adding a circular reference between queries would fail.

The call takes over ownership of the match object and it must not be explicitly freed.

12.6.7. Free a query

public final
OpenCReport\ Query: :free(): void,

12.7. The OpenCReport\QueryResult class

cl ass OpenCReport\ QueryResult {
public final colums(): |ong;

public final colum_nanme(l ong $i ndex): ?string;

public final colum_result(long $index):
?0penCReport\ Resul t;

}
12.7.1. Get number of columns for a query result

This method returns the number of columns for the query result.

public final
OpenCRepor t\ QueryResul t:: col ums(): | ong;

12.7.2. Get the nth column name for a query result

This method returns the column name for the query result at $i ndex. It returns NULL for invalid indices.

public final
OpenCReport\ QueryResul t:: col uim_nane(l ong $i ndex) :
?string;

12.7.3. Get the nth column result for a query result

This method returns the column result for the query result at $i ndex. It returns NULL for invalid indices.

public final
OpenCRepor t\ QueryResul t:: col um_resul t (I ong $i ndex):
?0penCReport\ Resul t;

12.8. The OpenCReport\Expr class

cl ass OpenCReport\ Expr {

174

PHP language API reference

public final free(): void;

public final get_expr_string(): string;
public final print(): void;

public final nodes(): |ong;

public final resolve(): void;

public final optimze(): void,

public final eval():
?0penCReport\ Resul t;

public final get_result():

?0penCReport\ Resul t;
public final set_string(

string $val ue): void;
public final set_Iong(

| ong $val ue): void;
public final set_doubl e(

doubl e $val ue): void;
public final set_numnber(

string $val ue): void;

public final get_num operands(): |ong;
public final operand_get_result(
| ong $opi dx):
?0penCReport\ Resul t;

public final cnp_results(): bool;

public final init_results(long $result_type):
voi d;

public final get_string(): ?string;
public final get_long(): Iong;
public final get_double(): double;
public final get_number(): ?string;

public final set_nth_result_string(
[ong $whi ch,
string $val ue): void;

public final set_nth_result_I|ong(
[ong $whi ch,
| ong $val ue): void;

public final set_nth_result_doubl e(
[ong $whi ch,
doubl e $val ue): void;

public final set_iterative_start_val ue(
bool $val ue): void;

175

PHP language API reference

public final set_del ayed(
bool $val ue): void;

}
12.8.1. Free an expression

Used by unit tests.

public final
OpenCReport\ Expr::free(): void;

12.8.2. Get the original expression string

public final
OpenCReport\ Expr::get_expr_string(): string;

12.8.3. Print an expression

Used by unit tests.

public final
OpenCReport\ Expr::print(): void;

12.8.4. Get the number of expression tree nodes

Used by unit tests to compare the expression tree before and after optimization.

public final
OpenCReport\ Expr::nodes(): |ong;

12.8.5. Resolve an expression

public final
OpenCReport\ Expr::resolve(): void,

12.8.6. Optimize an expression

public final
OpenCReport\ Expr::optimze(): void,;

12.8.7. Evaluate an expression

public final
OpenCRepor t\ Expr: :eval ():
?0penCReport\ Resul t;

12.8.8. Get the result of an expression

public final
OpenCReport\ Expr::get_result():

176

PHP language API reference

?0penCReport\ Resul t;

12.8.9. Set expression result to a string value

Useful for user functions.
public final

OpenCRepor t\ Expr::set_string(
string $val ue): void;

12.8.10. Set expression result to a long value

Useful for user functions.
public final

OpenCRepor t\ Expr: :set_| ong(
| ong $val ue): void;

12.8.11. Set expression result to a double value

Useful for user functions.
public final

OpenCReport\ Expr: : set _doubl g(
doubl e $val ue): void;

12.8.12. Set expression result to a numeric value from
string

Useful for user functions. Thisalowsusing BC Math®

public final

OpenCReport\ Expr::set_nunmber fromstring(
string $val ue): void;

12.8.13. Get number of operands of a expression

Useful for user functions.

public final
OpenCRepor t\ Expr:: get_num operands(): |ong;

12.8.14. Get nth operands' result of a expression

Useful for user functions.

public final
OpenCReport\ Expr:: operand_get result(
| ong $opi dx):

1 https://www.php.net/manual/en/book.bc.php

177

https://www.php.net/manual/en/book.bc.php
https://www.php.net/manual/en/book.bc.php

PHP language API reference

?0penCReport\ Resul t;

12.8.15. Compare the expression's current and previous
results

Used internally by the report executor and unit tests. Useful for implementing a custom report executor
with breaks.

public final
OpenCReport\ Expr::cmp_results(): bool;

12.8.16. Initialize expression results

Used internally by the report executor and unit tests. Useful for implementing a custom report executor.
public final

OpenCReport\Expr::init_results(long $result_type):
voi d;

12.8.17. Get string value of an expression

Used by unit tests.

public final
OpenCReport\ Expr::get_string(): ?string;

12.8.18. Get long value of an expression

Used by unit tests.

public final
OpenCRepor t\ Expr::get_long(): |ong;

12.8.19. Get double value of an expression

Used by unit tests.

public final
OpenCReport\ Expr::get _doubl e(): doubl e;

12.8.20. Get numeric value of an expression as a string

Used internally by unit tests.

public final
OpenCReport\ Expr:: get _nunber():
?string;

12.8.21. Set nth result of an expression to a string value

Used by unit tests.

178

PHP language API reference

public final

OpenCReport\ Expr::set_nth_result_string(
[ong $whi ch,
string $val ue): void;

12.8.22. Set nth result of an expression to a long value

Used by unit tests.

public final

OpenCReport\ Expr::set_nth_result_I| ong(
[ong $whi ch,
| ong $val ue): void;

12.8.23. Set nth result of an expression to a double value

Used by unit tests.

public final

OpenCReport\ Expr::set_nth_result_doubl e(
[ong $whi ch,
doubl e $val ue): void;

12.8.24. Set iterative start flag of an expression

Used internally by the report executor and by unit tests.

public final
OpenCReport\ Expr::set _iterative_start_val ue(
bool $val ue): void;

12.8.25. Set expression to delayed

A delayed expression's final value is precalculated, and this value is used in the output in every row of
the report.

public final

OpenCReport\ Expr: : set _del ayed(
bool $val ue): void;

12.9. The OpenCReport\Result class

cl ass OpenCReport\Result {
public final free(): void;

public final copy(
OpenCReport\ Result $src_result):
voi d;

public final print(): void;

public final get_type(): |ong;

179

PHP language API reference

public final is_null(): bool;

public final is_string(): bool;

public final is_nunber(): bool;

public final get_string(): ?string;

public final get_nunber(?string $format): ?string;

}
12.9.1. Free aresult object

Only use it for separately created result objects, like via OQpenCReport::env_get() and
OpenCReport::result_new().Not needed for freeing an expression.

public final
OpenCReport\Result::free(): void;

12.9.2. Copy a result object

Used by unit tests.
public final
OpenCReport\ Resul t:: copy(

OpenCReport\Result $src_result):
voi d;

12.9.3. Print aresult object

Used by unit tests.

public final
OpenCReport\Result::print(): void;

12.9.4. Get result object value type

Useful for user functions.

public final
OpenCReport\ Resul t::get _type(): long;

12.9.5. Detect whether result object value is NULL

Useful for user functions.

public final
OpenCReport\Result::is_null(): bool;

12.9.6. Detect whether result object value is a string

Useful for user functions.

public final
OpenCReport\Result::is_string(): bool;

180

PHP language API reference

12.9.7. Detect whether result object value is a number

Useful for user functions.

public final
OpenCReport\Resul t::is_nunber(): bool;

12.9.8. Get string value of a result object

Useful for user functions.

public final
OpenCReport\ Resul t::get_string(): 7?string;

12.9.9. Get numeric value of a result object as a string

Useful for user functions. The method may optionally use aformat string to specify the number of decimal
digits. See MPFR format strings?. The returned value may be used with BC Math® in PHP or (if the
precision is small enough) converted to doubl e or | ong.

public final
OpenCReport\ Resul t::get_nunber(?string $format): ?string;

12.10. The OpenCReport\Part class

cl ass OpenCReport\Part {
public final get_next():
?0penCReport\ Part;

public final row new():
OpenCReport\ Row,

public final row get first():
?0penCReport\ Row,

public final add_iteration_cb(
string $cal |l back): void;

public final equal s(
OpenCReport\Part $part): bool;

public final set_iterations(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :
public final get_iterations():
?0penCRepor t\ Expr;

public final set_font_namg(
?string $expr_string = null):

2 https://www.mpfr.org/mpfr-current/mpfr.html#Format-String
s https://www.php.net/manual/en/book.bc.php

181

https://www.mpfr.org/mpfr-current/mpfr.html#Format-String
https://www.php.net/manual/en/book.bc.php
https://www.mpfr.org/mpfr-current/mpfr.html#Format-String
https://www.php.net/manual/en/book.bc.php

PHP language API reference

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

?0penCRepor t\ Expr;

get _font_name():
?0penCRepor t\ Expr;

set _font_size(
?string $expr_stri
?0penCRepor t\ Expr;

get _font_size():
?0penCRepor t\ Expr;

set _paper (
?string $expr_stri
?0penCRepor t\ Expr;

get _paper():
?0penCRepor t\ Expr;

set_orientation(
?string $expr_stri
?0penCRepor t\ Expr;

get _orientation():
?0penCRepor t\ Expr;

set _top_margi n(
?string $expr_stri
?0penCRepor t\ Expr;

get _top_margin():
?0penCRepor t\ Expr;

set _bottom nmargi n(
?string $expr_stri
?0penCRepor t\ Expr;

get _bottom margin():
?0penCRepor t\ Expr;

set _left_margin(
?string $expr_stri
?0penCRepor t\ Expr;

get _left_margin():
?0penCRepor t\ Expr;

set _right_margin(
?string $expr_stri
?0penCRepor t\ Expr;

get _right_margin():
?0penCRepor t\ Expr;

ng

ng

ng

ng

ng

ng

ng

nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :

182

PHP language API reference

public final set_suppress(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_suppress():
?0penCRepor t\ Expr;

public final set_suppress_pageheader firstpage(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_suppress_pageheader_firstpage():
?0penCRepor t\ Expr;

public final page_header():
?0penCRepor t\ Cut put ;

public final page_header_set_report(
OpenCReport\ Report $report):
voi d;

public final page footer():
?0penCReport\ Cut put ;

public final page footer_set_report(
OpenCReport\ Report $report):
voi d;

}
12.10.1. Get the next report part

Get the next object in the chain of report parts. This method may only be used on an object created with
OpenCReport::part_get first(),i.e onethat wasinternaly marked as an iterator object.

public final
OpenCReport\ Part::get _next():
?0penCReport\ Part;

12.10.2. Create a new report part row

For class methods of OpenCRepor t \ Row, see Section 12.11

public final
OpenCReport\Part::row new):
OpenCRepor t\ Row,

12.10.3. Get the first report part row

Get the first part row from the part. The object is marked internally as an iterator. For class methods of
OpenCRepor t \ Row, see Section 12.11

public final
OpenCReport\Part::row get _first():

183

PHP language API reference

?0penCReport\ Row,

12.10.4. Add iteration callback for the part

Add an "iteration done" event callback for the part object.

public final
OpenCReport\Part::add_iteration_chb(
string $cal |l back): void;

12.10.5. Check whether two parts are identical

Check whether two part objects refer to the same internal part structure of the report. Used by unit tests.

public final
OpenCReport\ Part: : equal s(
OpenCReport\Part $part): bool;

12.10.6. Set or get number of part iterations

Set the number of iterations for the part. The expression must evaluate to a numeric (integer) value. The
part and all of its subsections will be calculated and rendered this many times. Default is 1.

public final

OpenCReport\Part::set _iterations(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\Part::get _iterations():
?0penCRepor t\ Expr;

12.10.7. Set or get part font name

public final

OpenCReport\Part::set_font_name(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\Part::get_font_nanme():
?0penCReport\ Expr;

12.10.8. Set or get part font size

public final

OpenCReport\ Part::set_font_size(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\Part::get_font_size():
?0penCRepor t\ Expr;

184

PHP language API reference

12.10.9. Set or get paper type

public final

OpenCReport\ Part::set_paper (
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Part:: get_paper():
?0penCReport\ Expr;

12.10.10. Set or get part orientation

The expression must evaluate to a string value. The possible values are portrai t and | andscape.
Defaultisportrait.

public final

OpenCReport\Part::set_orientation(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\Part::get_orientation():
?0penCRepor t\ Expr;

12.10.11. Set or get part top margin

public final

OpenCReport\ Part::set_top_margin(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\Part::get_top_margin():
?0penCRepor t\ Expr;

12.10.12. Set or get part bottom margin

public final

OpenCReport\ Part::set_bottom margin(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Part::get_bottom margin():
?0penCRepor t\ Expr;

12.10.13. Set or get part left margin

public final
OpenCReport\ Part::set_|eft_margin(
?string $expr_string = null):

185

PHP language API reference

?0penCRepor t\ Expr;

public final
OpenCReport\Part::get_left_margin():
?0penCRepor t\ Expr;

12.10.14. Set or get part right margin

public final

OpenCReport\ Part::set_right_margin(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\Part::get_right_margin():
?0penCRepor t\ Expr;

12.10.15. Set or get part suppression

Set whether the part is suppressed, i.e. al its subsections are omitted from calculating and rendering.
Defaultisf al se.

public final

OpenCReport\ Part::set suppress(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Part::get_suppress():
?0penCRepor t\ Expr;

12.10.16. Set or get suppression of the page header on
the first page

Set whether the page header of the part is suppressed on the first page. The expression must evaluate to a
numeric value, which istreated as aboolean (i.e. 0 or non-0). Default isf al se.

public final

OpenCReport\ Part::set suppress_pageheader firstpage(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
penCReport\ Part::set _suppress_pageheader firstpage():
?0penCRepor t\ Expr;

12.10.17. Get the part's page header

Get the part's page header <Qut put > section. See Section 12.16 and Output node.

public final
OpenCReport\ Part:: page_header ():
?0penCReport\ Cut put ;

186

PHP language API reference

12.10.18. Set the report object for the part's page header

Set the report object for the part's page header. This will add the internal association between the part's
page header and the report, and expressions in the part page header may reference report query column
identifiers and report user variables. Therefore it is only recommended for single-part, single-report
reports.

public final

OpenCReport\ Part:: page_header_set report(
OpenCReport\ Report $report):
voi d;

12.10.19. Get the part's page footer

Get the part's page footer <Qut put > section. See Section 12.16 and Output node.

public final
OpenCReport\ Part::page footer():
?0penCReport\ Qut put ;

12.10.20. Set the report object for the part's page footer

Set thereport object for the part's page footer. Thiswill add theinternal association between the part's page
footer and the report, and expressionsin the part page footer may reference report query column identifiers
and report user variables. Thereforeit is only recommended for single-part, single-report reports.

public final

OpenCReport\ Part::page footer_set report(
OpenCReport\ Report $report):
voi d;

12.11. The OpenCReport\Row class

cl ass OpenCReport\ Row {
public final get_next():
?0penCReport\ Row,

public final colum_new():
OpenCReport\ Col um;

public final colum_get first():
?0penCRepor t\ Col um;

public final set_suppress(
?string $expr_string
?0penCRepor t\ Expr;

null):
public final get_suppress():
?0penCRepor t\ Expr;

public final set_newpage(
?string $expr_string

null):

187

PHP language API reference

?0penCRepor t\ Expr;

public final get_newpage():
?0penCRepor t\ Expr;

public final set_layout(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final set_layout():
?0penCRepor t\ Expr;
}

12.11.1. Get the next part row

Get the next abject in the chain of part rows. This method may only be used on an object created with
OpenCReport\Part::row get first(),i.e onethatwasinternally marked asaniterator object.

public final
OpenCReport\ Row: : get _next ():
?0penCReport\ Row,

12.11.2. Create a new part column for the row

For class methods of OQpenCRepor t\ Col urm, see Section 12.12.

public final
OpenCReport\ Row: : col utmm_new() :
OpenCReport\ Col ummn;

12.11.3. Get first column of a part row

Get the first column from the part row. The object is marked internally as an iterator. For class methods
of OpenCRepor t\ Col unm, see Section 12.12

public final
OpenCReport\ Row: : col uimm_get _first():
?0penCReport\ Col umm;

12.11.4. Set or get suppression for the part row

public final

OpenCReport\ Row: set _suppress(
?string $expr_string = null):
?0penCReport\ Expr;

public final

OpenCReport\ Row. get _suppress():
?0penCReport\ Expr;

12.11.5. Set or get new page for the part row

When set toyes, the part row will start on a new page.

188

PHP language API reference

public final

OpenCReport\ Row. set _newpage(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Row. get _newpage():
?0penCRepor t\ Expr;

12.11.6. Set or get layout type for the part row

public final

OpenCReport\ Row: : set | ayout (
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Row: : set _| ayout ():
?0penCRepor t\ Expr;

12.12. The OpenCReport\Column class

cl ass OpenCReport\ Col um {
public final get_next():
?0penCRepor t\ Col umm;

public final report_new():
OpenCReport\ Report;

public final report_get first():
?0penCReport\ Report;

public final set_suppress(
?string $expr_string
?2?0penCRepor t\ Expr;

nul 1) :

public final get_suppress():
?2?0penCRepor t\ Expr;

public final set_wi dth(
?string $expr_string
?OpenCRepor t\ Expr;

nul 1) :

public final get_wdth():
?OpenCRepor t\ Expr;

public final set_wi dth(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_wdth():
?OpenCRepor t\ Expr;

189

PHP language API reference

public final set_border_w dt h(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_border_w dth():
?0penCRepor t\ Expr;

public final set_border_col or(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_border_color():
?0penCRepor t\ Expr;

public final set_detail_col ums(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_detail _colums():
?0penCRepor t\ Expr;

public final set_col um_paddi ng(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_colum_padding():
?0penCRepor t\ Expr;
}

12.12.1. Get next column

Get the next object in the chain of part columns. This method may only be used on an object created
withOpenCReport\ Row: : col um_get _first(),i.e onethat wasinternally marked asaniterator
object.

public final

OpenCReport\ Col um: : get _next():
?0penCReport\ Col unm;

12.12.2. Create a new report in the column

For class methods of OpenCRepor t \ Report , see Section 12.13.
public final

OpenCRepor t\ Col um: : report _new():
OpenCReport\ Report;

12.12.3. Get first report of a part column

Get thefirst report from the part column. The object is marked internally as an iterator. For class methods
of OpenCReport\ Report, see Section 12.13

public final

190

PHP language API reference

OpenCReport\ Col um: :report _get _first():
?0penCReport\ Report;

12.12.4. Set or get part column suppression

public final

OpenCReport\ Col um: : set _suppr ess(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ Col um: : get _suppress():
?0penCReport\ Expr;

12.12.5. Set or get part column width

Set the width of the whole part column. If an inner report is wider than the column width, it's rendering
is truncated.

public final

OpenCRepor t\ Col um: : set _wi dt h(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCRepor t\ Col um: : get _wi dt h():
?0penCRepor t\ Expr;

12.12.6. Set or get part column height

Set the part column height. During report execution, the column height is calculated for rendering. Inner
reports and the height of their lines that would be rendered are added. New lines of a report that would
exceed the part column height are not rendered and the report is rendered partialy. The data shown in
rendered lines are identical in both cases, whether or not the pre-set height is set. When the set column
height is reached, further inner reports are not rendered. Default is unset, i.e. every inner report is fully
rendered.

public final

OpenCReport\ Col um: : set _hei ght (
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Col umm: : get _hei ght ():
?0penCRepor t\ Expr;

12.12.7. Set or get border width

Set the border width around the part column. Thewidth isin points (1/72 inches). Defaultis0, i.e. aborder
is not rendered around the part column.

public final
OpenCReport\ Col um: : set _bor der _w dt h(

191

PHP language API reference

?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Col um: : get _border_w dth():
?0penCRepor t\ Expr;

12.12.8. Set or get border color

Set the border color around the part column. Only used if the border width is set.

public final

OpenCReport\ Col um: : set _border_col or(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Col umm: : get _border_color():
?0penCRepor t\ Expr;

12.12.9. Set or get number of detail columns

Set the number of detail columns in the part column. Inner reports inside the part column may be narrow
and visually wasteful with empty areas on the page. In this case, when a page break would occur, acolumn
break would occur instead. Only reaching the last column would result in a page break.

public final

OpenCReport\ Col um: : set _detai |l _col ums(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Col um: : get _detail _col ums():
?0penCRepor t\ Expr;

12.12.10. Set or get column padding

Set the padding between detail columns. It is used if the number of detail columnsis greater than 1.

public final

OpenCReport\ Col um: : set _col unm_paddi ng(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Col um: : get _col um_paddi ng() :
?0penCRepor t\ Expr;

12.13. The OpenCReport\Report class

cl ass OpenCReport\ Report {
public final get_next():
?0penCReport\ Report;

192

PHP language API reference

public final

public final

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i
publ i

publ i

publ i

full

f

f

f

f

f

f

f

f

f

f

f

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

vari abl e_new

| ong $vari abl e_type,

string $nane,
string $expr,

?string $ignoreexpr = null,
?string $reset_on_break_nane
?bool $precal cul ate = fal se):
OpenCReport\ Vari abl e;

variabl e_new ful I (

| ong $result_type,

string $nane,

?string $baseexpr = null,
?string $ignoreexpr = null,
?string $internedexpr = null,
?string $interned2expr = nul
?string $resultexpr = null
?string $reset_on_break_nane
?bool $precal culate = fals):
OpenCReport\ Vari abl e;

variable_get first():

?0penCReport\ Vari abl e;

expr _par se(

string $expr_string):
?0penCRepor t\ Expr;

expr_error():

?string;

resol ve_vari abl es(): void;

eval uate_variabl es(): void;

br eak_new(

?string $nane):
OpenCReport\ Report Br eak;

break_get (

string $break_nane):
OpenCReport\ Report Br eak;

break_get first():

?0penCRepor t\ Report Br eak;

resol ve_breaks():

voi d;

get _query_rownun(): | ong;

add_start_chb(

string $cal |l back): void;

add_done_cb(

nul |

nul |

193

PHP language API reference

string $cal |l back): void;

public final add_new row cb(
string $cal |l back): void;

public final add_iteration_cb(
string $cal |l back): void;

public final add_precal cul ati on_done_cb(
string $cal |l back): void;

public final equal s(
OpenCReport\ Report $report):
bool

public final set_main_query(
OpenCReport\ Query $query): void;

public final set_main_query_ by nanme(
string $query_nane): void;

public final set_suppress(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_suppress():
?0penCRepor t\ Expr;

public final set_iterations(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_iterations():
?0penCRepor t\ Expr;

public final set_font_namg(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_font_name():
?0penCRepor t\ Expr;

public final set_font_size(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_font_size():
?0penCRepor t\ Expr;

public final set_height(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_height():

194

PHP language API reference

?0penCRepor t\ Expr;

public final set_fieldheader_priority(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_fieldheader_priority():
?0penCRepor t\ Expr;

public final nodata(): OpenCReport\ Cutput;

public final header(): OpenCReport\ Cutput;

public final footer(): OpenCReport\ Cutput;

public final field_header(): OpenCReport\ Qutput;
public final field_ details(): OpenCReport)\Qutput;

}
12.13.1. Get the next report

Get the next object in the chain of reports. This method may only be used on an object created with
OpenCReport\ Col um: : report _get first(),i.e onethat wasinternally marked asaniterator
object.

public final
OpenCRepor t\ Report::get_next():
?0penCReport\ Report;

12.13.2. Create a new report variable

Create anew variable of the specified type and name, using the expression to produce the value. Optionally
abreak name (see Report breaks) may be specified, where, upon abreak change, the variableis reset. See
Report variables. For class methods of OpenCRepor t\ Vari abl e, see Section 12.14.

public const OpenCReport\ Report:: VAR ABLE EXPRESSI ON,
public const OpenCReport\Report:: VAR ABLE COUNT,;
public const OpenCReport\Report:: VAR ABLE COUNTALL;
public const OpenCReport\Report:: VAR ABLE SUM

public const OpenCReport\Report:: VAR ABLE AVERAGE,
public const OpenCReport\Report:: VAR ABLE AVERAGEALL,;
public const OpenCReport\ Report:: VAR ABLE LONEST,;
public const OpenCReport\Report:: VAR ABLE H GHEST;

public final
OpenCReport\ Report::variabl e_new
| ong $vari abl e_type,
string $nane,
string $expr,
?string $ignoreexpr,
?string $reset_on_break nane = nul |,
?bool $precal culate = fal se):
OpenCReport\ Vari abl e;

A precalculated variable's value (or set of values) is calculated during the precalculation phase of report
execution. When the report is being rendered, the precalculated values are used. This allows using an end
value in a header, e.g. a report header may contain a summary of bottom line values. Similarly, break

195

PHP language API reference

headers may show values that would otherwise be shown only in break footer sections for variables that
are reset on a break.

12.13.3. Create a new custom report variable

Create a new custom variable of the specified name, with total control over the base expression,
intermediary expression(s) and the result expression. Optionally a break name (see Report breaks) may be
specified, where, upon a break change, the variable is reset. See Report variables. For class methods of
OpenCReport\ Vari abl e, see Section 12.14.

public final

OpenCRepor t\ Report::variabl e_new full(
| ong $result _type,
string $nane,
?string $baseexpr = null,
?string $ignoreexpr,
?string $internedexpr = null,
?string $interned2expr = null,
?string $resultexpr = null,
?string $reset_on_break nanme = nul |,
?bool $precal cul ate = fal se):
OpenCReport\ Vari abl e;

12.13.4. Get the first variable of a report

Get the first variable object in the chain of variables of the report. The object is marked internally as an
iterator, so OQpenCReport\ Vari abl e: : get _next () may beused onit.

public final
OpenCReport\ Report::variable_get first():
?0penCReport\ Vari abl e;

12.13.5. Parse and expression for the report

Parse and expression for the report. If the expression fails to parse, the method returns NULL and the error
isfound in OQpenCRepor t\ Report:: expr_parse().

public final

OpenCReport\ Report::expr_parse(
string $expr_string):
?0penCRepor t\ Expr;

Themain difference between OpenCReport : : expr _par se() (seeSection12.4.4.1) and thismethod
isthat theformer may not reference areport variableidentifier. Since the expression for the former method
is not associated with areport, report variable identifiersin the expression may not be resolved. The same
appliesto any function that isrelated to report internal details, e.g. the br r ownun() function (see Break
row number function: the expression is not associated with a report with breaks, the break name will not
be found.

12.13.6. Get the error after a failed expression parsing

public final
OpenCReport\ Report::expr_error(): ?string;

196

PHP language API reference

12.13.7. Resolve variables of the report

Resolve all variables of the report. This method may be useful to implement a custom report executor. The
equivalent C function is used internally. This method is used by unit tests.

public final
OpenCReport\ Report::resolve_variables(): void,;

12.13.8. Evaluate variables of the report

This method may be useful to implement a custom report executor. The equivalent C function is used
internally. This method is used by unit tests.

public final
OpenCReport\ Report::eval uate_variables(): void,;

12.13.9. Create a new report break

Create anew report break. A break isthe basisfor grouping data. See Report breaks. For the class methods
of OpenCRepor t\ Report Br eak, see Section 12.15.

public final

OpenCReport\ Report:: break_new
?string $nane):
OpenCReport\ Report Br eak;

12.13.10. Get areport break by its name

Get a previously created break using its name. The object that's created this way is not marked as an
iterator, so QpenCRepor t \ Report Br eak: : get _next () may not be used on it.

public final

OpenCReport\ Report:: break_get (
string $break_nane):
OpenCReport\ Report Br eak;

12.13.11. Get the first report break

Get thefirst break object in the chain of breaks of the report. The object is marked internally as an iterator,
so OpenCRepor t \ Report Break: : get _next () may beused onit.

public final
OpenCReport\ Report::break _get first():
?0penCRepor t\ Report Br eak;

12.13.12. Resolve breaks of the report

Resolve all breaks of the report. It may be useful to create a custom report executor. The equivalent C
function is used internally. Used by unit tests.

public final
OpenCReport\ Report::resol ve_breaks(): void;

197

PHP language API reference

12.13.13. Get the current row number of the main query

Get the current row number of the report's main query. Used by unit tests.

public final
OpenCRepor t\ Report::get_query_rownun(): |ong;

12.13.14. Add a "report start" callback

Add a "report start" callback to the report. The callback is called when the report starts during report
execution.

public final
OpenCReport\ Report::add _start_cb(
string $cal |l back): void;

The callback function interface must follow this:

function
ny_cal | back(OpenCReport $o0, OpenCReport\Report $r): void;

12.13.15. Add a "report done" callback

Add a "report done" callback to the report. The callback is called when the report is done during report
execution.

public final
OpenCRepor t\ Report:: add_done_cb(
string $cal |l back): void;

The callback function interface must follow this:

function
ny_cal | back(OpenCReport $o0, OpenCReport\Report $r): void;

12.13.16. Add a "new row" callback

Add a"new row" callback to the report. The callback is called for every data row for the report during
report execution.

public final
OpenCReport\ Report::add_new row cb(
string $call back): void;

The callback function interface must follow this:

function
ny_cal | back(OpenCReport $o0, OpenCReport\Report $r): void;

12.13.17. Add an "iteration done" callback

Add an "iteration done" callback to the report. The callback is called after every iteration for the report
during report execution.

public final

198

PHP language API reference

OpenCReport\ Report::add_iteration_cb(
string $cal |l back): void;

The callback function interface must follow this:

function
ny_cal | back(OpenCReport $o0, OpenCReport\Report $r): void;

12.13.18. Add a "precalculation done" callback

Add a"precalculation done" callback to the report. The callback is called after precalculation is done for
the report during report execution.

public final
OpenCReport\ Report::add_precal cul ati on_done_ch(
string $cal l back): void;

The callback function interface must follow this:

function
ny_cal | back(OpenCReport $o, OpenCReport\Report $r): void;

12.13.19. Check whether two report objects are the same

Check whether the main object's internal C representation is the same as the passed-in object's internal
representation.

public final

OpenCReport\ Report:: equal s(
OpenCReport\ Report $report):
bool ;

12.13.20. Set the report's main query
Set the report's main query to the passed-in OpenCRepor t\ Query.

public final
OpenCRepor t\ Report::set_main_query(
OpenCReport\ Query $query): void;

12.13.21. Set the report's main query by name
Set the report's main query using the query name.

public final
OpenCReport\ Report::set_main_query_by nanme(
string $query_nane): void;

12.13.22. Set or get the report suppression

Set the report's suppression. The expression must evaluate too a numeric value. It's zero or non-zero value
will decide whether the report is suppressed, i.e. not calculated and not rendered in the outpuit.

public final
OpenCReport\ Report::public final set_suppress(

199

PHP language API reference

?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Report::public final get_suppress():
?0penCRepor t\ Expr;

12.13.23. Set or get number of iterations for the report

Set the number of iterations for the report. The report will be calculated and rendered this many times.
Defaultis 1.

public final

OpenCReport\ Report::set_iterations(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Report::get _iterations():
?0penCRepor t\ Expr;

12.13.24. Set or get the font name for the report

Set thefont namefor the report. The report font name will be used for any child elementsthat don't specify
the font name themselves.

public final

OpenCReport\ Report::set _font_nane(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Report::get _font_name():
?0penCRepor t\ Expr;

12.13.25. Set or get the font size for the report

Set the font size for the report. The report font size will be used for any child elements that don't specify
the font size themselves.

public final

OpenCReport\ Report::set_font_size(
?string $expr_string = null):
?OpenCRepor t\ Expr;

public final

OpenCReport\ Report::get_font_size():
?OpenCRepor t\ Expr;

12.13.26. Set or get the report height

Set the report height. During report execution, the report height is calculated for rendering. Height of lines
that would be rendered are added. New lines that would exceed the report height are not rendered. The

200

PHP language API reference

data shown in rendered lines are identical in both cased, whether or not the report height is set. Default is
unset, i.e. every lineisrendered and the number of lines determine the report height,

public final

OpenCRepor t\ Report: :set_hei ght(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCRepor t\ Report:: get _height():
?0penCRepor t\ Expr;

12.13.27. Set or get the report's field header prioroty

Set the report's field header priority. See Report field header priority attribute for explanation.

public final

OpenCReport\ Report::set fieldheader_priority(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Report::get_fieldheader_priority():
?0penCRepor t\ Expr;

12.13.28. Get output sections of the report

Get the output sections of the report. See NoData node, Report header, Report footer and Detail node. For
class methods of , see Section 12.16.

public final
OpenCReport\ Report::nodata(): OpenCReport\ CQutput;

public final
OpenCReport\ Report:: header(): OpenCReport\ CQutput;

public final
OpenCReport\ Report::footer(): OpenCReport\ CQutput;

public final
OpenCReport\ Report::field_header(): OpenCReport\ Qutput;

public final
OpenCReport\Report::field _detail s(): OpenCReport\ Qutput;

12.14. The OpenCReport\Variable class

cl ass OpenCReport\Variable {
public final baseexpr():
?0penCRepor t\ Expr;

public final ignoreexpr():
?0penCRepor t\ Expr;

201

PHP language API reference

public final internmedexpr():
?0penCRepor t\ Expr;

public final interned2expr():
?0penCRepor t\ Expr;

public final resultexpr():
?0penCRepor t\ Expr;

public final get_type(): Iong;
public final get_precal culate(): bool;

public final resolve(): void;
public final eval (): void;

public final get_next():
?0penCReport\ Vari abl e;

}
12.14.1. Get the base expression of a variable

Used by unit tests. For class methods of QpenCRepor t \ Expr , see The OpenCReport\Expr class

public final
OpenCReport\ Vari abl e: : baseexpr () :
?0penCRepor t\ Expr;

12.14.2. Get the ignore expression of a variable

Used by unit tests. For class methods of OpenCRepor t \ Expr , see The OpenCReport\Expr class

public final
OpenCReport\ Vari abl e: : i gnoreexpr():
?0penCRepor t\ Expr;

12.14.3. Get the first intermediary expression of a
variable
Used by unit tests. For class methods of QpenCRepor t \ Expr , see The OpenCReport\Expr class

public final
OpenCReport\ Vari abl e: ;i ntermedexpr():
?0penCRepor t\ Expr;

12.14.4. Get the second intermediary expression of a
variable

Used by unit tests. For class methods of QpenCRepor t \ Expr , see The OpenCReport\Expr class

public final

202

PHP language API reference

OpenCReport\ Vari abl e: : i nter med2expr ():
?0penCRepor t\ Expr;

12.14.5. Get the result expression of a variable

Used by unit tests. For class methods of QpenCRepor t \ Expr , see The OpenCReport\Expr class

public final
OpenCReport\Variabl e::resul texpr():
?0penCRepor t\ Expr;

12.14.6. Get the variable type

public final
OpenCReport\Variabl e:: get_type(): |ong;

12.14.7. Get the variable precalculated flag

Get the variable's precal culated flag.

public final
OpenCReport\ Vari abl e:: get _precal culate(): bool;

12.14.8. Resolve expressions of a variable

Resolve the base, intermediary and result expressions of asingle variable. Used by unit tests.

public final
OpenCReport\ Vari abl e: :resol ve(): void;

12.14.9. Evaluate expressions of a variable

Evaluate the base, intermediary and result expressions of asingle variable. Used by unit tests.

public final
OpenCReport\Variabl e::eval (): void;

12.14.10. Get the next variable of the same report

Get the next variable object from the chain of variablesin the report this variable belongs to. This method
may only be called on an object that was marked asan iterator, i.e. onethat was created by OpenCRepor t
\Report::variable_get _first().

public final
OpenCReport\ Vari abl e: : get_next():
?0penCReport\ Vari abl e;

12.15. The OpenCReport\ReportBreak class

cl ass OpenCReport\ Report Break {
public final get_next():
?0penCReport\ Report Br eak;

203

PHP language API reference

public final breakfield_add(
OpenCReport\ Expr $breakfiel d_expr):
voi d;

public final check_fields(): bool;
public final reset_vars(): void,;
public final add_trigger_cb(
?string $call back):
voi d;
public final nane(): string;

public final header(): OpenCReport\ Cutput;
public final footer(): OpenCReport\ Cutput;

}

12.15.1. Get next break

Get the next break object from the chain of breaks in the report this break belongs to. This method may
only be called on an object that was marked as an iterator, i.e. one that was created by OpenCRepor t
\ Report::break get first().

public final
OpenCRepor t\ Report Break: : get _next ():
?0penCRepor t\ Report Br eak;

12.15.2. Add a breakfield to a break

Add a breakfield to a break. A break may consists of multiple breakfields. A break triggersif any of the
breakfields change from one data line to another.

public final

OpenCReport\ Report Break: : breakfi el d_add(
OpenCRepor t\ Expr $breakfiel d_expr):
voi d;

12.15.3. Check breakfields

Check breakfields of a break. This method returns t r ue if the break triggers, i.e. field values for the
current data row do not match the values for the previous data row. It aso the triggers for the first row
when there is no previous row. It is used internally by the report executor and also used by unit tests. It
may be useful to implement a custom report executor.

public final
OpenCReport\ Report Break:: check_fields(): bool;

12.15.4. Reset variables associated with a break

Reset report variables associated with a break. Such variables were created with specifying the "reset on
break" break name. These variables restart from their initial values. It is used internally by the report
executor and also used by unit tests. It may be useful to implement a custom report executor.

204

PHP language API reference

public final
OpenCReport\ Report Break: :reset_vars(): void;

12.15.5. Add a "trigger" callback to a break

Add a"trigger" callback to the break.

public final

OpenCReport\ Report Break: :add_trigger cb(
?string $cal |l back):
voi d;

12.15.6. Get the name of a break

Get the name of abreak. It may be useful if the breakswere added viaareport XML descriptor but variables
are added afterwards from code.

public final
OpenCRepor t\ Report Break: : nane(): string;

12.15.7. Get output sections of a break

Get the header and footer sections of a break. See also BreakHeader and BreakFooter. For class methods
of OpenCRepor t\ Qut put , see Section 12.16

public final
OpenCReport\ Report Break: : header (): OpenCReport\ Qut put;

public final
OpenCReport\ Report Break:: footer(): OpenCReport\CQutput;

12.16. The OpenCReport\Output class

cl ass OpenCReport\ Qut put {
public final set_suppress(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_suppress():
?0penCRepor t\ Expr;

public final add_line():
?0OpenCReport\ Li ne;

public final add_hline():
?0penCReport\ Hori zont al Li ne;

public final add_imge():
?penCReport\ | mage;

public final add_inage_end(): void,;

public final get first_elenent():

205

PHP language API reference

?0penCRepor t\ Qut put El enent ;
}

12.16.1. Set or get suppression of the output section

Set suppression of the output section. The expression must evaluate to a numeric value which will be
treated as aboolean, i.e. 0 or non-0. The default isf al se, i.e. the section is not suppressed.

public final

OpenCReport\ Qut put : : set _suppress(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Qut put : : get _suppress():
?0penCRepor t\ Expr;

12.16.2. Add a (text) line

Add a (text) line to the output section. A line may have children elements, like OpenCReport
\ Text , OpenCReport\ | mage and OpenCRepor t\ Bar code. (See Section 12.20, Section 12.19
and Section 12.21.) For class methods of OpenCRepor t\ Li ne, see Section 12.17.

public final
OpenCReport\ Qut put::add_line():
?0penCReport\ Li ne;

12.16.3. Add a horizontal line

Add a horizonta line (a visual separator) to the output section. For class methods of OpenCRepor t
\ Hori zont al Li ne, see Section 12.17.

public final
OpenCReport\ Qut put::add_hline():
?0penCReport\ Hori zont al Li ne;

12.16.4. Add an image

Add animageto the output section. Theimagewill indent every subsequent elementsin the section, except
other images and barcodes (see bel ow). For class methods of OpenCRepor t \ | mage, see Section 12.17.

public final
OpenCReport\ Qut put : : add_i mage() :
?penCReport\ | mage;

12.16.5. Add a barcode

Add a barcode to the output section. The barcode behaves just like an image, i.e. it will indent

every subsequent elements in the section, except other images and barcodes. For class methods of
OpenCReport\ Bar code, see Section 12.17.

public final
OpenCReport\ Qut put : : add_bar code() :
?0penCRepor t\ Bar code;

206

PHP language API reference

12.16.6. Add an image end marker

Add an image end marker to the output section. Subsequent elements in the section won't be indented and

will be drawn vertically below the previous image.

public final

OpenCRepor t\ Qut put: : add_i mage_end():

12.16.7. Get the first output element

Get the first output layout element. It starts an iterator for the output, and return the first element via an
OpenCReport\ Qut put El erent object, or nul | if thereis none. See also Section 12.22.

public final
OpenCReport\ Qutput::get _first_elenment():
?0penCRepor t\ Qut put El enent ;

12.17. The OpenCReport\Line class

cl ass OpenCReport\Line {
public final

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

fi

fi

fi

fi

fi

fi

fi

fi

fi

nal

nal

nal

nal

nal

nal

nal

nal

nal

set _font_nane(
?string $expr_string
?0penCRepor t\ Expr;

get _font_name():
?0penCRepor t\ Expr;

set _font_size(
?string $expr_string
?0penCRepor t\ Expr;

get _font_size():
?0penCRepor t\ Expr;

set _bol d(
?string $expr_string
?0penCRepor t\ Expr;

get _bol d():
?0penCRepor t\ Expr;

set _italic(
?string $expr_string
?OpenCRepor t\ Expr;

get italic():
?OpenCRepor t\ Expr;

set _suppress(
?string $expr_string
?OpenCRepor t\ Expr;

get _suppress():

voi d;

nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :

207

PHP language API reference

?0penCRepor t\ Expr;

public final set_color(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_color():
?0penCRepor t\ Expr;

public final set_bgcol or(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_bgcolor():
?0penCRepor t\ Expr;

public final add_text():
?0penCReport\ Text ;

public final add_imge():
?penCReport\ | mage;

public final add_barcode():
?0penCRepor t\ Bar code;

public final get first_elenment():
?OpenCReport\ Li neEl enent ;

}
12.17.1. Set or get the font name for the line

Set the font name for the line. This font will be used for child text elements that don't set the font name
themselves.

public final

OpenCReport\Line::set_font_name(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\Line::get_font_name():
?0penCRepor t\ Expr;

12.17.2. Set or get the font size for the line

Set the font size for the line. This font size will be used for child text elements that don't set the font size
themselves.

public final

OpenCReport\Line::set_font_size(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final

208

PHP language API reference

OpenCReport\Line::get_font_size():
?0penCRepor t\ Expr;

12.17.3. Set or get the font's bold flag for the line

Set the font's bold flag for the line. The expression must evaluate to a numeric value that is treated as a
boolean, i.e. 0 or non-0. Default isf al se. This bold flag value will be used for child text elements that
don't set it themselves.

public final

OpenCReport\Line::set_bol d(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\Line::get_bold():
?0penCRepor t\ Expr;

12.17.4. Set or get the font's italic flag for the line

Set the font's italic flag for the line. The expression must evaluate to a numeric value that is treated as a
boolean, i.e. 0 or non-0. Default isf al se. Thisitalic flag value will be used for child text elements that
don't set it themselves.

public final

OpenCReport\Line::set_italic(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\Line::get _italic():
?0penCRepor t\ Expr;

12.17.5. Set or get line suppression

Set the suppression flag for the line. The expression must evaluate to a numeric value that is treated as a
boolean, i.e. 0 or non-0. Defaultisf al se, i.e. not suppressed. When set to anon-0 value (i.e. t r ue), the
whole line with all its child elements (text or image) will be suppressed, i.e. not rendered.

public final

OpenCReport\Line::set_suppress(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\Line::set_suppress():
?0penCRepor t\ Expr;

12.17.6. Set or get text color for the line

Set text color for the line. See Color specification. Thistext color will be used for child elementsthat don't
set the text color themselves.

public final

209

PHP language API reference

OpenCReport\Line::set_col or(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\Line::get_color():
?0penCRepor t\ Expr;

12.17.7. Set or get background color for the line

Set background color for the line. See Color specification. This background color will be used for child
elements that don't set the background color themselves.

public final

OpenCReport\Line::set_bgcol or(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final

OpenCReport\Line::get_bgcol or():
?0penCRepor t\ Expr;

12.17.8. Add a text element to the line

Add a child text element to the line. For class methods of OpenCRepor t \ Text , see Section 12.20.

public final
OpenCReport\Line::add text():
?OpenCReport\ Text ;

12.17.9. Add an image element to the line

Add a child image element to the line. For class methods of OpenCRepor t\ | mage, see Section 12.19.

public final
OpenCRepor t\ Li ne: : add_i nage():
?0penCReport\ | mage;

12.17.10. Get the first line element

Get the first element of the line. It starts an iterator for the output, and return the first element via an
OpenCReport\ Li neEl emrent object, or nul | if thereisnone. See also Section 12.23.

public final
OpenCReport\Line::get_first_elenent():
?0penCReport\ Li neEl enent ;

12.18. The OpenCReport\HorizontalLine class

cl ass OpenCReport\Horizontal Li ne {
public final set_size(
?string $expr_string = null):

210

PHP language API reference

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

}

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

?0penCRepor t\ Expr;

get _si ze():

?0penCRepor t\ Expr;

set _al i gnnent (

?string $expr_stri
?0penCRepor t\ Expr;

get _alignnent():

?0penCRepor t\ Expr;

set _i ndent ati on(

?string $expr_stri
?0penCRepor t\ Expr;

get _indentation():

?0penCRepor t\ Expr;

set _| engt h(

?string $expr_stri
?0penCRepor t\ Expr;

get _length():

?0penCRepor t\ Expr;

set _font_size(

?string $expr_stri
?0penCRepor t\ Expr;

get _font_size():

?0penCRepor t\ Expr;

set _suppress(

?string $expr_stri
?0penCRepor t\ Expr;

get _suppress():

?0penCRepor t\ Expr;

set _col or(

?string $expr_stri
?0penCRepor t\ Expr;

get _color():

?0penCRepor t\ Expr;

12.18.1. Set the line width

Set or get the line width in points. Also see Section 8.18.1.1

public final
OpenCReport\ Hori zont al Li ne: : set _si ze(

ng

ng

ng

ng

ng

ng

nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :

211

PHP language API reference

?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Hori zont al Li ne: : get _si ze():
?0penCRepor t\ Expr;

12.18.2. Set or get the line alignment

Set the line alignment. Also see Section 8.18.1.2

public final

OpenCRepor t\ Hori zont al Li ne: : set _al i gnment (
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCRepor t\ Hori zont al Li ne: : get _al i gnment () :
?0penCRepor t\ Expr;

12.18.3. Set or get the line indentation

Set thelineindentation, i.e. starting point to theright of theleft side of the report. Also see Section 8.18.1.3

public final

OpenCReport\ Hori zont al Li ne: : set _i ndent ati on(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Hori zont al Li ne: : get _indentation():
?0penCRepor t\ Expr;

12.18.4. Set or get the line length

Set the line length. See HorizontalLine length and Size unit attribute.

public final

OpenCRepor t\ Hori zont al Li ne: : set _| engt h(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCRepor t\ Hori zont al Li ne: : get _| ength():
?0penCRepor t\ Expr;

12.18.5. Set or get the line's font size

Set the ling'sfont size. Thisfont size isused in calculating the line length. See HorizontalLine font size

public final
OpenCReport\ Hori zont al Li ne: : set _font_si ze(
?string $expr_string = null):

212

PHP language API reference

?0penCRepor t\ Expr;

public final
OpenCReport\ Hori zont al Li ne: : get _font_size():
?0penCRepor t\ Expr;

12.18.6. Set or get the suppression flag for the line

Set the suppression flag for the line. The expression must evaluate to a numeric value that is treated as a
boolean, i.e. 0 or non-0. When setto t r ue, thelineis not rendered. Default isf al se.

public final

OpenCReport\ Hori zontal Li ne: : set _suppress(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Hori zont al Li ne: : get _suppress():
?0penCRepor t\ Expr;

12.18.7. Set or get the line color

Set the line color. See Color specification.

public final

OpenCRepor t\ Hori zont al Li ne: : set _col or (
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCRepor t\ Hori zont al Li ne: : get _col or():
?0penCRepor t\ Expr;

12.19. The OpenCReport\image class

cl ass OpenCReport\ Il mage {
public final set_val ue(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

public final get_value():
?OpenCRepor t\ Expr;

public final set_suppress(
?string $expr_string
?OpenCRepor t\ Expr;

nul 1) :

public final get_suppress():
?0penCRepor t\ Expr;

public final set_type(
?string $expr_string
?OpenCRepor t\ Expr;

nul 1) :

213

PHP language API reference

public final get_type():
?0penCRepor t\ Expr;

public final set_wi dth(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_wdth():
?0penCRepor t\ Expr;

public final set_height(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_height():
?0penCRepor t\ Expr;

public final set_alignment(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_alignment():
?0penCRepor t\ Expr;

public final set_bgcol or(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_bgcolor():
?0penCRepor t\ Expr;

public final set_text_wi dth(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_text_w dth():
?0penCRepor t\ Expr;
}

12.19.1. Set or get the file name of the image

Set the file name of the image. The file name may be and absolute path, relative to the work directory of
the application, or relative to any of the paths added with OpenCReport : : add_search_pat h().
(See Section 12.4.10.1.)

public final

OpenCReport\ | mage: : set _val ue(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Il mage: : get_val ue():
?0penCRepor t\ Expr;

214

PHP language API reference

12.19.2. Set or get the suppression flag for the image

Set the suppression flag for the image. The expression must evaluate to a numeric value that istreated as
aboolean, i.e. 0 or non-0. Default isf al se.

public final

OpenCReport\ | mage: : set _suppress(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ 1 mage: : get _suppress():
?0penCReport\ Expr;

12.19.3. Set or get the image type

Set the image file type. Usually it's auto-detected and not needed.

public final

OpenCReport\ 1 mage: : set _type(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ |l mage: : get _type():
?0penCRepor t\ Expr;

12.19.4. Set or get the image width

Set the image width. This setting is used when the image element is a direct child of an output section.
See Section 8.19.1.4.

public final

OpenCReport\ 1 nmage: : set _w dt h(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ I mage: : get_width():
?0penCRepor t\ Expr;

12.19.5. Set or get the image height

Set the image height. This setting is used when the image element is a direct child of an output section.
See Section 8.19.1.4.

public final

OpenCReport\ | mage: : set _hei ght (
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ I mage: : get _hei ght ():

215

PHP language API reference

?0penCRepor t\ Expr;

12.19.6. Set or get the image alignment

Set the image alignment. This setting is used when the image element is a child of a text line. See
Section 8.19.1.8.

public final

OpenCReport\ | mage: : set_al i gnnent (
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ |l nmage: : get _alignnment():
?0penCRepor t\ Expr;

12.19.7. Set or get the image background color

Set the image background color. This setting is used when the image element is a child of atext line. See
Section 8.19.1.7.

public final

OpenCReport\ | mage: : set _bgcol or(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCRepor t\ | mage: : get _bgcol or ():
?0penCRepor t\ Expr;

12.19.8. Set or get the image "text width"

Set the image "text width". This setting is used when the image element is a child of a text line. See
Section 8.19.1.6.

public final

OpenCReport\ | mage: : set _text_wi dt h(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final

OpenCReport\lmage: i get _text _width():
?0penCRepor t\ Expr;

12.20. The OpenCReport\Text class

cl ass OpenCReport\ Text {
public final set_value_string(

?string $expr_string = null):
?0penCReport\ Expr;

public final set_val ue_expr(
?string $expr_string = null):

216

PHP language API reference

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

?0penCRepor t\ Expr;

get val ue():
?0penCRepor t\ Expr;

set _val ue_del ayed(
?string $expr_stri
?0penCRepor t\ Expr;

get _val ue_del ayed():
?0penCRepor t\ Expr;

set _format (
?string $expr_stri
?0penCRepor t\ Expr;

get _format():
?0penCRepor t\ Expr;

set _transl ate(
?string $expr_stri
?0penCRepor t\ Expr;

get _translate():
?0penCRepor t\ Expr;

set _w dt h(
?string $expr_stri
?0penCRepor t\ Expr;

get _width():
?0penCRepor t\ Expr;

set _al i gnnment (
?string $expr_stri
?0penCRepor t\ Expr;

get _alignnent():
?0penCRepor t\ Expr;

set _col or(
?string $expr_stri
?0penCRepor t\ Expr;

get _color():
?0penCRepor t\ Expr;

set _bgcol or(
?string $expr_stri
?0penCRepor t\ Expr;

get _bgcol or():
?0penCRepor t\ Expr;

ng

ng

ng

ng

ng

ng

ng

nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :

217

PHP language API reference

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

publ i

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

nal

set _font_nane(
?string $expr_stri
?0penCRepor t\ Expr;

get _font_name():
?0penCRepor t\ Expr;

set _font_size(
?string $expr_stri
?0penCRepor t\ Expr;

get _font_size():
?0penCRepor t\ Expr;

set _bol d(
?string $expr_stri
?0penCRepor t\ Expr;

get _bol d():
?0penCRepor t\ Expr;

set _italic(
?string $expr_stri
?0penCRepor t\ Expr;

get italic():
?0penCRepor t\ Expr;

set _|ink(
?string $expr_stri
?0penCRepor t\ Expr;

get _link():
?0penCRepor t\ Expr;

set _meno(
?string $expr_stri
?0penCRepor t\ Expr;

get _neno():
?0penCRepor t\ Expr;

set _meno_hyphenat e(
?string $expr_stri
?0penCRepor t\ Expr;

get _neno_hyphenat e() :
?0penCRepor t\ Expr;

set _meno_wrap_char s(
?string $expr_stri
?0penCRepor t\ Expr;

get _nenmo_w ap_chars():

ng

ng

ng

ng

ng

ng

ng

ng

nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :
nul 1) :

218

PHP language API reference

?0penCRepor t\ Expr;

public final set_menmo_max_|ines(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_menmo_max_I|ines():
?0penCRepor t\ Expr;
}

12.20.1. Set literal value

Set the literal value for the text element.

public final

OpenCRepor t\ Text : : set _val ue_stri ng(
?string $expr_string = null):
?0penCRepor t\ Expr;

12.20.2. Set or get expression value

Set the expression value for the text element. And expression may depend on data row values. See
Expressions.

public final

OpenCReport\ Text::set _val ue_expr (
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text::get _val ue():
?0penCRepor t\ Expr;

12.20.3. Set or get delayed flag for the field expression

Set delayed flag for the field expression. When set tot r ue, the field expression’'slast value is calcul ated
during the precal cul ation phase of executing the report and thisprecal culated valueis used during rendering
the report.

public final

OpenCRepor t\ Text : : set _val ue_del ayed(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCRepor t\ Text : : get _val ue_del ayed():
?0penCRepor t\ Expr;

12.20.4. Set or get the format string for the field
expression

Set the format string for the field expression. Thisformat string will be used instead of the default formats
for specific types. See Formatting data

219

PHP language API reference

public final

OpenCReport\ Text::set format(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text::set_format():
?0penCRepor t\ Expr;

12.20.5. Set or get the translation flag for the field
expression

Set the trangdlation flag for the field expression. When set to t r ue, the field value will be translated
according to the locale and trandl ation settings. See Section 12.4.2

public final

OpenCReport\ Text::set _transl at g(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text::get _translate():
?0penCRepor t\ Expr;

12.20.6. Set or get the field width

Set the field width. See Text element width

public final

OpenCRepor t\ Text: : set_wi dt h(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ Text::get_wi dth():
?0penCReport\ Expr;

12.20.7. Set or get the field alignment

Set the field alignment. See Text element alignment

public final

OpenCReport\ Text: : set_al i gnment (
?string $expr_string = null):
?0penCRepor t\ Expr;

public final

OpenCReport\ Text::get_alignnent():
?0penCRepor t\ Expr;

12.20.8. Set or get the field text color

Set the field text color. See Section 8.17.1.6

220

PHP language API reference

public final

OpenCReport\ Text::set_col or(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text::get_color():
?0penCRepor t\ Expr;

12.20.9. Set or get the field background color

Set the field background color. See Section 8.17.1.7

public final

OpenCReport\ Text: : set _bgcol or (
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text : : get _bgcol or () :
?0penCRepor t\ Expr;

12.20.10. Set or get the field font name

Set the field font name. See Text e ement font name

public final

OpenCReport\ Text::set _font_name(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text::get_font_name():
?0penCRepor t\ Expr;

12.20.11. Set or get the field font size

Set the field font size. See Text element font size

public final

OpenCReport\ Text::set_font_size(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text::get_font_size():
?0penCRepor t\ Expr;

12.20.12. Set or get the field's bold flag

Set the field's bold flag. See Section 8.17.1.10

public final
OpenCReport\ Text : : set _bol d(

221

PHP language API reference

?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text::get _bol d():
?0penCRepor t\ Expr;

12.20.13. Set or get the field's italic flag

Set the field'sitalic flag. See Section 8.17.1.11

public final

OpenCReport\ Text::set italic(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text::get italic():
?0penCRepor t\ Expr;

12.20.14. Set or get the field's link

Set the field's link URL. When set, the text field becomes a link with the specified URL. See
Section 8.17.1.12

public final

OpenCRepor t\ Text : : set _|i nk(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCRepor t\ Text::get_link():
?0penCRepor t\ Expr;

12.20.15. Set or get the field's memo flag

Set the field's memo (multi-line text) flag. When set to t r ue, the text field becomes a multi-line field.
See Multi-line (memo) field

public final

OpenCReport\ Text : : set _meno(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text::get _neno():
?0penCRepor t\ Expr;

12.20.16. Set or get the field's "hyphenate" flag

Set thefield's "hyphenate” flag. Only used whenthememoflagissettot r ue. Whensettof al se, words
at the end of the lines in the multiline text field would break over to the next line as a whole. When set
tot r ue, the word will be hyphenated. Default ist r ue. When character wrapping is used (see below),
this setting is not used. See Section 8.17.1.14

222

PHP language API reference

public final

OpenCReport\ Text::set _neno_hyphenat e(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text:: get _nmeno_hyphenate():
?0penCRepor t\ Expr;

12.20.17. Set or get the field's "wrap at characters" flag

Set thefield's"wrap at characters' flag. Only used whenthememo flagissettot r ue. Default isf al se,
the text is wrapped at word boundaries. When set to t r ue, text is wrapped at character boundaries with
hyphenation. See Section 8.17.1.15

public final

OpenCReport\ Text::set_nmenmo_w ap_char s(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Text::get _nenmo_w ap_chars():
?0penCRepor t\ Expr;

12.20.18. Set or get the field's maximum number of lines

Set the field's maximum number of lines. Only used when the memo flag issetto t r ue. The text field's
value is only rendered up to the set number of lines. Default is unset, the text is rendered fully. See
Section 8.17.1.16

public final

OpenCReport\ Text::set_nenmo_max_| i nes(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCRepor t\ Text :: get _nmeno_nax_Ilines():
?0penCRepor t\ Expr;

12.21. The OpenCReport\Barcode class

cl ass OpenCReport\ Bar code {
public final set_val ue(
?string $expr_string
?OpenCRepor t\ Expr;

nul 1) :

public final get_value():
?0penCRepor t\ Expr;

public final set_val ue_del ayed(
?string $expr_string = null):
?OpenCRepor t\ Expr;

223

PHP language API reference

public final get_val ue_del ayed():
?0penCRepor t\ Expr;

public final set_suppress(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_suppress():
?0penCRepor t\ Expr;

public final set_type(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_type():
?0penCRepor t\ Expr;

public final set_wi dth(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_wdth():
?0penCRepor t\ Expr;

public final set_height(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_height():
?0penCRepor t\ Expr;

public final set_color(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_color():
?0penCRepor t\ Expr;

public final set_bgcol or(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final get_bgcolor():
?0penCRepor t\ Expr;
}

12.21.1. Set or get the barcode value

Set the barcode's value from an expression string. The expression must evaluate to a string, whose value
isthe string to be encoded as a barcode.

public final
OpenCReport\ Bar code: : set _val ue(
?string $expr_string = null):

224

PHP language API reference

?0penCRepor t\ Expr;

public final
OpenCReport\ Bar code: : get _val ue():
?0penCRepor t\ Expr;

12.21.2. Set or get the barcode value delayed

Set the barcode's value delayed from an expression string. The expression must eval uateto abool ean value.

public final

OpenCReport\ Barcode: : set _val ue_del ayed(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCReport\ Barcode: : get _val ue_del ayed():
?0penCRepor t\ Expr;

12.21.3. Set or get the barcode suppression

Set the barcode's suppression value from an expression string. The expression must evaluate to a boolean
value.

public final

OpenCReport\ Barcode: : set _suppress(
?string $expr_string = null):
?0penCRepor t\ Expr;

public final
OpenCRepor t\ Bar code: : get _suppress():
?0penCRepor t\ Expr;

Default valueisf al se, i.e. no suppression.

12.21.4. Set or get the barcode type

Set the barcode type.

public final

OpenCReport\ Barcode: : set _type(
?string $expr_string = null):
?0penCReport\ Expr;

public final
OpenCReport\ Barcode: : get _type():
?0penCReport\ Expr;

The type may be optional, in which case it's autodetected and the barcode is rendered in the format that
first allows the val ue string to be rendered. Possible types (in the order of autodetection) are: upc-

a,ean-13,upc- e, ean- 8,i shn,code39, code39ext,codel28b, codel28c, orcodel28. If
t ype isspecified, theval ue isrendered in that barcode type if the string isvalid for the type. If val ue
isinvalid for the specified t ype, or autodetection fails, becausetheval ue isinvalid for any of the above
listed types, the barcode is not rendered.

225

PHP language API reference

12.21.5. Set or get the barcode width

Set the barcode image width.

public final
OpenCRepor t\ Bar code: :

public final
OpenCRepor t\ Bar code: :

Thewidth is set according to Size unit attribute, either in points (1/72th inch) or in (monospace) font width

units set by <Li ne>.

set _wi dt h(
?string $expr_string
?0penCRepor t\ Expr;

nul l'):

get _width():
?0penCRepor t\ Expr;

12.21.6. Set or get the barcode height

Set the barcode image height.

public final
OpenCReport\ Bar code: :

public final
OpenCReport\ Bar code: :

set _hei ght (
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

get _hei ght ():
?0penCRepor t\ Expr;

12.21.7. Set or get the barcode image line color

Set the barcode image line color.

public final
OpenCRepor t\ Bar code: :

public final
OpenCRepor t\ Bar code: :

set _col or(
?string $expr_string
?0penCRepor t\ Expr;

nul l):

get _color():
?0penCRepor t\ Expr;

12.21.8. Set or get the barcode image background color

Set the barcode image background color.

public final
OpenCReport\ Bar code: :

public final
OpenCReport\ Bar code: :

set _bgcol or(
?string $expr_string
?0penCRepor t\ Expr;

nul 1) :

get _bgcol or():

226

PHP language API reference

?0penCRepor t\ Expr;

12.22. The OpenCReport\OutputElement class

cl ass OpenCReport\ Qut put El emrent {
public final

publ i
publ i
publ i
publ i

publ i

publ i

publ i

publ i
}

fi

fi

fi

fi

fi

fi

fi

fi

nal

nal

nal

nal

nal

nal

nal

nal

get _next():
?0penCReport\ Qut put El enent ;

is line(): bool;

is_hline(): bool;

is_imge(): bool;

i s_barcode(): bool;

get line():
?0penCReport\ Li ne;

get _hline():
?0penCReport\ Hori zont al Li ne;

get i mage():
?0penCReport\ | mage;

get barcode):

?0penCReport\ Bar code;

This class iterates through layout elements defined for the output section used in OpenCReport
\Qutput::get _first_element(). An OQpenCReport\ Qut put El ement object is an
"abstract” object in the sense that it encapsulates several explicit object types. These object types can
be determined using thei s_* () methods and the actual objects underlying the abstract object can be
acquired using theget _* () methods.

12.23. The OpenCReport\LineElement class

cl ass OpenCReport\Li neEl enent {
public final

public final

public final

public final

public final

public final

get _next ():
?0penCReport\ Li neEl enent ;

is_text(): bool;
i s_imge(): bool;
i s_barcode(): bool;

get text():
?0penCReport\ Li ne;

get _i mage():
?0penCReport\ | mage;

227

PHP language API reference

public final get_barcode):
?0penCRepor t\ Bar code;

}

This class iterates through line elements defined for the line object used in QpenCReport
\Line::get first_elenment(). An OpenCReport\Li neEl enent object is an "abstract"
object in the sense that it encapsulates several explicit object types. These object types can be determined
using thei s_* () methods and the actual objects underlying the abstract object can be acquired using
theget _*() methods.

12.24. RLIB compatibility API

These functions mimic the behaviour of the RLIB PHP APl but their declaration differ in a way
that the RLIB compatibility APl in OpenCReports create and use OpenCReport objects, making the
OpenCReports methods and RLIB compatibility functions inter-operable.

12.24.1. Initialize a report

function
rlib_init(): ?0CpenCReport;

Notethat initializing the report using thisfunction automatically enables some RLIB compatibility settings,
like the output parameter "xml_rlib_compat".

12.24.2. Destroy a report

function
rlib_free(OpenCReport $r): void;

12.24.3. Get library version

function
riib_version(void): string;

12.24.4. Add a MySQL/MariaDB datasource

function

rlib_add_datasource_nysql (
OpenCReport $r,
string $source_nane,
string $host,
string $user,
string $password,
string $dbnane):
OpenCReport\ Dat asour ce;

This function is equivalent to using OpenCReport : : dat asour ce_add() with the MariaDB input
driver with expanded connection parameters, but without specifying a custom port:

$0 = new OpenCReport();

$conn_parans = [

228

PHP language API reference

"host" => "nyserver",
"dbname" => "ocrpttest”,
"user" => "ocrpt"

I

$ds = $o- >dat asource_add("mari adb", "mariadb", $conn_parans);

12.24.5. Add a MySQL/MariaDB datasource from an INI
group

function
rlib_add datasource_nysql _from group(
penCReport $r,
string $source_nane,
string $group,
?string $option_file = null):
OpenCReport\ Dat asour ce;

This function is equivalent to using OpenCReport : : dat asour ce_add() with MariaDB input
driver, using the option file and group parameters:

$0 = new QpenCReport ():

$conn_parans = |
"optionfile" =>"./mariadb/ocrpt.cnf",
"group” => "ocrpt"

1

$ds = $o- >dat asource_add("mari adb", "mariadb", $conn_parans);
12.24.6. Add a PostgreSQL datasource
function

rlib_add datasource_postgres(
OpenCReport $r,
string $source_nane,
?string $connection_info = null):
OpenCReport\ Dat asour ce;

Thisfunctionisequivalenttousing OpenCReport : : dat asour ce_add() withthePostgreSQL input
driver using the connection info string:

$0 = new OpenCReport();

$conn_parans = ["connstr" => "dbname=ocrpttest user=ocrpt"];

$ds = $o->dat asource_add("pgsql ", "postgresql", $conn_parans);
12.24.7. Add an ODBC datasource
function

rlib_add_dat asour ce_odbc(
OpenCReport $r,

229

PHP language API reference

string $source_nane,
string $dbnane,

?string $user, = null,
?string $password = null):
OpenCReport\ Dat asour ce;

This function is equivalent to using OpenCReport : : dat asour ce_add() with the ODBC input
driver with expanded connection parameters:

$0 = new OpenCReport();

$conn_parans = |
"dbname" => "nydb",
"user" => "nyuser"

1

$ds = $o- >dat asour ce_add(" odbc", "odbc", $conn_parans);

12.24.8. Add an array datasource

function

rlib_add_datasource_array(
OpenCReport $r,
string $source_nane):
OpenCReport\ Dat asour ce;

ThisfunctionisequivalenttousingOpenCReport : : dat asour ce_add() withthearray input driver:

$0 = new OpenCReport();

$ds = $o- >dat asource_add("array", "array");
12.24.9. Add an XML datasource
function

rlib_add_datasource_xnl (
OpenCReport $r,
string $source_nane):
OpenCReport\ Dat asour ce;

This function is equivalent to using OpenCReport : : dat asour ce_add() with the XML input
driver:

$0 = new OpenCReport();

$ds = $o- >dat asource_add("xm ", "xm");

12.24.10. Add a CSV datasource

function

rlib_add_dat asource_csv(
OpenCReport $r,
string $source_nane):
OpenCReport\ Dat asour ce;

230

PHP language API reference

Thisfunctionisequivalent tousing OpenCReport : : dat asour ce_add() withtheCSV input driver:
$0 = new QpenCReport();

$ds = $o- >dat asource_add("csv", "csv");

12.24.11. Add a query

This function is equivalent to OpenCRepor t \ Dat asour ce: : query_add() with adifferent order
of parameters. The query nameisthe last parameter.

function
rlib_add_query_as(
OpenCReport $r,
string $source_nane,
string $array_or_file_or_sql,
string $nane):
OpenCReport\ Dat asour ce;

12.24.12. Add aresultset follower

Thisfunction isabout equivalent to OpenCRepor t\ Query: : add_f ol | ower () .The$l eader and
$f ol | ower are query names.

function
riib_add resultset follower(
OpenCReport $r,
string $l eader,
string $follower): bool;

12.24.13. Add aresultset N:1 follower

This function is about equivalent to OpenCReport\ Query::add follower _n to 1(). The
former allows an arbitrary match expression, while the RLIB compatibility function will use the
$l eader field = $fol | ower _fi el dexpression. Similarly to the above function, $| eader and
$f ol | ower are query names.

function
rliib _add resultset follower_n to 1(
penCReport $r,
string $l eader,
string $l eader_field,
string $foll ower,
string $follower_field): bool;

12.24.14. Set datasource encoding

This function is equivdent to OpenCReport\ Datasource::set_encoding(). See
Section 12.5.3

function
rlib_set_datasource_encodi ng(
OpenCReport $r,

231

PHP language API reference

string $nane,
string $encoding): void;

12.24.15. Add areport XML

Thisfunction isequivalent to OpenCReport : : parse_xm ().

function
riib_add report(
penCReport $r,
string $filenane): bool;

12.24.16. Add a report XML from buffer

Thisfunction isequivalent to CpenCReport: : parse_xm _from buffer().

function
riib_add_report_frombuffer(
OpenCReport $r,
string $buffer): bool;

12.24.17. Add a search path

Thisfunction isequivalent to OpenCReport : : add_search_pat h().

function

rlib_add_search_pat h(
OpenCReport $r,
string $path): bool;

12.24.18. Set locale

Thisfunction isequivalent to OpenCReport::set | ocal e().

function
riib_set |ocale(
OpenCReport $r,
string $locale): void;

12.24.19. Setup translation

Thisfunction is equivalent to OpenCReport : : bi ndt ext domai n() .

function
rlib_bi ndtextdonmai n(
OpenCReport $r,
string $donmain,
string $dirnane): void,

12.24.20. Set output format

This function is about equivalent to OpenCReport:: set _out put fornat () but accepts textual
format names (like pdf instead of the numeric constants like OpenCReport : : OQUTPUT_PDF

232

PHP language API reference

function

rlib_set_ output_format_fromtext(
OpenCReport $r,
string $format): void;

12.24.21. Add a custom report function

This function is the RLIB compatible variant of QpenCReport: : functi on_add(). Unlike the
OpenCReports API, the function added by this function does not have the control knobs to optimize it
properly. After this function returns, subsequently parsed expressions may use a function name passed in
with $nane. The PHP function nameisin $f uncti on

function
rlib_add_function(
OpenCReport $r,
string $nane,
string $function,
| ong $parans): void;

The interface of the PHP function must follow the below prototype. It must contain the exact number of
arguments passed in via$par ans, i.e. it may not pass - 1 to indicate variadic arguments.

function nmy_function($argl, $arg2, ...)

The function implementation may return any PHP basetype (st ri ng, | ong, doubl e or bool).

12.24.22. Set output encoding

This function silently does nothing. For PDF, it's not relevant. Other (CURRENTLY NOT
IMPLEMENTED) output formats will all use UTF-8.

function
rlib_set output_encodi ng(
OpenCReport $r,
string $encoding): void;

12.24.23. Add a report parameter

This function is equivalent to OpenCReport::set_mvariable().

function
rlib_add paraneter(
OpenCReport $r,
string $param
?string $value = null): void;

12.24.24. Set an output parameter

Set output parameters for the report. For accepted parameters, see Section 12.3.6

function

rlib_set_ output_paraneter(
OpenCReport $r,
string $param

233

PHP language API reference

string $val ue): void;

12.24.25. Refresh array query contents

Thisfunction is equivalent to executing OpenCReport::query_refresh(). The same limitations apply.

function
rlib_query_refresh(OpenCReport $r): void;

12.24.26. Add an event callback

Thisfunction addsacallback for the specified $si gnal inanRLIB compatibleway. Thesignal namemay
ber ow _change,report _done,report_start,report _iteration,part_iterationor
precal cul ati on_done.

function
rlib_signal _connect(
OpenCReport $r,
string $signal,
string $function): void;
The PHP function prototype must follow this:
function ny_cal |l back()

Thisfunction isdifferent from the methods that add specific callback typesfor parts, reports, breaks, etc. in
that the callback isadded to the toplevel OpenCRepor t object context, meaning that ar eport _st art

callback will be called for every report in case there are multiple reports in the same context. Similarly,
thesamepart _iterati on callback will be called for every part in a multi-part report.

Since there is no way to know which part or which report triggers the callback, it is recommended to

userlib_signal _connect () for single-part single-report reports. For more specia purposes, the
callback creation class methods are recommended.

12.24.27. Execute the report

Itisequivalent to OpenCReport: : execut e()

function
rlib_execute(QpenCReport $r): bool;

12.24.28. Dump the report output

Itisequivalent to OpenCReport: : spool ()

function
rlib_spool (OpenCReport $r): ?string;

12.24.29. Get content type

Itisequivalent to OpenCReport:: get _content type()

function

234

PHP language API reference

riib_get_content_type(OpenCReport $r): ?string;

12.24.30. Set radix character

Thisfunction silently does nothing. Formatting numbers correctly follow the local e information regarding
the decimal separator.

function
riib_set_radix_character(OpenCReport $r): void;

12.24.31. Compile and evaluate an expression

function
riib_conpile_infix(string $expr_string):
string| doubl e[nul | ;

Since only the expression string is passed but not the $r resource in RLIB, the compatibility
implementation of this function is equivalent to the sequence of creating an internal OpenCRepor t
object, parsing, optimizing and evaluating the expression, converting its result to a PHP base type, then
destroying the internal object. For this reason, the expression may not reference any query columns or
report variables.

12.24.32. Add graph background region

This function silently does nothing. GRAPHING ISNOT IMPLEMENTED YET.

function

rlib_graph_add_bg_region(
OpenCReport $r,
string $graph,
string $region,
string $col or,
doubl e $start,
doubl e $end): void;

12.24.33. Clear graph background region

This function silently does nothing. GRAPHING ISNOT IMPLEMENTED YET.

function

rlib_graph_cl ear_bg region(
OpenCReport $r,
string $graph): void;

12.24.34. Set graph minor tick

This function silently does nothing. GRAPHING ISNOT IMPLEMENTED YET.

function

rlib_graph_set_ x_ mnor_tick(
OpenCReport $r,
string $graph,
string $x): void;

235

PHP language API reference

12.24.35. Set graph minor tick by location

This function silently does nothing. GRAPHING ISNOT IMPLEMENTED YET.

function

riib_graph_set x mnor_tick by location(
OpenCReport $r,
string $graph,
doubl e $l ocation): void;

236

Chapter 13. Examples

13.1. Simple report example

Thisexamplebelow usesaPostgreSQL query to generate areport in PDF output format, with many settings
used as default:

» Courier font

e 12 pointsfont size

» automatically calculated field width where it's not specified (note the header and footer fields)
* black font color

* white background

* default paper size

Note that this particular default setting depends on your location, or rather, the computer's country
settings. For example, the U.S. uses the Letter page size as default. On the other hand, most of Europe
uses the A4 page size.

and so on.

13.1.1. Data

Datais created as follows in adatabase called ocr pt t est using the user ocr pt

create table flintstones (id serial, name text, property text, age
int, adult bool);

insert into flintstones (nanme, property, age, adult)

val ues

("Fred Flintstone',"'strong', 31,true),

("WIlm Flintstone','charmng', 28,true),

(' Pebbl es Flintstone','young', 0.5, fal se);

The data looks like this when queried:

ocrpttest=> select * fromflintstones;

id | nane | property | age | adult
L Ty T +--m o - R
1| Fred Flintstone | strong | 31] t
2| WIlnm Flintstone | charming | 28 | t
3 | Pebbles Flintstone | young | 1| f
(3 rows)

13.1.2. C program code

The program code uses a minimalistic approach, putting everything into the report XML instead.

#i ncl ude <stdio. h>
#i ncl ude <opencreport. h>

237

Examples

int main(int argc, char **argv) {
opencreport *o = ocrpt_init();

if (locrpt_parse_xm (o, "exanplel.xm ")) {
printf("XM parse error\n");
ocrpt_free(o);
return O;

}

ocrpt _set_out put _format (o, OCRPT_QUTPUT_PDF);
ocr pt _execute(0);

ocr pt _spool (0);

ocrpt_free(o);

return O;

}
13.1.3. PHP program code

Here's the equivalent program code in PHP.

<?php
$0 = new OpenCReport();

if (!%o->parse_xnl ("exanmplel.xm ")) {
echo "XML parse error” . PHP_EQ;
exit(0);

}

$o- >execut e();
$0- >spool ();

13.1.4. RLIB compatible PHP program code

Here's the equivalent program code in PHP, using the RLIB compatibility functions.

<?php
$r =rlib_init();

if (!rlib_add_report($r, "exanplel.xm ")) {
echo "XM. parse error” . PHP_EQ;
exit(0);

}

rlib_execute($r);
rlib_spool ($r);

13.1.5. Report description

The program code uses this file contents from exanpl el. xm .

<?xm version="1.0"?>
<I DOCTYPE OpenCReport SYSTEM "opencreport.dtd">
<OpenCReport >

238

Examples

<Dat asour ces>
<Dat asour ce name="pgsqgl " type="postgresql" dbname="ocrpttest™
user="ocrpt" />
</ Dat asour ces>

<Queri es>
<Query nane="qg" datasource="pgsqgl ">select * from
flintstones; </ Query>
</ Queries>

<Report query="qg">
<PageHeader >
<Qut put >
<Li ne>
<literal w dth="20">The Flintstones</literal >
<field value="printf('Page %d / %', r.pageno,
r.totpages)” align="right" />
</ Li ne>
</ Qut put >
</ PageHeader >

<PageFoot er >
<Qut put >
<Li ne>
<literal >The Flintstones</literal >
<field value="printf('Page %d / %', r.pageno,
r.totpages)” align="right" />

</ Li ne>
</ Qut put >
</ PageFoot er >
<Det ai | >
<Fi el dHeader s>
<Qut put >
<Li ne>
<literal width="4" align=""right'">ID</
literal >
<literal wdth="1"/>
<literal w dth="20">Nanme</literal>
<literal wdth="1"/>
<literal wi dth="8" align="'center'">Property</
literal >
<literal wdth="1"/>
<literal w dth="6">Age</literal >
<literal wdth="1"/>
<literal wi dth="5" align=""'center'">Adult</
literal >
</ Li ne>
</ Qut put >

</ Fi el dHeader s>

<Fi el dDet ai | s>
<Qut put >
<Li ne>

239

Examples

val ue="property" />

format=""%2d" />

<field width="4" align="right" value="id" />
<literal wdth="1"/>

<field w dt h="20" val ue="nanme" />

<literal wdth="1"/>

<field width="8" align=""center""

<literal wdth="1"/>
<field width="6" align=""right'" val ue="age"

<literal width="1"/>

<field value="adult ? "yes' : 'no'" w dth="5"
align=""center'"/>
</ Li ne>
</ CQut put >
</ Fi el dDet ai | s>
</Detail >
</ Report >

</ OpenCReport >

13.1.6. Report PDF result

13.2. Simple report example with data access

In code

This example below is mostly the same as the previous one, with one exception: the database access is
done from program code instead of putting it into the report XML description file.

13.2.1. Data

Asthe same datais used as in the previous example, it's not duplicated here.

13.2.2. C program code

The program code adds the datasource and the query before loading the report XML description. The order
of these are not important, asthe ocr pt _execut e() cal performs matching expressions with query

column names internally.

240

Examples

#i ncl ude <stdio. h>
#i ncl ude <opencreport.h>

int main(int argc, char **argv) {
opencreport *o = ocrpt_init();

struct ocrpt_input_connect_paraneter conn_paranms[] = {

{ .param_nane = "dbname", .paramvalue = "ocrpttest” },
{ .paramnane = "user", .paramvalue = "ocrpt" },
{ NULL }
b
ocr pt _datasource *ds = ocrpt_dat asource_add(o, "pgsql"
"postgresql”, conn_parans);
ocrpt _query_add_sql (ds, "q", "select * fromflintstones;");

if (locrpt_parse_xm (o, "exanple2.xm")) {
printf("XM parse error\n");
ocrpt_free(o);
return O;

}

ocrpt _set_out put _format (o, OCRPT_QUTPUT_PDF);

ocr pt _execut e(0);
ocr pt _spool (0);
ocrpt_free(o);

return O;

}
13.2.3. PHP program code

Here's the equivalent program code in PHP.

<?php
$0 = new OpenCReport();

$conn_parans = [
"dbname" => "ocrpttest”,
"user" => "ocrpt"”

I
$ds = $o- >dat asour ce_add("pgsql ", "postgresql",
$ds->query_add("q", "select * fromflintstones;

if (!%o->parse_xnl ("exanmple2.xm ")) {
echo "XML parse error” . PHP_EQ;
exit(0);

}

$o- >execut e();
$0- >spool ();

$conn_par ans) ;

")

241

Examples

13.2.4. RLIB compatible PHP program code

Here's the equivalent program code in PHP, using the RLIB compatibility functions.

<?php

$r = rlib_init();

rlib_add_datasource_postgres($r, "pgsqgl", "dbnanme=ocrpttest
user=ocrpt");

rlib_add_query as($r, "pgsql", "select * fromflintstones;", "q");

if ('rlib_add_report($r, "example2.xm ")) {
echo "XM. parse error" . PHP_EQ;
exit(0);

}

rlib_execute($r);
rlib_spool ($r);

13.2.5. Report description

The program code uses this file contents from exanpl e2. xm . Note that the <Dat asour ces> and
<Quer i es> nodes that describe the database access and the query in the previous example are missing
here. The equivaent code was added to the different program codes above.

<?xm version="1.0"?>
<I DOCTYPE OpenCReport SYSTEM "opencreport.dtd">
<OpenCReport >
<Report query="q">
<PageHeader >
<Qut put >
<Li ne>
<literal w dth="20">The Flintstones</literal >
<field value="printf('Page %d / %', r.pageno,
r.totpages)” align="right" />
</ Li ne>
</ Qut put >
</ PageHeader >

<PageFoot er >
<Qut put >
<Li ne>
<literal >The Flintstones</literal >
<field value="printf('Page %d / %', r.pageno,
r.totpages)” align="right" />
</ Li ne>
</ Qut put >
</ PageFoot er >

<Det ai | >
<Fi el dHeader s>
<Qut put >
<Li ne>

242

Examples

<literal width="4" align=""right"'">lD</

literal >

<literal wdth="1"/>

<literal w dth="20">Nanme</literal>

<literal wdth="1"/>

<literal wi dth="8" align="'center'">Property</
literal >

<literal wdth="1"/>

<literal w dth="6">Age</literal >

<literal wdth="1"/>

<literal wi dth="5" align=""'center'">Adult</
literal >

</ Li ne>
</ Qut put >

</ Fi el dHeader s>

<Fi el dDet ai | s>
<Qut put >
<Li ne>
<field width="4" align="right" value="id" />
<literal wdth="1"/>
<field wi dt h="20" val ue="nane" />
<literal wdth="1"/>
<field width="8" align=""center""
val ue="property" />
<literal wdth="1"/>
<field width="6" align=""right'" val ue="age"
format=""%2d " />
<literal wdth="1"/>
<field value="adult ? 'yes’

no' " width="5"

align="'center'"/>
</ Li ne>
</ Qut put >
</ Fi el dDet ai | s>
</Detail >
</ Report >

</ OpenCReport >

13.2.6. Report PDF result

Theresult isidentical to the previous example, it's not duplicated here.

13.3. Colors, images, horizontal lines and fonts

This example below shows that reports may be more exciting, with colors and images and other visual
elements and settings.

13.3.1. Data

Datais created as follows in the same database as the first example.

create table flintstones2
(id serial primary key, nane text, filenane text);

243

Examples

insert into flintstones2 (nane, fil enane)

val ues
("Fred Flintstone', 'FredFlintstone.png'),
("WIlm Flintstone', 'WI maFlintstone.png'),

(' Pebbl es Flintstone', 'Pebbl esFlintstone.png'),
(' Barney Rubble', 'BarneyRubble.png'),

("Betty Rubble', 'BettyRubble.png'),

(' Bamm Bamm Rubbl e', ' BammBanmmRubbl e. png'),

(' The Great Gazoo', 'TheG eat Gazoo. png');

The data looks like this when queried:

ocrpttest=> select * fromflintstones2;
id | name | fil enane
1| Fred Flintstone | FredFlintstone. png
2| WIlm Flintstone | W/ maFlintstone. png
3 | Pebbles Flintstone | Pebbl esFlintstone. png
4 | Barney Rubble | BarneyRubbl e. png
5 | Betty Rubble | BettyRubbl e. png
6 | Banm Banm Rubbl e | BammBammRubbl e. png
7 | The Geat Gazoo | TheG eat Gazoo. png

(7 rows)

13.3.2. C program code

The program code is almost identical to the second example with the database connection and the query
added to program code, but it loads a different report XML description.

#i ncl ude <stdio. h>
#i ncl ude <opencreport.h>

int main(int argc, char **argv) {
opencreport *o = ocrpt_init();

struct ocrpt_input_connect_paranmeter conn_paranms[] = {

{ .param.nane = "dbnane", .paramvalue = "ocrpttest” },
{ .paramnane = "user", .paramvalue = "ocrpt" },
{ NULL }
b
ocr pt _datasource *ds = ocrpt_dat asource_add(o, "pgsql"
"postgresql ", conn_parans);

ocrpt _query_add_sql (ds, "qg", "select * fromflintstones2;");
if (locrpt_parse_xm (o, "exanple3.xm")) {

printf("XM parse error\n");

ocrpt_free(o);

return O;

}

ocrpt _set_out put _format (o, OCRPT_QUTPUT_PDF);

244

Examples

ocr pt _execut e(0);
ocr pt _spool (0);
ocrpt_free(o);

return O;

}
13.3.3. PHP program code

Here's the equivalent program code in PHP.

<?php
$0 = new OpenCReport();

$conn_parans = [
"dbname" => "ocrpttest”,
"user" => "ocrpt"

1
$ds = $o- >dat asource_add("pgsql ", "postgresqgl", $conn_parans);
$ds->query_add("q", "select * fromflintstones2;");
if (!%0->parse_xnl ("exanpl e3. xm ")) {
echo "XM. parse error" . PHP_EQ;

exit(0);
}

$o- >execut e();
$0- >spool ();

13.3.4. RLIB compatible PHP program code

Here's the equivalent program code in PHP, using the RLIB compatibility functions.

<?php

$r = rlib_init();

rlib_add datasource_postgres($r, "pgsqgl", "dbname=ocrpttest
user=ocrpt");

rlib_add_query_as($r, "pgsql", "select * fromflintstones2;", "q");

if (!'rlib_add_report($r, "exanple3.xm")) {
echo "XM. parse error" . PHP_EQ;
exit(0);

}

rlib_execute($r);
rlib_spool ($r);

13.3.5. Report description

The program code uses this file contents from exanpl e3. xn .

245

Examples

Note the new settings: f ont Nane="...", fontSi ze="...", bold="...",italic="...",
color="...",bgcol or="..." andothers.
Also notethat theval ue=". . ." setting indicates the file names that are used with <l nrage> elements

in the report XML description. These files must be present in the report application work directory, or can
be found in Search paths added either in the report XML description or via programming code.

<?xm version="1.0"?>
<I DOCTYPE OpenCReport SYSTEM "opencreport.dtd">
<OpenCReport >
<Report query="qg">
<PageHeader >
<Qut put >
<l mage wi dt h="227" hei ght ="92"
val ue=""A Flintstones_| ogo.png'" />
<Li ne>
<field fontName=""Arial"" fontSize="20"
value="printf('Page %d / %', r.pageno, r.totpages)"” align="right" />
</ Li ne>
</ Qut put >
</ PageHeader >

<PageFoot er >
<Qut put >
<l mage wi dt h="227" hei ght ="92"
val ue=""A Flintstones_| ogo.png' " />
<Li ne>
<field fontName=""Ti mnes New Roman'" fontSi ze="20"
value="printf('Page %d / %', r.pageno, r.totpages)"” align="right" />
</ Li ne>
</ Qut put >
</ PageFoot er >

<Detail >
<Fi el dHeader s>
<Qut put >
<Hori zontal Li ne size="2" color=""black'" />
<Hori zont al Li ne size="2" color=""green'" />
<Li ne bgcol or=""green'" bol d="yes" fontSi ze="18">
<literal fontNanme="'Petaluma Script'"
center'">Picture</literal >
<literal width="1"/>
<literal fontName="'Carlito "
italic="yes">Nane</literal >
</ Li ne>
<Hori zont al Li ne size="2" color=""green'" />
<Hori zontal Li ne size="2" color=""black'" />
<Hori zontal Li ne size="2" color=""white'" />
</ Qut put >
</ Fi el dHeader s>

wi dt h="7" align=

<Fi el dDet ai | s>
<Qut put >
<Line fontSi ze="18">

246

Examples

<l mage textWdth="7" bgcol or=""yell ow "

align=""center'" value="fil enane" />
<literal w dth="1" bgcolor=""yellow" />
<field color=""red " bgcolor=""yellow"
val ue="nane" />
</ Li ne>
</ Qut put >
</ Fi el dDet ai | s>
</Detail >
</ Report >

</ OpenCReport >

13.3.6. Report PDF result

Page1/1

Page 1/1

N N
JFubIc b

13.4. Report variables and breaks

This example below exercises report variables and breaks. Breaks use changes in a data series, like a
different last name. For more information, see Breaks.

13.4.1. Data

Datais created as follows in the same database using the same user as the first example.

create table flintstones3 (id serial, firstname text, |astnanme text,
age int);

insert into flintstones3 (firstnane, |astname, age)
val ues

("Fred', 'Flintstone', 31),

("WIlm', 'Flintstone', 28),

(' Pebbles', '"Flintstone', 2),

(' Barney', 'Rubble', 28),

("Betty', 'Rubble', 27),

(' Bamm Bammi, ' Rubble', 2),

(' The Great', 'Gazoo', 600);

The data looks like this when queried:

ocrpttest=> select * fromflintstones3;

247

id]| firstnanme | lastname | age
e — o m e o - - +- - - -
1| Fred | Flintstone | 31
2| Wim | Flintstone | 28
3 | Pebbles | Flintstone | 2
4 | Barney | Rubbl e | 28
5| Betty | Rubble | 27
6 | Bamm Bamm | Rubbl e | 2
7 | The Great | Gazoo | 600

(7 rows)

13.4.2. C program code

The program code isidentical to the second and third examples, except that it uses adifferent report XML
description.

#i ncl ude <stdio. h>
#i ncl ude <opencreport.h>

int main(int argc, char **argv) {
opencreport *o = ocrpt_init();

struct ocrpt_input_connect_paraneter conn_paranms[] = {
{ .paramnane = "connstr", .paramvalue = "dbnanme=ocrpttest
user =ocrpt" },
{ NULL }
b

ocr pt _datasource *ds = ocrpt_dat asource_add(o, "pgsql"
"postgresql ", conn_parans);

ocrpt _query_add_sql (ds, "qg", "select * fromflintstones3;");
if (locrpt_parse_xm (o, "exanpled.xm")) {

printf("XM parse error\n");

ocrpt_free(o);

return O;

}

ocrpt _set_out put _format (o, OCRPT_QUTPUT_PDF);
ocr pt _execute(0);

ocr pt _spool (0);

ocrpt_free(o);

return O;

}
13.4.3. PHP program code

Here's the equivalent program code in PHP.

<?php
$0 = new OpenCReport();

248

Examples

$conn_parans = ["connstr" => "dbname=ocrpttest user=ocrpt"];
$ds = $o- >dat asource_add("pgsql ", "postgresqgl", $conn_parans);
$ds->query_add("q", "select * fromflintstones3;");
if (!%o->parse_xnl ("exanmple4.xm ")) {

echo "XM. parse error"” . PHP_EQ;

exit(0);
}

$o- >execut e();
$0- >spool ();

13.4.4. RLIB compatible PHP program code

Here's the equivalent program code in PHP, using the RLIB compatibility functions.

<?php

$r = rlib_init();

rli b_add_dat asource_postgres($r, "pgsql", "dbnane=ocrpttest
user =ocrpt");

rlib_add_query_as(%$r, "pgsqgl", "select * fromflintstones3;",

if (!rlib_add_report($r, "exanpled.xm")) {
echo "XML parse error” . PHP_EQ;
exit(0);

}

rlib_execute($r);
rlib_spool ($r);

13.4.5. Report description

The program code uses this file contents from exanpl e4. xm .

<?xm version="1.0"?>
<I DOCTYPE OpenCReport SYSTEM "opencreport.dtd">
<OpenCReport >
<Report query="q">
<Vari abl es>
<Vari abl e nane="var1" val ue="id" type="count" />
<Vari abl e nane="var 2" val ue="age" type="average"
precal cul ate="yes" resetonbreak="famly" />
<Vari abl e nane="var 3" val ue="age" type="average"
precal cul ate="yes" />
<Vari abl e nane="var 4" val ue="age" type="sunt />
<Vari abl e nane="var5" val ue="age" type="sunt
precal cul ate="yes" />
</ Vari abl es>

<Br eaks>
<Break nane="fam|y">

249

Examples

literal >

literal >

literal >

literal >

literal >

literal >

literal >

literal >

literal >

literal >

literal >

<Br eakFi el ds>
<Br eakFi el d val ue="I ast nane" />
</ Br eakFi el ds>
</ Br eak>
</ Br eaks>

<Detail >
<Fi el dHeader s>
<Qut put >
<Hori zont al Li ne size="2" color=""black'" />
<Hori zontal Li ne size="2" color=""white'" />
<Li ne bol d="yes">
<literal w dth="2" align="'center"'">lD</

<literal width="1"/>
<literal w dth="20">Nanme</literal >
<literal width="1"/>

<literal w dth="8" align=

ri ght'">Age</

<literal wi dth="8" align=""right'">Count</

<literal wi dth="8" align=""right'">Avg age</

<literal wi dth="8" align=""right'">Avg age</

<literal wi dth="8" align=""right'">Age sunx/

<literal wi dth="8" align=""right'">Age sunx/

</ Li ne>

<Li ne bol d="yes" >
<literal width="2"/>
<literal width="1"/>
<literal w dth="20"/>
<literal width="1"/>
<literal width="8"/>
<literal width="8"/>
<literal w dth="8" align=

ri ght'">per fanx/

<literal wi dth="8" align=""right'">global </

<literal wi dth="8" align=""right'">running</

<literal width="8" align=""right'">total </
</ Li ne>
<Hori zontal Li ne size="2" color=""white'" />
<Hori zont al Li ne size="2" color=""black'" />
<Hori zontal Li ne size="2" color=""white'" />
</ Qut put >
</ Fi el dHeader s>

<Fi el dDet ai | s>
<Qut put >

250

Examples

<Li ne>
<field width="2" align=""right'" value="id" />
<literal width="1" />
<field wi dth="20" value="firstnane + ' ' +
| ast name" />
<literal width="1"/>
<field w dt h="8" val ue="age" format=""%2d""

align=""right'" />

<field w dt h="8" val ue="v.var1"
align=""right'" />

<field w dt h="8" val ue="v.var?2"
align=""right'" />

<field w dt h="8" val ue="v.var 3"
align=""right'" />

<field w dt h="8" val ue="v. var4"
align=""right'" />

<field w dt h="8" val ue="v.var5"
format=""%2d" align=""right'" />

format ="' % 2d'

format ="' % 2d'

format ="' % 2d'

format ="' % 2d'

</ Li ne>
</ Qut put >
</ Fi el dDet ai | s>
</Detail >
</ Report >

</ OpenCReport >

13.4.6. Report PDF result

13.5. Follower queries

This example below exercises a basic follower query along with the main query. For more information,
see Follower queries.

13.5.1. Data

Datais created as follows in the same database using the same user asthe first example.

create table flintstones4 (id serial, firstname text);
create table flintstones5 (id serial, |astnane text);

251

Examples

insert into flintstones4 (firstnane)
val ues

("Fred),

("Wlim'),

(' Pebbles'),

(' Barney'),

("Betty'),

(' Bamm Bammi) ,

(' The Great');

insert into flintstones5 (I|astnamne)
val ues

("Flintstone'),

("Flintstone'),

("Flintstone'),

(" Rubbl e'),

(" Rubbl e'),

(" Rubbl e'),

(' Gazoo');

The data looks like this when queried:

ocrpttest=> select * fromflintstones4;
id | firstnane

1]

2| Winm

3 | Pebbles

4 | Barney

5] Betty

6 | Bamm Bamm
7 | The G eat
(7 rows)

ocrpttest=> select * fromflintstones5;
id | lastnane

1| Flintstone
2 | Flintstone
3 | Flintstone
4 | Rubble

5 | Rubble

6 | Rubble

7 | Gazoo

(7 rows)

13.5.2. C program code

The program code adds the two queries and establishes the follower link between them.

#i ncl ude <stdio. h>
#i ncl ude <opencreport.h>

252

Examples

int main(int argc, char **argv) {
opencreport *o = ocrpt_init();

struct ocrpt_input_connect_paraneter conn_paranms[] = {

{ .param.nane = "dbnane", .paramvalue = "ocrpttest” },
{ .paramnane = "user", .paramvalue = "ocrpt" },
{ NULL }
b
ocr pt _datasource *ds = ocrpt_dat asource_add(o, "pgsql"
"postgresql”, conn_parans);

ocrpt_query *gl = ocrpt_query_add_sql (ds, "ql", "select * from
nt st ones4;");
ocrpt_query *g2 = ocrpt_query_add_sql (ds, "q2", "select * from
nt st ones5; ") ;

fl

fl

ocrpt _query_add_fol |l ower(ql, g2);

if (locrpt_parse_xm (o, "exanple5.xm")) {
printf("XM parse error\n");
ocrpt_free(o);
return O;

}

ocrpt _set_out put _format (o, OCRPT_QUTPUT_PDF);
ocr pt _execute(0);

ocr pt _spool (0);

ocrpt_free(o);

return O;

}
13.5.3. PHP program code

Here's the equivalent program code in PHP.

<?php
$0 = new OpenCReport();

$conn_parans = [
"dbname" => "ocrpttest”,
"user" => "ocrpt"

I

$ds = $o0->dat asource_add("pgsql ", "postgresqgl", $conn_parans);
$ql = $ds->query_add("ql", "select * fromflintstones4;");
$q2 = $ds->query_add("g2", "select * fromflintstones5;");

$g1- >add_f ol | owner ($92);

if (!%o->parse_xnl ("exanmple5.xm ")) {
echo "XML parse error” . PHP_EQ;
exit(0);

253

Examples

$o- >execut e();
$0- >spool ();

13.5.4. RLIB compatible PHP program code

Here's the equivalent program code in PHP, using the RLIB compatibility functions.

<?php
$r = rlib_init();

rli b_add_dat asource_postgres($r, "pgsql", "dbnane=ocrpttest
user =ocrpt");

rlib_add_query_as($r, "pgsql", "select * fromflintstones4;", "ql1");

rlib_add_query_as($r, "pgsql", "select * fromflintstones5;", "q2");
rlib_add_resultset_follower($r, "ql1", "q2");

if (!rlib_add_report($r, "exanple5.xm ")) {
echo "XM. parse error" . PHP_EQ;
exit(0);

}

rlib_execute($r);
rlib_spool ($r);

13.5.5. Report description

The program code uses this file contents from exanpl e5. xm .

Note that when using multiple queriesin the same report, column names may beidentical. Because of this,
using quer ynane. col utmnane will indicate which one is needed. When using col unmnare then
it will mean the first query's column

<?xm version="1.0"?>
<I DOCTYPE OpenCReport SYSTEM "opencreport.dtd">
<OpenCReport >
<Report query="qgl">
<Det ai | >
<Fi el dHeader s>
<Qut put >
<Hori zont al Li ne size="2" color=""black'" />
<Hori zontal Li ne size="2" color=""white'" />
<Li ne bol d="yes">
<literal wi dth="20">First name</literal >
<literal w dth="20">Last nane</literal >
</ Li ne>
<Hori zontal Li ne size="2" color=""white'" />
<Hori zont al Li ne size="2" color=""black'" />
<Hori zontal Li ne size="2" color=""white'" />
</ Qut put >
</ Fi el dHeader s>

254

Examples

<Fi el dDet ai | s>
<Qut put >
<Li ne>
<field wi dt h="20" val ue="ql.firstname" />
<field w dt h="20" val ue="q2. I ast name" />

</ Li ne>
</ Qut put >
</ Fi el dDet ai | s>
</Detail >
</ Report >

</ OpenCReport >

13.5.6. Report PDF result

Note that compared to RLI B, OpenCReports may or may not produce the same output. Thisis due to the
incomplete and faulty implementation of follower queriesin RLIB.

13.6. N:1 follower queries

This example below exercises two N:1 (N-to-one) follower queries along with the main query. For more
information, see Follower queries.

13.6.1. Data

Datais created as follows in the same database using the same user asthe first example.

create table data (id serial unique, name text);

create table nore_data (

id serial unique,

boss id int,

name text,

foreign key (boss_id) references data (id));

create table npar_data (
sk_id int,

1 https://sourceforge.net/projects/rlib/

255

https://sourceforge.net/projects/rlib/
https://sourceforge.net/projects/rlib/

Examples

name text,
foreign key (sk_id) references nore_data (id));

insert into data (nane)

val ues

(" Snow White'),

(' Batman'),

("G nderella'),

(" Hansel "),

("Little Red Riding Hood'),
(" Robin Hood');

insert into nore_data (boss_id, name)

val ues

(1, 'Doc'),
(1, " Dopey'),
(1, 'Sneezy'),
(1, 'Happy'),

(1, 'Bashful'),
(1, 'Sleepy'),

(1, "Gunmpy'),

(2, 'Robin'),

(3, 'Fairy Godnother'),
(3, "Mce'),

(3, 'Pidgeons'),
(4, '"Getel"),
(6, 'Little John');

insert into nmoar_data (sk_id, name)
val ues

(3, ' Coughy"),

(3, "Crippley’),

(9, '"Prince Charmng'),

(9, 'Shrek'),

(13, "WIIl Scarlet'),

(13, 'Brother Tuck');

The query that the N:1 followers in this report simulateis:

ocrpttest=> select * fromdata |left outer join nore_data on (data.id =
nor e_dat a. boss_i d)

ocrpttest-> left outer join npar_data on (nore_data.id =
noar _dat a. sk_i d)

ocrpttest-> order by data.id, nore_data.id;

id | nane | id | boss_id | nane | sk_id
| nane
e e e e e e o o - T S F S ——
Fm e e e e e e e e e e m - - -
1| Snow White | 1| 1| Doc |
|
1| Snow White | 2 | 1 | Dopey
|
1| Snow White | 3| 1| Sneezy | 3
| Coughy

256

1| Snow White | 3| 1| Sneezy | 3
| Crippley

1| Snow White | 4 | 1 | Happy |

|

1| Snow White | 5| 1 | Bashful |

|

1| Snow White | 6 | 1| Sleepy |

|

1| Snow White | 7 | 1| Gunpy |

|

2 | Batnman | 8 | 2 | Robin |

|

3 | G nderella | 9 | 3 | Fairy Godnother | 9
| Shrek

3 | G nderella | 9 | 3 | Fairy Godnot her | 9
| Prince Charm ng

3 | G nderella | 10 | 3| Mce |

|

3 | G nderella | 11 | 3 | Pidgeons

|

4 | Hansel | 12 | 4 | Getel |

5| Little Red Riding Hood | | | I

6 | Robin Hood | 13 | 6 | Little John | 13
| WIIl Scarl et
6 | Robin Hood | 13 | 6 | Little John | 13
| Brother Tuck

(17 rows)

13.6.2. C program code

The program code adds the three queries and establishes the follower links between them. Note that the
match expressions can be anything, just likein SQL usingthe LEFT QUTER JO N ON (...) clause

#i ncl ude <stdio. h>
#i ncl ude <opencreport. h>

int main(int argc, char **argv) {
opencreport *o = ocrpt_init();
struct ocrpt_input_connect_paraneter conn_paranms[] = {

{ .param_nane = "dbname", .paramvalue = "ocrpttest” },
{ .paramnane = "user", .paramvalue = "ocrpt" },
{ NULL }
b
ocr pt _datasource *ds = ocrpt_dat asource_add(o, "pgsql"
"postgresql”, conn_parans);

ocrpt_query *gl = ocrpt_query_add_sql (ds, "ql", "select * from
data order by id;");

ocrpt_query *g2 = ocrpt_query_add_sql (ds, "q2", "select * from
nore_data order by id;");

ocrpt_query *g3 = ocrpt_query_add_sql (ds, "q3", "select * from
noar _data order by sk _id;");

257

Examples

ocrpt _expr *match = ocrpt_expr_parse(o, "ql.id = g2.boss_id",
NULL) ;
ocrpt_query_add_follower_n_to_1(ql, g2, match);

ocrpt _expr *match2 = ocrpt_expr_parse(o, "g2.id = g3.sk_id",
NULL) ;
ocrpt_query_add follower_n_to_1(q2, g3, match2);

if (locrpt_parse_xm (o, "exanple6.xm")) {
printf("XM parse error\n");
ocrpt_free(o);
return O;

}

ocrpt _set_out put _format (o, OCRPT_QUTPUT_PDF);
ocr pt _execute(0);

ocr pt _spool (0);

ocrpt_free(o);

return O;

}
13.6.3. PHP program code

Here's the equivalent program code in PHP.

<?php
$0 = new QpenCReport ();

$conn_parans = |
"dbname" => "ocrpttest”,
"user" => "ocrpt”

1

$ds = $o- >dat asource_add("pgsql ", "postgresqgl”, $conn_parans);

$ql = $ds->query_add("ql", "select * fromdata order by id;");

$g2 = $ds->query_add("g2", "select * fromnore_data order by id;");
$g3 = $ds->query_add("qg3", "select * fromnoar_data order by sk_id;");

$mat chl = $o- >expr_parse("qgl.id = g2. boss_id");
$gl1->add _fol lower_n_to 1(%$g2, $matchl);

$mat ch2 = $o- >expr_parse("g2.id = g3.sk_id");
$g2->add_fol lower_n_to 1(%$q3, $match2);

if (!%o->parse_xnl ("exanple6.xm ")) {
echo "XM. parse error" . PHP_EQ;
exit(0);

}

$o0- >execut e();
$0- >spool ();

258

Examples

13.6.4. RLIB compatible PHP program code

Here's the equivalent program code in PHP, using the RLIB compatibility functions. Note that the RLIB
compatible APl ismore limited as it expects a single field name matching.

<?php

$r =rlib_init();

riib_add_datasource_postgres($r, "pgsgl", "dbname=ocrpttest
user=ocrpt");

riib_add_query_as($r, "pgsqgl", "select * fromdata order by id;",
"q1")

riib_add_query_as($r, "pgsql", "select * fromnore_data order by id;",
"g2");

riib_add_query_as($r, "pgsqgl", "select * from noar_data order by
sk_id;", "q3");

rlib_add_resultset_follower_n_to_1(%r, "ql", "id", "qg2", "boss_id");
rlib_add_resultset_follower_n_to_1(%r, "qg2", "id", "qg3", "sk_id");

if ('rlib_add_report($r, "exanple6.xm")) {
echo "XM. parse error" . PHP_EQ;
exit(0);

}

rlib_execute($r);
rlib_spool ($r);

13.6.5. Report description

The program code uses this file contents from exanpl e6. xm .

Note that when using multiple queriesin the same report, column names may beidentical. Because of this,
using quer ynane. col urmnane will indicate which one is needed. When using col unmnane then
it will mean the first query's column.

<?xm version="1.0"?>

<I DOCTYPE report >

<OpenCReport >

<Report orientation="|andscape">

<Det ai | >
<Fi el dHeader s>
<Qut put >
<Li ne>
<literal w dth="30">Boss nane</literal >
<literal width="1"/>
<literal w dth="30">Sidekick nane</literal >
<literal width="1"/>
<literal wi dth="30">Si dekick's sidekick name</
literal >
</ Li ne>
</ Qut put >

</ Fi el dHeader s>

259

Examples

<Fi el dDet ai | s>
<Qut put >
<Li ne>
<field val ue="ql. name" w dth="30" align="left" />
<literal wdth="1"/>
<field val ue="q2. nanme" w dth="30" align="left" />
<literal wdth="1"/>
<field val ue="q3. nanme" w dth="30" align="left" />

</ Li ne>
</ Qut put >
</ Fi el dDet ai | s>
</Detail >
</ Report >

</ OpenCReport >

13.6.6. Report PDF result

Note that compared to RLIB?, OpenCReports likely do not produce the same output. This is due to the
incomplete and faulty implementation of follower queriesin RLIB. OpenCReports faithfully implements
LEFT OQUTER JO N.

13.7. N:1 follower queries (RLIB compatibility
limits)

This example below exercises two N:1 (N-to-one) follower queries along with the main query. For more
information, see Follower queries.

13.7.1. Data

The same datais used as in the previous example.
The query that the RLIB compatible method for N:1 followersin this report smulatesis:

ocrpttest=> select * fromdata
ocrpttest-> left outer join lateral (select * from nore_data

ocrpttest-> where data.id = nore_data. boss_id
ocrpttest-> order by nore_data.id limt 1) x on (true)
ocrpttest-> left outer join lateral (select * from noar_data
ocrpttest-> where X.id = noar_data.sk_id

2 https://sourceforge.net/projects/rlib/

260

https://sourceforge.net/projects/rlib/
https://sourceforge.net/projects/rlib/

Examples

ocrpttest-> order by noar_data.sk _id limt 1) y on (true);
id | nane | id | boss_id | nane | sk_id
| nane
e e e e e e o o - T S F S ——
Fm e e e e e e e e e e m - - -
1| Snow White | 1| 1| Doc |
|
2 | Batnman | 8 | 2 | Robin |
|
3 | G nderella | 9 | 3 | Fairy Godnother | 9
| Prince Charm ng
4 | Hansel | 12 | 4 | Getel |

|
5| Little Red Riding Hood | | | I

|
6 | Robin Hood | 13 | 6 | Little John | 13
| WIIl Scarl et

(6 rows)

Note the amount of hoops the SQL query hasto jump through to implement theLI M T 1 clause on both
lateral derived queries that resultsin limiting the number of rows to the main query's number of rows.

13.7.2. C program code

The program code is identical to the previous example, except that it uses a different report XML
description.

#i ncl ude <stdio. h>
#i ncl ude <opencreport.h>

int main(int argc, char **argv) {
opencreport *o = ocrpt_init();
struct ocrpt_input_connect_paranmeter conn_paranms[] = {

{ .param_nane = "dbname", .paramvalue = "ocrpttest” },
{ .paramnane = "user", .paramvalue = "ocrpt" },
{ NULL }
b
ocr pt _datasource *ds = ocrpt_dat asource_add(o, "pgsql"
"postgresql ", conn_parans);

ocrpt_query *gl = ocrpt_query_add_sql (ds, "ql", "select * from
data order by id;");

ocrpt_query *g2 = ocrpt_query_add_sql (ds, "q2", "select * from
nore_data order by id;");

ocrpt_query *g3 = ocrpt_query_add_sql (ds, "q3", "select * from
noar _data order by sk id;");

ocrpt _expr *match = ocrpt_expr_parse(o, "ql.id = g2.boss_id",
NULL) ;
ocrpt_query_add_follower_n_to_1(ql, g2, match);

ocrpt _expr *match2 = ocrpt_expr_parse(o, "g2.id = g3.sk_id",
NULL) ;
ocrpt_query_add _follower_n_to_1(q2, g3, match2);

261

Examples

if (locrpt_parse_xm (o, "exanple7.xm")) {
printf("XM parse error\n");
ocrpt_free(o);
return O;

}

ocrpt _set_out put _format (o, OCRPT_QUTPUT_PDF);
ocr pt _execute(0);

ocr pt _spool (0);

ocrpt_free(o);

return O;

}
13.7.3. PHP program code

Here's the equivalent program code in PHP.

<?php
$0 = new OpenCReport();
$conn_parans = [
"dbnane" => "ocrpttest",
"user" => "ocrpt"”

I

$ds = $o- >dat asource_add("pgsql ", "postgresqgl", $conn_parans);

$ql = $ds->query_add("ql", "select * fromdata order by id;");

$q2 = $ds->query_add("qg2", "select * fromnore_data order by id;");
$q3 = $ds->query_add("qg3", "select * fromnoar_data order by sk _id;");

$mat chl = $o->expr_parse("ql.id = g2. boss_id");
$g1- >add_foll ower_n_to_1($g2, $matchl);

$mat ch2 = $o- >expr_parse("qg2.id = g3.sk_id");
$g2- >add_foll ower_n_to_1($93, $match2);

if (!%o->parse_xnl ("exanmple7.xm ")) {
echo "XM. parse error” . PHP_EQ;
exit(0);

}

$o- >execut e();
$0- >spool ();

13.7.4. RLIB compatible PHP program code

Here's the equivalent program code in PHP, using the RLIB compatibility functions. Note that the RLIB
compatible API is more limited as it expects a single field name matching.

<?php
$r =rlib_init();

rlib_add_dat asource_postgres($r, "pgsql", "dbnane=ocrpttest
user =ocrpt");

262

Examples

rlib_add_query_as($r, "pgsqgl", "select * fromdata order by id;",
"q1");

rlib_add_query_as($r, "pgsqgl", "select * fromnore_data order by id;",
"92");

rlib_add_query_as($r, "pgsql", "select * from noar_data order by
sk_id;", "q3");

rlib_add_resultset_follower_n_to_1(%r, "ql", "id", "g2", "boss_id");
rlib_add_resultset_follower_n_to_1(%$r, "qg2", "id", "qg3", "sk_id");

if (!rlib_add_report($r, "exanple7.xm")) {
echo "XM. parse error"” . PHP_EQ;
exit(0);

}

rlib_execute($r);
rlib_spool ($r);

13.7.5. Report description

The program code uses this file contents from exanpl e7. xm . It is different in one detail from the
previous example: the toplevel XML node is <Report > instead of <CpenCReport >. Thisresultsin
the RLIB compatibility flag to be enabled automatically. See the Follower match single attribute or the
equivaent callsin the C and PHP API documentation.

<?xm version="1.0"?>
<I DOCTYPE report >
<Report orientation="|andscape">

<Det ai | >
<Fi el dHeader s>
<Qut put >
<Li ne>
<literal w dth="30">Boss nane</literal >
<literal width="1"/>
<literal w dth="30">Sidekick nane</literal >
<literal width="1"/>
<literal w dth="30">Si dekick's sidekick name</
literal >
</ Li ne>
</ Qut put >

</ Fi el dHeader s>
<Fi el dDet ai | s>
<Qut put >
<Li ne>
<field val ue="ql. nanme" w dth="30" align="left" />
<literal wdth="1"/>
<field val ue="q2. name" w dth="30" align="left" />
<literal wdth="1"/>
<field val ue="q3. nanme" w dth="30" align="left" />

</ Li ne>
</ Qut put >
</ Fi el dDet ai | s>
</Detail >
</ Report >

263

Examples

13.7.6. Report PDF result

Note that compared to RLIBS, OpenCReports likely do not produce the same output. This is due to the
incomplete and faulty implementation of follower queriesin RLIB. OpenCReports faithfully implements
LEFT QUTER JO Nwith limiting the number of dependent matching rows to 1 that approximates the
RLIB behaviour.

s https://sourceforge.net/projects/rlib/

264

https://sourceforge.net/projects/rlib/
https://sourceforge.net/projects/rlib/

Chapter 14. GNU Free Documentation
License

GN\U Free Docunentation License
Version 1.3, 3 Novenber 2008

Copyright (C 2000, 2001, 2002, 2007, 2008 Free Software Foundation
I nc.
<https://fsf.org/>
Everyone is permtted to copy and distribute verbati mcopies
of this license docunent, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a nmanual, textbook, or other
functional and useful docunent "free" in the sense of freedom to
assure everyone the effective freedomto copy and redistribute it,
with or without nodifying it, either comercially or nonconmercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for nodifications nade by others.

This License is a kind of "copyleft", which neans that derivative
wor ks of the docunent nust thenselves be free in the same sense. |t
conpl ements the GNU General Public License, which is a copyleft

i cense designed for free software.

We have designed this License in order to use it for nmanuals for free
software, because free software needs free docunmentation: a free
program shoul d come with manual s providing the sane freedons that the
software does. But this License is not linmted to software manual s;
it can be used for any textual work, regardl ess of subject matter or
whet her it is published as a printed book. W recommend this License
principally for works whose purpose is instruction or reference.

1. APPLI CABI LI TY AND DEFI NI TI ONS

This License applies to any nmanual or other work, in any nedium that
contains a notice placed by the copyright holder saying it can be

di stributed under the terns of this License. Such a notice grants a
wor |l d-wi de, royalty-free license, unlimted in duration, to use that
wor k under the conditions stated herein. The "Docunment", bel ow,
refers to any such nmanual or work. Any nenber of the public is a
Iicensee, and is addressed as "you". You accept the license if you
copy, nodify or distribute the work in a way requiring permssion
under copyright | aw.

A "Modified Version" of the Docunent neans any work containing the
Docurment or a portion of it, either copied verbatim or with

265

GNU Free Documentation License

nodi fications and/or translated into another |anguage.

A "Secondary Section" is a naned appendix or a front-matter section of
t he Docunment that deals exclusively with the relationship of the
publishers or authors of the Document to the Docunent's overal

subject (or to related matters) and contains nothing that could fal
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historica
connection with the subject or with related matters, or of |egal
conmer ci al, phil osophical, ethical or political position regarding

t hem

The "l nvariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Docunment is rel eased under this License. If a
section does not fit the above definition of Secondary then it is not
all owed to be designated as Invariant. The Docunent may contain zero
I nvariant Sections. |If the Docunent does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
t he Docurment is released under this License. A Front-Cover Text may
be at nost 5 words, and a Back-Cover Text mamy be at npbst 25 words.

A "Transparent™ copy of the Docunent neans a machi ne-readabl e copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the docunment
straightforwardly with generic text editors or (for inages conposed of
pi xel s) generic paint prograns or (for draw ngs) some w dely avail abl e
drawi ng editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherw se Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or di scourage subsequent nodification by readers is not Transparent.
An image format is not Transparent if used for any substantial anount
of text. A copy that is not "Transparent” is called "Opaque"

Exampl es of suitable formats for Transparent copies include plain
ASCI | wi thout markup, Texinfo input format, LaTeX input format, SGWL
or XML using a publicly available DTD, and standard-conformng sinple
HTM., Post Script or PDF designed for human nodification. Exanples of
transparent image formats include PNG XCF and JPG (Opaque formats

i nclude proprietary formats that can be read and edited only by
proprietary word processors, SGVL or XM for which the DID and/ or
processing tools are not generally available, and the
machi ne- generated HTM., Post Script or PDF produced by some word
processors for output purposes only.

The "Titl e Page" neans, for a printed book, the title page itself,
pl us such foll owi ng pages as are needed to hold, legibly, the materia
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" neans

266

GNU Free Documentation License

the text near the nost prom nent appearance of the work's title,
precedi ng the begi nning of the body of the text.

The "publisher" neans any person or entity that distributes copies of
t he Docurment to the public.

A section "Entitled XYZ' neans a named subunit of the Docunment whose
title either is precisely XYZ or contains XYZ in parentheses foll ow ng
text that translates XYZ in another |anguage. (Here XYZ stands for a
specific section nane nentioned bel ow, such as "Acknow edgenents"”,
"Dedi cations", "Endorsenments", or "History".) To "Preserve the Title"
of such a section when you nodi fy the Document means that it remmins a
section "Entitled XYZ" according to this definition.

The Docurent may include Warranty Disclainmers next to the notice which
states that this License applies to the Docunent. These Warranty

Di sclainmers are considered to be included by reference in this

Li cense, but only as regards disclaimng warranties: any other
inmplication that these Warranty Di sclainers may have is void and has
no effect on the meaning of this License.

2. VERBATI M COPYI NG

You may copy and distribute the Docunment in any nedium either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Docunent are reproduced in all copies, and that you add no

ot her conditions whatsoever to those of this License. You nmay not use
techni cal nmeasures to obstruct or control the reading or further
copyi ng of the copies you make or distribute. However, you may accept
conpensation in exchange for copies. |If you distribute a |arge enough
nunber of copies you nmust also follow the conditions in section 3.

You may al so |l end copi es, under the same conditions stated above, and
you may publicly display copies.

3. COPYI NG | N QUANTI TY

If you publish printed copies (or copies in nmedia that comonly have
printed covers) of the Document, nunbering nore than 100, and the
Docurment's |icense notice requires Cover Texts, you nust enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
t he back cover. Both covers nmust also clearly and legibly identify
you as the publisher of these copies. The front cover nust present
the full title with all words of the title equally prom nent and
visible. You may add other material on the covers in addition.
Copying with changes limted to the covers, as long as they preserve
the title of the Docurment and satisfy these conditions, can be treated
as verbatimcopying in other respects.

If the required texts for either cover are too volumnous to fit
| egi bly, you should put the first ones listed (as many as fit

267

GNU Free Documentation License

reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document nunbering
nore than 100, you mnust either include a machi ne-readabl e Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a conputer-network |l ocation fromwhich the general network-using
public has access to downl oad usi ng public-standard network protocols
a conpl ete Transparent copy of the Document, free of added materi al

If you use the latter option, you nust take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at |east one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Docurrent wel| before redistributing any |arge nunmber of copies, to
give them a chance to provide you with an updated version of the
Docunent .

4. MODI FI CATI ONS
You may copy and distribute a Modified Version of the Docunent under

the conditions of sections 2 and 3 above, provided that you rel ease
the Modified Version under precisely this License, with the Mdified

Version filling the role of the Document, thus licensing distribution
and nodification of the Mdified Version to whoever possesses a copy
of it. In addition, you nust do these things in the Mdified Version

A. Use in the Title Page (and on the covers, if any) a title distinct
fromthat of the Document, and fromthose of previous versions
(whi ch should, if there were any, be listed in the History section
of the Docunment). You may use the sanme title as a previous version
if the original publisher of that version gives perm ssion.

B. List on the Title Page, as authors, one or nore persons or entities
responsi ble for authorship of the nodifications in the Mdified
Version, together with at |east five of the principal authors of

t he
Docurent (all of its principal authors, if it has fewer than five),
unl ess they release you fromthis requirenent.

C. State on the Title page the nane of the publisher of the
Modi fi ed Version, as the publisher

D. Preserve all the copyright notices of the Docunent.

E. Add an appropriate copyright notice for your nodifications
adj acent to the other copyright notices.

F. Include, inmmedi ately after the copyright notices, a license notice
giving the public perm ssion to use the Mdified Version under the
terms of this License, in the formshown in the Addendum bel ow.

G Preserve in that license notice the full lists of Invariant

Sect i ons
and required Cover Texts given in the Docunment's |icense notice.
H Include an unaltered copy of this License.

268

GNU Free Documentation License

I. Preserve the section Entitled "Hi story", Preserve its Title, and

add
toit an itemstating at least the title, year, new authors, and
publ i sher of the Modified Version as given on the Title Page. |If
there is no section Entitled "History” in the Docunent, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Mdified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Docunent for
public access to a Transparent copy of the Docunent, and |ikew se
the network | ocations given in the Docunment for previous versions
it was based on. These may be placed in the "Hi story" section
You may onmit a network |location for a work that was published at
| east four years before the Docunment itself, or if the origina
publisher of the version it refers to gives perm ssion

K. For any section Entitled "Acknow edgenments” or "Dedications"”,
Preserve the Title of the section, and preserve in the section al
t he substance and tone of each of the contributor acknow edgenents
and/ or dedications given therein

L. Preserve all the Invariant Sections of the Docunent,
unaltered in their text and in their titles. Section nunbers
or the equival ent are not considered part of the section titles.

M Delete any section Entitled "Endorsenents”. Such a section
may not be included in the Mdified Version

N. Do not retitle any existing section to be Entitled "Endorsenents”
or to conflict intitle with any Invariant Section

O Preserve any Warranty Discl ai mers.

If the Modified Version includes new front-matter sections or

appendi ces that qualify as Secondary Sections and contain no materia
copied fromthe Docunent, you nmay at your option designate sonme or al
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Mddified Version's |icense notice.
These titles nmust be distinct fromany other section titles.

You may add a section Entitled "Endorsenments”, provided it contains
not hi ng but endorsements of your Mbdified Version by various
parties--for exanple, statements of peer review or that the text has
been approved by an organi zation as the authoritative definition of a
st andar d.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the |ist
of Cover Texts in the Mdified Version. Only one passage of
Front - Cover Text and one of Back-Cover Text nmay be added by (or

t hrough arrangenments made by) any one entity. |[If the Docunent already
i ncludes a cover text for the same cover, previously added by you or
by arrangenent nade by the same entity you are acting on behal f of,
you may not add another; but you may replace the old one, on explicit
perm ssion fromthe previous publisher that added the ol d one.

The aut hor (s) and publisher(s) of the Docunent do not by this License
gi ve perm ssion to use their names for publicity for or to assert or
i mply endorsenent of any Mbdified Version

269

GNU Free Documentation License

5. COMBI NI NG DOCUMENTS

You may conbi ne the Docunent with other docunments rel eased under this
Li cense, under the terns defined in section 4 above for nodified
versions, provided that you include in the conmbination all of the

I nvari ant Sections of all of the original documents, unnodified, and
list themall as Invariant Sections of your conbined work in its
license notice, and that you preserve all their Warranty Di scl ai mers.

The conbi ned work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. |If there are nultiple Invariant Sections with the sane nane but
different contents, nake the title of each such section unique by
adding at the end of it, in parentheses, the nane of the origina

aut hor or publisher of that section if known, or else a unique nunber.
Make the same adjustnent to the section titles in the list of

I nvariant Sections in the |license notice of the conbined work.

In the comnbination, you nust conbine any sections Entitled "Hi story"
in the various original docunents, formng one section Entitled

"Hi story"; likew se conbine any sections Entitled "Acknow edgenents",
and any sections Entitled "Dedications”". You nust delete all sections
Entitl ed "Endorsenments"”.

6. COLLECTI ONS OF DOCUMENTS

You may make a collection consisting of the Docunent and ot her
docunents rel eased under this License, and replace the individua
copies of this License in the various docunments with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatimcopying of each of the docunents in al

ot her respects.

You may extract a single docunent fromsuch a collection, and
distribute it individually under this License, provided you insert a
copy of this License into the extracted docunment, and follow this
License in all other respects regarding verbatimcopying of that
docunent .

7. AGGREGATI ON W TH | NDEPENDENT WORKS

A conpilation of the Document or its derivatives with other separate
and i ndependent docunents or works, in or on a volune of a storage or
distribution medium is called an "aggregate"” if the copyright
resulting fromthe conpilation is not used to limt the legal rights
of the conpilation's users beyond what the individual works permt.
VWhen the Docunent is included in an aggregate, this License does not
apply to the other works in the aggregate which are not thensel ves
derivative works of the Docunent.

270

GNU Free Documentation License

If the Cover Text requirenment of section 3 is applicable to these
copi es of the Document, then if the Document is |ess than one half of
the entire aggregate, the Docunent's Cover Texts may be placed on
covers that bracket the Docunent within the aggregate, or the

el ectroni c equi val ent of covers if the Docunent is in electronic form
O herw se they nmust appear on printed covers that bracket the whole
aggr egat e.

8. TRANSLATI ON

Translation is considered a kind of nodification, so you may
distribute translations of the Docunent under the ternms of section 4.
Repl aci ng I nvariant Sections with translations requires speci al

perm ssion fromtheir copyright holders, but you may include

transl ations of sone or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Docurent, and any Warranty Discl ainers, provided that you al so include
the original English version of this License and the original versions

of those notices and disclainers. In case of a disagreenent between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Docunent is Entitled "Acknow edgenents"”,

"Dedi cations", or "History", the requirenent (section 4) to Preserve
its Title (section 1) will typically require changing the actua
title.

9. TERM NATI ON

You may not copy, nodify, sublicense, or distribute the Docunent
except as expressly provided under this License. Any attenpt
otherwi se to copy, nodify, sublicense, or distribute it is void, and
will automatically term nate your rights under this License

However, if you cease all violation of this License, then your |icense
froma particular copyright holder is reinstated (a) provisionally,

unl ess and until the copyright holder explicitly and finally

term nates your license, and (b) permanently, if the copyright hol der
fails to notify you of the violation by sone reasonable neans prior to
60 days after the cessation

Mor eover, your license froma particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
viol ati on by some reasonable neans, this is the first time you have
recei ved notice of violation of this License (for any work) fromthat
copyri ght holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Term nation of your rights under this section does not term nate the
licenses of parties who have received copies or rights fromyou under
this License. |If your rights have been term nated and not permanently

271

GNU Free Documentation License

reinstated, receipt of a copy of some or all of the sane material does
not give you any rights to use it.

10. FUTURE REVI SIONS OF THI S LI CENSE

The Free Software Foundati on may publish new, revised versions of the
G\U Free Docunentation License fromtine to tine. Such new versions
will be simlar in spirit to the present version, but may differ in
detail to address new problens or concerns. See
https://ww. gnu. org/licenses/.

Each version of the License is given a distinguishing version number.
If the Docunent specifies that a particul ar nunmbered version of this
Li cense "or any later version"” applies to it, you have the option of
following the ternms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the

Free Software Foundation. |f the Document does not specify a version
nunber of this License, you nmay choose any version ever published (not
as a draft) by the Free Software Foundation. If the Docunent

specifies that a proxy can decide which future versions of this

Li cense can be used, that proxy's public statenent of acceptance of a
versi on permanently authorizes you to choose that version for the
Docunent .

11. RELI CENSI NG

"Massive Miultiauthor Collaboration Site" (or "MMC Site") neans any
Wrld Wde Wb server that publishes copyrightable works and al so
provi des prom nent facilities for anybody to edit those works. A
public w ki that anybody can edit is an exanple of such a server. A
"Massive Multiauthor Collaboration" (or "MMC') contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" neans the Creative Commons Attribution-Share Alike 3.0
i cense published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Franci sco,
California, as well as future copyleft versions of that |icense
publ i shed by that sane organization

"I ncorporate” nmeans to publish or republish a Docunment, in whole or in
part, as part of another Document.

An MMC is "eligible for relicensing” if it is licensed under this
License, and if all works that were first published under this License

somewhere other than this MMC, and subsequently incorporated in whole
or

in part into the MMC, (1) had no cover texts or invariant sections,
and

(2) were thus incorporated prior to Novenber 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any tine before August 1, 2009,
provided the MMC is eligible for relicensing.

272

GNU Free Documentation License

ADDENDUM How to use this License for your docunents

To use this License in a docunent you have witten, include a copy of
the License in the docunment and put the follow ng copyright and
license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Perm ssion is granted to copy, distribute and/or nodify this
docunent

under the terns of the GNU Free Docunentation License, Version 1.3

or any later version published by the Free Software Foundation

with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts.

A copy of the license is included in the section entitled "G\NU

Free Docunentation License".

If you have Invariant Sections, Front-Cover Texts and Back- Cover
Text s,
replace the "with...Texts."” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front - Cover Texts being LIST, and with the Back-Cover Texts being
LI ST.

If you have Invariant Sections w thout Cover Texts, or sone other
conbi nati on of the three, merge those two alternatives to suit the
situation.

I f your docunent contains nontrivial exanples of program code, we
recommend rel easi ng these exanples in parallel under your choice of
free software |icense, such as the GNU General Public License,

to permit their use in free software.

273

	OpenCReports 0.8.14 Manual
	Table of Contents
	Chapter 1. Introduction and concepts
	1.1. The predecessor: RLIB
	1.2. Concepts
	1.2.1. What is a report generator?
	1.2.2. XML based report description
	1.2.3. Comprehensive API for report creation
	1.2.4. Strict expression parser
	1.2.5. Expression optimization
	1.2.6. Report variables
	1.2.7. Report breaks
	1.2.8. Extensive and extensible set of functions
	1.2.9. UTF-8 string handling
	1.2.10. High precision numeric data type
	1.2.11. Datetime and interval data types
	1.2.12. Automatic input data conversion
	1.2.13. Versatile field alignment and multi-row fields
	1.2.14. Multi-column reports
	1.2.15. Miscellaneous layout details
	1.2.16. Multiple output formats
	1.2.17. Extensive set of unit tests
	1.2.18. Standard Linux dependencies

	1.3. OpenCReports planned features
	1.3.1. Graph and chart support in HTML and PDF output
	1.3.2. Visual editor for report XML descriptions

	Chapter 2. Data sources and queries
	2.1. Data sources
	2.1.1. SQL based data sources
	2.1.1.1. MariaDB/MySQL data source
	2.1.1.2. PostgreSQL data source
	2.1.1.3. ODBC data source
	2.1.1.4. Special note for SQL datasources

	2.1.2. File based data sources
	2.1.2.1. CSV file type
	2.1.2.2. JSON file type
	2.1.2.3. XML file type
	2.1.2.4. Spreadsheet file types

	2.1.3. Application data based datasource
	2.1.4. Application defined data sources

	2.2. Queries
	2.2.1. SQL queries
	2.2.2. File queries
	2.2.3. Data queries
	2.2.4. Relation between queries
	2.2.4.1. Follower queries
	2.2.4.1.1. Regular follower queries
	2.2.4.1.2. N:1 follower queries
	2.2.4.1.3. Note on follower queries

	2.2.4.2. Independent queries

	Chapter 3. Expressions in OpenCReports
	3.1. Introduction
	3.2. Constants
	3.2.1. String literals
	3.2.2. Numeric constants
	3.2.3. Boolean constants
	3.2.4. Datetime constants
	3.2.5. Constant expressions

	3.3. Delayed (precalculated) expressions
	3.4. Identifiers
	3.4.1. Identifier names
	3.4.2. Query field identifiers
	3.4.3. User defined variables
	3.4.4. Special purpose identifier domains
	3.4.4.1. Environment variables
	3.4.4.2. Internal report variables
	3.4.4.2.1. Current page number
	3.4.4.2.2. Total number of pages
	3.4.4.2.3. Line number
	3.4.4.2.4. Detail count
	3.4.4.2.5. Field value
	3.4.4.2.6. Report output format value
	3.4.4.2.7. Expression self reference
	3.4.4.2.8. Subexpressions of user-defined variables

	3.4.4.3. Quoted and dot-prefixed identifiers
	3.4.4.4. Dot-prefixed identifiers
	3.4.4.5. Quoted special purpose identifier domains

	3.5. Operators and functions
	3.5.1. Ternary operator
	3.5.2. Boolean logic operators with two operands
	3.5.3. Bitwise operators with two operands
	3.5.4. Equality and inequality comparison operators
	3.5.4.1. Equality and inequality comparison operators on vectors

	3.5.5. Other comparison operators
	3.5.5.1. Other comparison operators on vectors

	3.5.6. Bitwise shifts
	3.5.7. Addition and subtraction
	3.5.8. Multiplication, division and modulo (remainder)
	3.5.9. Power-of operator
	3.5.10. Factorial operator
	3.5.11. Unary plus and minus, logical and bitwise NOT, prefix increment and decrement
	3.5.12. Postfix increment and decrement
	3.5.13. Function calls and implicit multiplication
	3.5.14. Parentheses
	3.5.15. A note on token matching, precendence and syntax errors

	Chapter 4. Functions
	4.1. Introduction
	4.2. Arithmetic functions
	4.2.1. abs()
	4.2.2. div()
	4.2.3. factorial()
	4.2.4. fmod()
	4.2.5. mod()
	4.2.6. mul()
	4.2.7. remainder()
	4.2.8. uminus()
	4.2.9. uplus()

	4.3. Bitwise functions
	4.3.1. and()
	4.3.2. not()
	4.3.3. or()
	4.3.4. shl()
	4.3.5. shr()
	4.3.6. xor()

	4.4. Boolean logic functions
	4.4.1. land()
	4.4.2. lnot()
	4.4.3. lor()

	4.5. Comparison functions
	4.5.1. eq()
	4.5.2. ge()
	4.5.3. gt()
	4.5.4. le()
	4.5.5. lt()
	4.5.6. ne()

	4.6. Rounding and related functions
	4.6.1. ceil()
	4.6.2. floor()
	4.6.3. rint()
	4.6.4. round()
	4.6.5. trunc()

	4.7. Exponential, logarithmic and related functions
	4.7.1. exp()
	4.7.2. exp10()
	4.7.3. exp2()
	4.7.4. ln()
	4.7.5. log()
	4.7.6. log10()
	4.7.7. log2()
	4.7.8. pow()
	4.7.9. sqr()
	4.7.10. sqrt()

	4.8. Trigonometric functions
	4.8.1. acos()
	4.8.2. asin()
	4.8.3. atan()
	4.8.4. cos()
	4.8.5. cot()
	4.8.6. csc()
	4.8.7. sec()
	4.8.8. sin()
	4.8.9. tan()

	4.9. String functions
	4.9.1. concat()
	4.9.2. left()
	4.9.3. lower()
	4.9.4. mid()
	4.9.5. proper()
	4.9.6. right()
	4.9.7. strlen()
	4.9.8. upper()

	4.10. Datetime functions
	4.10.1. chgdateof()
	4.10.2. chgtimeof()
	4.10.3. date()
	4.10.4. dateof()
	4.10.5. day()
	4.10.6. dim()
	4.10.7. dtos()
	4.10.8. dtosf()
	4.10.9. gettimeinsecs()
	4.10.10. interval()
	4.10.11. month()
	4.10.12. now()
	4.10.13. settimeinsecs()
	4.10.14. stdwiy()
	4.10.15. stod()
	4.10.16. stodt()
	4.10.17. stodtsql()
	4.10.18. timeof()
	4.10.19. tstod()
	4.10.20. wiy()
	4.10.21. wiy1()
	4.10.22. wiyo()
	4.10.23. year()

	4.11. Type agnostic functions
	4.11.1. add()
	4.11.2. dec()
	4.11.3. inc()
	4.11.4. sub()

	4.12. Formatting and conversion functions
	4.12.1. format()
	4.12.2. printf()
	4.12.3. str()
	4.12.4. val()

	4.13. Miscellaneous functions
	4.13.1. brrownum()
	4.13.2. error()
	4.13.3. eval()
	4.13.4. fxpval()
	4.13.5. iif()
	4.13.6. isdatetime()
	4.13.7. iserror()
	4.13.8. isnan()
	4.13.9. isnull()
	4.13.10. isnumeric()
	4.13.11. isstring()
	4.13.12. null()
	4.13.13. nulldt()
	4.13.14. nulln()
	4.13.15. nulls()
	4.13.16. prevval()
	4.13.17. random()
	4.13.18. rownum()
	4.13.19. translate()
	4.13.20. translate2()

	Chapter 5. Report variables
	5.1. Introduction to report variables
	5.2. Expression variables
	5.2.1. Variables with iterative expressions
	5.2.2. Expression variable examples

	5.3. Variable types for simple statistics
	5.3.1. Statistics variable examples

	5.4. Custom variables
	5.5. Precalculated variables

	Chapter 6. Report breaks
	6.1. Grouping data
	6.2. Report breaks in OpenCReports
	6.3. Resetting a variable on break boundaries
	6.4. Example

	Chapter 7. Formatting
	7.1. Formatting functions
	7.2. Format strings
	7.3. Legacy format strings
	7.3.1. Format string for strings
	7.3.2. Format string for numeric values
	7.3.3. Format string for datetime values

	7.4. New style format strings
	7.4.1. New style format string for strings
	7.4.2. New style format string for numeric data
	7.4.3. New style format string for monetary data
	7.4.4. New style format string for datetime values
	7.4.5. New style format string examples

	7.5. Second generation new style format strings
	7.5.1. 2nd gen new style format string for strings
	7.5.2. 2nd gen new style format string for numeric data
	7.5.3. 2nd gen new style format string for monetary data
	7.5.4. 2nd gen new style format string for datetime values
	7.5.5. 2nd gen new style format string examples

	7.6. The swiss army knife of formatting

	Chapter 8. Report XML description
	8.1. XML description structure
	8.1.1. Notes about XML syntax and attributes

	8.2. OpenCReport element
	8.2.1. Size unit attribute
	8.2.2. No query show NoData
	8.2.3. Report height after last
	8.2.4. Follower match single
	8.2.5. Precision bits
	8.2.6. Rounding mode
	8.2.7. Locale
	8.2.8. Translation settings

	8.3. Paths
	8.4. Datasources
	8.4.1. MariaDB (MySQL) database connection
	8.4.2. PostgreSQL database connection
	8.4.3. ODBC database connection
	8.4.4. CSV file datasource
	8.4.5. JSON file datasource
	8.4.6. XML file datasource
	8.4.7. Spreadsheet file datasource
	8.4.8. Array datasource
	8.4.9. Common datasource properties
	8.4.9.1. Encoding

	8.5. Queries
	8.5.1. SQL queries for SQL datasources
	8.5.2. Queries for file based datasources
	8.5.3. Queries for array based datasources
	8.5.4. Follower queries
	8.5.4.1. Regular follower queries
	8.5.4.2. N:1 follower queries

	8.6. Report parts
	8.6.1. Part attributes
	8.6.1.1. Font name
	8.6.1.2. Font size
	8.6.1.3. Size unit
	8.6.1.4. No query show NoData attribute
	8.6.1.5. Report height after last attribute
	8.6.1.6. Orientation
	8.6.1.7. Margin settings
	8.6.1.8. Paper type
	8.6.1.9. Iterations
	8.6.1.10. Suppress
	8.6.1.11. Suppress page header on the first page

	8.6.2. Part subsections
	8.6.2.1. Page header
	8.6.2.2. Page footer
	8.6.2.3. Part row

	8.7. Part row
	8.7.1. Part row attributes
	8.7.1.1. Layout
	8.7.1.2. New page
	8.7.1.3. Suppress

	8.8. Part column
	8.8.1. Part column attributes
	8.8.1.1. Width
	8.8.1.2. Height
	8.8.1.3. Border width
	8.8.1.4. Border color
	8.8.1.5. Detail columns
	8.8.1.6. Column padding
	8.8.1.7. Suppress

	8.9. Report
	8.9.1. Report attributes
	8.9.1.1. Font name
	8.9.1.2. Font size
	8.9.1.3. Size unit
	8.9.1.4. No query show NoData attribute
	8.9.1.5. Report height after last attribute
	8.9.1.6. Orientation
	8.9.1.7. Margin settings
	8.9.1.8. Paper type
	8.9.1.9. Height
	8.9.1.9.1. Report height in OpenCReports mode
	8.9.1.9.2. Report height in RLIB compatibility mode

	8.9.1.10. Iterations
	8.9.1.11. Suppress
	8.9.1.12. Suppress page header on the first page
	8.9.1.13. Query
	8.9.1.14. Field header priority
	8.9.1.15. Border width
	8.9.1.16. Border color
	8.9.1.17. Detail columns
	8.9.1.18. Column padding

	8.9.2. Report subsections
	8.9.2.1. Page header
	8.9.2.2. Page footer
	8.9.2.3. Report header
	8.9.2.4. Report footer
	8.9.2.5. Variables
	8.9.2.6. Breaks
	8.9.2.7. Detail
	8.9.2.8. Alternate output for no data

	8.10. Loaded report
	8.10.1. Loaded Report attributes
	8.10.1.1. File name
	8.10.1.2. Query
	8.10.1.3. Iterations

	8.11. Variables
	8.12. Variable
	8.12.1. Variable attributes
	8.12.1.1. Name
	8.12.1.2. Value
	8.12.1.3. Type
	8.12.1.3.1. Complete variable examples

	8.12.1.4. Custom variable attributes
	8.12.1.4.1. Custom variable example

	8.12.1.5. Reset on break
	8.12.1.6. Precalculate (delayed)

	8.13. Breaks
	8.14. Break
	8.14.1. Break attributes
	8.14.1.1. Name
	8.14.1.2. Header on new page
	8.14.1.3. Suppress break header and footer for blank break fields

	8.14.2. Break subsections
	8.14.2.1. BreakHeader
	8.14.2.2. BreakFooter
	8.14.2.3. BreakFields
	8.14.2.3.1. BreakField

	8.14.3. A complete break example

	8.15. Output
	8.15.1. Output attributes
	8.15.1.1. Suppress

	8.15.2. Output subsections
	8.15.2.1. Line
	8.15.2.2. HorizontalLine
	8.15.2.3. Image
	8.15.2.4. Barcode
	8.15.2.5. Image end

	8.16. Line
	8.16.1. Line attributes
	8.16.1.1. Font name
	8.16.1.2. Font size
	8.16.1.3. Bold font
	8.16.1.4. Italic font
	8.16.1.5. Suppress
	8.16.1.6. Text color
	8.16.1.7. Background color

	8.16.2. Line subsections
	8.16.2.1. Text element
	8.16.2.2. Image element
	8.16.2.3. Barcode element

	8.17. Text element
	8.17.1. Text element attributes
	8.17.1.1. Value
	8.17.1.2. Delayed (precalculated) value
	8.17.1.3. Format string
	8.17.1.3.1. Format attribute examples

	8.17.1.4. Width
	8.17.1.5. Alignment
	8.17.1.6. Text color
	8.17.1.7. Background color
	8.17.1.8. Font name
	8.17.1.9. Font size
	8.17.1.10. Bold font
	8.17.1.11. Italic font
	8.17.1.12. Web link
	8.17.1.13. Multi-line (memo) field
	8.17.1.14. Multi-line field hyphenation
	8.17.1.15. Multi-line field wrapping
	8.17.1.16. Multi-line field row limit
	8.17.1.17. Translation
	8.17.1.18. Column number

	8.18. HorizontalLine
	8.18.1. HorizontalLine attributes
	8.18.1.1. Line width
	8.18.1.2. Line alignment
	8.18.1.3. Indentation
	8.18.1.4. Length
	8.18.1.5. Font size
	8.18.1.6. Suppress
	8.18.1.7. Line color

	8.19. Image
	8.19.1. Image attributes
	8.19.1.1. File name
	8.19.1.2. Suppress
	8.19.1.3. Type
	8.19.1.4. Width
	8.19.1.5. Height
	8.19.1.6. Text width
	8.19.1.7. Background color
	8.19.1.8. Alignment

	8.20. Image end
	8.21. Barcode element
	8.21.1. Barcode element attributes
	8.21.1.1. Suppress
	8.21.1.2. Value
	8.21.1.3. Delayed (precalculated) value
	8.21.1.4. Barcode type
	8.21.1.5. Width
	8.21.1.6. Height
	8.21.1.7. Barcode color
	8.21.1.8. Barcode background color

	8.22. Color specification

	Chapter 9. High level C language API reference
	9.1. Header file
	9.2. High level C API
	9.2.1. Report handler initialization
	9.2.2. Load a report XML description
	9.2.3. Parse report XML description from a buffer
	9.2.4. Set report output format
	9.2.5. Get report output format as enum or string
	9.2.6. Set report output parameter
	9.2.7. Run the report
	9.2.8. Dump report result
	9.2.9. Get report result
	9.2.10. Get report content type
	9.2.11. Report handler destruction
	9.2.12. Get library version

	Chapter 10. Low level C language API reference
	10.1. Low level C API
	10.1.1. Numeric behavior related functions
	10.1.1.1. Set numeric precision
	10.1.1.2. Get numeric precision
	10.1.1.3. Set rounding mode

	10.1.2. Locale related functions
	10.1.2.1. Set up translation
	10.1.2.2. Set up translation (delayed variant)
	10.1.2.3. Set report locale
	10.1.2.4. Set report locale (delayed variant)
	10.1.2.5. Print monetary data in the report locale

	10.1.3. Data source and query related functions
	10.1.3.1. Add a datasource
	10.1.3.1.1. MariaDB connection parameters
	10.1.3.1.2. PostgreSQL connection parameters
	10.1.3.1.3. ODBC connection parameters
	10.1.3.1.4. Spreadsheet connection parameters

	10.1.3.2. Find a datasource
	10.1.3.3. Set the encoding of a datasource
	10.1.3.4. Free a datasource
	10.1.3.5. Add a direct data based query
	10.1.3.6. Add a symbolic data based query
	10.1.3.7. Add a file based query
	10.1.3.8. Add an SQL statement based query
	10.1.3.9. Test whether a datasource is direct data based
	10.1.3.10. Test whether a datasource is direct data based
	10.1.3.11. Test whether a datasource is file based
	10.1.3.12. Test whether a datasource is SQL based
	10.1.3.13. Find a query
	10.1.3.14. Get the current data row from a query
	10.1.3.15. Get column name
	10.1.3.16. Get column data
	10.1.3.17. Add a follower query
	10.1.3.18. Add an N:1 follower query
	10.1.3.19. Refresh query contents
	10.1.3.20. Free a query
	10.1.3.21. Start the main query
	10.1.3.22. Navigate to the next query row
	10.1.3.23. Navigate use previous/next row
	10.1.3.24. API specific data discovery function

	10.1.4. Expression related functions
	10.1.4.1. Parse an expression string
	10.1.4.2. Parse an expression string and bind it to a report
	10.1.4.3. Free an expression parse tree
	10.1.4.4. Get the original expression string
	10.1.4.5. Resolve expression references
	10.1.4.6. Optimize an expression
	10.1.4.7. Evaluate an expression
	10.1.4.8. Get expression result without evaluation
	10.1.4.9. Print an expression tree
	10.1.4.10. Print an expression tree with subexpressions and their results
	10.1.4.11. Count the number of expression nodes
	10.1.4.12. Initialize expression result type
	10.1.4.13. Set an error string as expression result
	10.1.4.14. Set start value flag for an iterative expression
	10.1.4.15. Get current value of an expression in base type
	10.1.4.16. Set current value of an expression in a base type
	10.1.4.17. Set nth value of an expression in a base type
	10.1.4.18. Compare the current of an expression with its previous value
	10.1.4.19. Set delayed flag of an expression
	10.1.4.20. Set field expression reference for an expression

	10.1.5. Column data or expression result related functions
	10.1.5.1. Create an expression result
	10.1.5.2. Get expression result type
	10.1.5.3. Copy an expression result
	10.1.5.4. Print an expression result
	10.1.5.5. Free an expression result
	10.1.5.6. Detect whether a column result is NULL
	10.1.5.7. Detect whether a column result is numeric
	10.1.5.8. Get the numeric value of a column result
	10.1.5.9. Detect whether a column result is string
	10.1.5.10. Get the string value of a column result
	10.1.5.11. Detect whether a column result is datetime
	10.1.5.12. Get the datetime value of a column result
	10.1.5.13. Detect whether a datetime column result is interval
	10.1.5.14. Detect whether a datetime column result has valid date
	10.1.5.15. Detect whether a datetime column result has valid time

	10.1.6. Variable related functions
	10.1.6.1. Create a basic variable
	10.1.6.2. Create a custom variable
	10.1.6.3. Get the variable type
	10.1.6.4. Get subexpressions of a variable
	10.1.6.5. Get precalculate flag for a variable
	10.1.6.6. Resolve a variable
	10.1.6.7. Evaluate a variable
	10.1.6.8. Iterate over variables of a report

	10.1.7. Break related functions
	10.1.7.1. Create a break
	10.1.7.2. Set attribute flag expressions for a break
	10.1.7.3. Get break using its name
	10.1.7.4. Get the name of a break
	10.1.7.5. Add a watched expression to a break
	10.1.7.6. Iterate over breaks of a report
	10.1.7.7. Resolve and optimize break fields
	10.1.7.8. Check whether the break triggers
	10.1.7.9. Check whether break field values are blank
	10.1.7.10. Reset variables for the break

	10.1.8. Function related functions
	10.1.8.1. Add a user defined function
	10.1.8.2. Find a named function
	10.1.8.3. Get number of operands for an expression (function)
	10.1.8.4. Get current value of a function operand

	10.1.9. Report part and report related functions
	10.1.9.1. Create a report part
	10.1.9.2. Create a row in a report part
	10.1.9.3. Create a column in report part row
	10.1.9.4. Create a new report in a part column
	10.1.9.5. Report part related iterators
	10.1.9.6. Set the main query for a report
	10.1.9.7. Get the current row number of the main query
	10.1.9.8. Resolve all report variables
	10.1.9.9. Evaluate all report variables
	10.1.9.10. Resolve all report breaks
	10.1.9.11. Resolve all report expressions
	10.1.9.12. Evaluate all report expressions

	10.1.10. Layout related functions
	10.1.10.1. Global layout options
	10.1.10.1.1. Set or get "size unit" option
	10.1.10.1.2. Set or get "no query show NoData" option
	10.1.10.1.3. Set or get "report height after last" option
	10.1.10.1.4. Set "follower match single" option
	10.1.10.1.5. Set or get "follower match single" option directly

	10.1.10.2. Report part options
	10.1.10.2.1. Set or get part iterations
	10.1.10.2.2. Set or get part font name
	10.1.10.2.3. Set or get part font size
	10.1.10.2.4. Set or get part paper type
	10.1.10.2.5. Set or get part paper's orientation
	10.1.10.2.6. Set or get part margins
	10.1.10.2.7. Set or get part suppression
	10.1.10.2.8. Set or get part's page header suppressed on the first page

	10.1.10.3. Part row options
	10.1.10.3.1. Set or get part row suppression
	10.1.10.3.2. Set or get part row new page
	10.1.10.3.3. Set or get part row layout mode

	10.1.10.4. Part column options
	10.1.10.4.1. Set or get part column suppression
	10.1.10.4.2. Set or get part column width
	10.1.10.4.3. Set or get part column height
	10.1.10.4.4. Set or get part column border width
	10.1.10.4.5. Set or get part column border color
	10.1.10.4.6. Set or get part column's number of detail columns
	10.1.10.4.7. Set or get part column's detail column padding

	10.1.10.5. Report options
	10.1.10.5.1. Set or get report suppression
	10.1.10.5.2. Set or get report iterations
	10.1.10.5.3. Set or get report font name
	10.1.10.5.4. Set or get report font size
	10.1.10.5.5. Set or get report height
	10.1.10.5.6. Set or get report's field header priority

	10.1.10.6. Get part layout sections
	10.1.10.7. Set report for part layout sections
	10.1.10.8. Get report layout sections
	10.1.10.8.1. Miscellaneous report layout and line element functions

	10.1.10.9. Get break layout sections
	10.1.10.10. Set output section global settings
	10.1.10.10.1. Set or get output section suppression

	10.1.10.11. Add a text line to an output section
	10.1.10.12. Text line settings
	10.1.10.12.1. Set or get line font name
	10.1.10.12.2. Set line font size
	10.1.10.12.3. Set or get line bold value
	10.1.10.12.4. Set or get line italic value
	10.1.10.12.5. Set or get line suppression
	10.1.10.12.6. Set or get line text color
	10.1.10.12.7. Set or get line background color

	10.1.10.13. Add a text element to a text line
	10.1.10.14. Text element settings
	10.1.10.14.1. Set text element literal value
	10.1.10.14.2. Set or get text element value
	10.1.10.14.3. Set or get text element value's delayed property
	10.1.10.14.4. Set or get text element format string
	10.1.10.14.5. Set or get text element translation
	10.1.10.14.6. Set or get text element field width
	10.1.10.14.7. Set or get text element alignment
	10.1.10.14.8. Set or get text element text color
	10.1.10.14.9. Set or get text element background color
	10.1.10.14.10. Set or get text element font name
	10.1.10.14.11. Set or get text element font size
	10.1.10.14.12. Set or get text element bold value
	10.1.10.14.13. Set or get text element italic value
	10.1.10.14.14. Set or get text element link URL
	10.1.10.14.15. Set or get text element multiline property
	10.1.10.14.16. Set or get text element "hyphenate" property
	10.1.10.14.17. Set or get text element "wrap at characters" property
	10.1.10.14.18. Set or get text element maximum lines

	10.1.10.15. Add a horizontal line to an output section
	10.1.10.16. Horizontal line settings
	10.1.10.16.1. Set or get horizontal line size (width)
	10.1.10.16.2. Set or get horizontal line alignment
	10.1.10.16.3. Set or get horizontal line indentation
	10.1.10.16.4. Set or get horizontal line length
	10.1.10.16.5. Set or get horizontal line font size
	10.1.10.16.6. Set or get horizontal line suppression
	10.1.10.16.7. Set or get horizontal line color

	10.1.10.17. Add a barcode to an output section
	10.1.10.18. Add a barcode to a text line
	10.1.10.19. Barcode settings
	10.1.10.19.1. Set or get barcode value
	10.1.10.19.2. Set or get barcode value delayed
	10.1.10.19.3. Set or get barcode suppression
	10.1.10.19.4. Set or get barcode type
	10.1.10.19.5. Set or get barcode width
	10.1.10.19.6. Set or get barcode width
	10.1.10.19.7. Set or get barcode line color
	10.1.10.19.8. Set or get barcode background color

	10.1.10.20. Add an image to an output section
	10.1.10.21. Add an image to a text line
	10.1.10.22. Image settings
	10.1.10.22.1. Set or get image value
	10.1.10.22.2. Set or get image suppression
	10.1.10.22.3. Set or get image type
	10.1.10.22.4. Set or get image width
	10.1.10.22.5. Set or get image height
	10.1.10.22.6. Set or get image alignment
	10.1.10.22.7. Set or get image background color
	10.1.10.22.8. Set or get image field width

	10.1.10.23. Add an image end marker to an output section

	10.1.11. Callback related functions
	10.1.11.1. Add a "part added" callback
	10.1.11.2. Add a "report added" callback
	10.1.11.3. Add an "all precalculations done" callback
	10.1.11.4. Add a "part iteration" callback
	10.1.11.5. Add a "report started" callback
	10.1.11.6. Add a "report done" callback
	10.1.11.7. Add a "new row" callback
	10.1.11.8. Add a "report iteration done" callback
	10.1.11.9. Add a "report precalculation done" callback
	10.1.11.10. Add a "break triggers" callback

	10.1.12. Environment related functions
	10.1.12.1. Indirect function to get an environment variable
	10.1.12.2. Set the environment query function
	10.1.12.3. C API environment query function
	10.1.12.4. Add an "m" domain variable

	10.1.13. File handling related functions
	10.1.13.1. Return a canonical file path
	10.1.13.2. Add search path
	10.1.13.3. Add search path (delayed variant)
	10.1.13.4. Resolve search paths
	10.1.13.5. Find a file

	10.1.14. Color related functions
	10.1.14.1. Find a color by its name

	10.1.15. Paper size related functions
	10.1.15.1. Get the system default paper
	10.1.15.2. Get the paper specified by name
	10.1.15.3. Set the global paper
	10.1.15.4. Set global paper specified by name
	10.1.15.5. Get currently set global paper
	10.1.15.6. Iterate over paper sizes

	10.1.16. Memory handling related functions
	10.1.16.1. Indirect function pointers
	10.1.16.2. Allocate memory
	10.1.16.3. Reallocate memory
	10.1.16.4. Reallocate array of memory
	10.1.16.5. Free memory
	10.1.16.6. Duplicate C string
	10.1.16.7. Duplicate C string up to the specified length
	10.1.16.8. Free a C string
	10.1.16.9. Set indirect allocation functions

	10.1.17. List related functions
	10.1.17.1. Get the list length
	10.1.17.2. Make a list from one element
	10.1.17.3. Make a list from multiple elements
	10.1.17.4. Get the last element of a list
	10.1.17.5. Get the nth element of a list
	10.1.17.6. Append a new element to a list
	10.1.17.7. Append to list using the last element
	10.1.17.8. Prepend a new element to a list
	10.1.17.9. Remove a data element from a list
	10.1.17.10. Remove a data element from a list and update the last link
	10.1.17.11. Get next link in the list
	10.1.17.12. Get the data element from a list
	10.1.17.13. Free a list
	10.1.17.14. Free a list and its data elements

	10.1.18. String related functions
	10.1.18.1. Create a new string
	10.1.18.2. Create a new string with specified allocated length
	10.1.18.3. Create a string from a formatted string with maximum length
	10.1.18.4. Create a string from a formatted string
	10.1.18.5. Resize a string
	10.1.18.6. Free a string
	10.1.18.7. Append a C string of the specified length to a string
	10.1.18.8. Append a binary string of the specified length to a string
	10.1.18.9. Append a C string of unspecified length to a string
	10.1.18.10. Append a byte to a string
	10.1.18.11. Append a formatted string to a string

	Chapter 11. Implement a datasource input driver
	11.1. Datasource input driver registration API
	11.1.1. Register a datasource input driver
	11.1.2. Get a datasource input driver

	11.2. Datasource input driver details
	11.2.1. Datasource input driver interface

	11.3. Helper functions to implement a datasource input driver
	11.3.1. Get the parent pointer of a datasource
	11.3.2. Get the name of a datasource
	11.3.3. Get the input driver pointer of a datasource
	11.3.4. Set the private pointer of a datasource
	11.3.5. Get the private pointer of a datasource
	11.3.6. Allocate a query structure
	11.3.7. Get the query name
	11.3.8. Get the datasource pointer of a query
	11.3.9. Set the private pointer of a query
	11.3.10. Get the private pointer of a query
	11.3.11. Set current row of a query all NULL
	11.3.12. Set a column value of a query

	Chapter 12. PHP language API reference
	12.1. The OpenCReports PHP module
	12.2. The OpenCReport class
	12.3. High level PHP API
	12.3.1. Constructor
	12.3.2. Load a report XML description
	12.3.3. Set report output format
	12.3.4. Get report output format
	12.3.5. Get report output format name
	12.3.6. Set report output parameter
	12.3.7. Run the report
	12.3.8. Dump report result
	12.3.9. Get report result
	12.3.10. Get report content type
	12.3.11. Get library version

	12.4. Low level PHP API
	12.4.1. Numeric behavior related methods
	12.4.1.1. Set numeric precision
	12.4.1.2. Get numeric precision
	12.4.1.3. Set rounding mode

	12.4.2. Locale related methods
	12.4.2.1. Set up translation
	12.4.2.2. Set report locale

	12.4.3. Data source and query related methods
	12.4.3.1. Add a datasource
	12.4.3.2. Get a named datasource
	12.4.3.3. Get a named query
	12.4.3.4. Refresh the internal representation of array queries

	12.4.4. Expression related methods
	12.4.4.1. Parse an expression
	12.4.4.2. Add a custom report function

	12.4.5. Layout part related methods
	12.4.5.1. Add a new report (layout) part
	12.4.5.2. Get first (layout) part
	12.4.5.3. Set paper type
	12.4.5.4. Set or get size unit
	12.4.5.5. Set or get "no query show NoData" property
	12.4.5.6. Set or get "report height after last" property
	12.4.5.7. Set or get "follower match single" property

	12.4.6. Callback related methods
	12.4.7. Environment related methods
	12.4.8. Add "m" domain variable
	12.4.9. Result related methods
	12.4.10. Path related methods
	12.4.10.1. Add a search path
	12.4.10.2. Canonicalize path
	12.4.10.3. Find a file

	12.4.11. Color related methods

	12.5. The OpenCReport\Datasource class
	12.5.1. Free a datasource
	12.5.2. Add a query to the datasource
	12.5.3. Set datasource encoding

	12.6. The OpenCReport\Query class
	12.6.1. Get result for a query's current row
	12.6.2. Start navigation for a query
	12.6.3. Navigate to the next row
	12.6.4. Navigate use previous/next row
	12.6.5. Add a query follower
	12.6.6. Add an N:1 query follower
	12.6.7. Free a query

	12.7. The OpenCReport\QueryResult class
	12.7.1. Get number of columns for a query result
	12.7.2. Get the nth column name for a query result
	12.7.3. Get the nth column result for a query result

	12.8. The OpenCReport\Expr class
	12.8.1. Free an expression
	12.8.2. Get the original expression string
	12.8.3. Print an expression
	12.8.4. Get the number of expression tree nodes
	12.8.5. Resolve an expression
	12.8.6. Optimize an expression
	12.8.7. Evaluate an expression
	12.8.8. Get the result of an expression
	12.8.9. Set expression result to a string value
	12.8.10. Set expression result to a long value
	12.8.11. Set expression result to a double value
	12.8.12. Set expression result to a numeric value from string
	12.8.13. Get number of operands of a expression
	12.8.14. Get nth operands' result of a expression
	12.8.15. Compare the expression's current and previous results
	12.8.16. Initialize expression results
	12.8.17. Get string value of an expression
	12.8.18. Get long value of an expression
	12.8.19. Get double value of an expression
	12.8.20. Get numeric value of an expression as a string
	12.8.21. Set nth result of an expression to a string value
	12.8.22. Set nth result of an expression to a long value
	12.8.23. Set nth result of an expression to a double value
	12.8.24. Set iterative start flag of an expression
	12.8.25. Set expression to delayed

	12.9. The OpenCReport\Result class
	12.9.1. Free a result object
	12.9.2. Copy a result object
	12.9.3. Print a result object
	12.9.4. Get result object value type
	12.9.5. Detect whether result object value is NULL
	12.9.6. Detect whether result object value is a string
	12.9.7. Detect whether result object value is a number
	12.9.8. Get string value of a result object
	12.9.9. Get numeric value of a result object as a string

	12.10. The OpenCReport\Part class
	12.10.1. Get the next report part
	12.10.2. Create a new report part row
	12.10.3. Get the first report part row
	12.10.4. Add iteration callback for the part
	12.10.5. Check whether two parts are identical
	12.10.6. Set or get number of part iterations
	12.10.7. Set or get part font name
	12.10.8. Set or get part font size
	12.10.9. Set or get paper type
	12.10.10. Set or get part orientation
	12.10.11. Set or get part top margin
	12.10.12. Set or get part bottom margin
	12.10.13. Set or get part left margin
	12.10.14. Set or get part right margin
	12.10.15. Set or get part suppression
	12.10.16. Set or get suppression of the page header on the first page
	12.10.17. Get the part's page header
	12.10.18. Set the report object for the part's page header
	12.10.19. Get the part's page footer
	12.10.20. Set the report object for the part's page footer

	12.11. The OpenCReport\Row class
	12.11.1. Get the next part row
	12.11.2. Create a new part column for the row
	12.11.3. Get first column of a part row
	12.11.4. Set or get suppression for the part row
	12.11.5. Set or get new page for the part row
	12.11.6. Set or get layout type for the part row

	12.12. The OpenCReport\Column class
	12.12.1. Get next column
	12.12.2. Create a new report in the column
	12.12.3. Get first report of a part column
	12.12.4. Set or get part column suppression
	12.12.5. Set or get part column width
	12.12.6. Set or get part column height
	12.12.7. Set or get border width
	12.12.8. Set or get border color
	12.12.9. Set or get number of detail columns
	12.12.10. Set or get column padding

	12.13. The OpenCReport\Report class
	12.13.1. Get the next report
	12.13.2. Create a new report variable
	12.13.3. Create a new custom report variable
	12.13.4. Get the first variable of a report
	12.13.5. Parse and expression for the report
	12.13.6. Get the error after a failed expression parsing
	12.13.7. Resolve variables of the report
	12.13.8. Evaluate variables of the report
	12.13.9. Create a new report break
	12.13.10. Get a report break by its name
	12.13.11. Get the first report break
	12.13.12. Resolve breaks of the report
	12.13.13. Get the current row number of the main query
	12.13.14. Add a "report start" callback
	12.13.15. Add a "report done" callback
	12.13.16. Add a "new row" callback
	12.13.17. Add an "iteration done" callback
	12.13.18. Add a "precalculation done" callback
	12.13.19. Check whether two report objects are the same
	12.13.20. Set the report's main query
	12.13.21. Set the report's main query by name
	12.13.22. Set or get the report suppression
	12.13.23. Set or get number of iterations for the report
	12.13.24. Set or get the font name for the report
	12.13.25. Set or get the font size for the report
	12.13.26. Set or get the report height
	12.13.27. Set or get the report's field header prioroty
	12.13.28. Get output sections of the report

	12.14. The OpenCReport\Variable class
	12.14.1. Get the base expression of a variable
	12.14.2. Get the ignore expression of a variable
	12.14.3. Get the first intermediary expression of a variable
	12.14.4. Get the second intermediary expression of a variable
	12.14.5. Get the result expression of a variable
	12.14.6. Get the variable type
	12.14.7. Get the variable precalculated flag
	12.14.8. Resolve expressions of a variable
	12.14.9. Evaluate expressions of a variable
	12.14.10. Get the next variable of the same report

	12.15. The OpenCReport\ReportBreak class
	12.15.1. Get next break
	12.15.2. Add a breakfield to a break
	12.15.3. Check breakfields
	12.15.4. Reset variables associated with a break
	12.15.5. Add a "trigger" callback to a break
	12.15.6. Get the name of a break
	12.15.7. Get output sections of a break

	12.16. The OpenCReport\Output class
	12.16.1. Set or get suppression of the output section
	12.16.2. Add a (text) line
	12.16.3. Add a horizontal line
	12.16.4. Add an image
	12.16.5. Add a barcode
	12.16.6. Add an image end marker
	12.16.7. Get the first output element

	12.17. The OpenCReport\Line class
	12.17.1. Set or get the font name for the line
	12.17.2. Set or get the font size for the line
	12.17.3. Set or get the font's bold flag for the line
	12.17.4. Set or get the font's italic flag for the line
	12.17.5. Set or get line suppression
	12.17.6. Set or get text color for the line
	12.17.7. Set or get background color for the line
	12.17.8. Add a text element to the line
	12.17.9. Add an image element to the line
	12.17.10. Get the first line element

	12.18. The OpenCReport\HorizontalLine class
	12.18.1. Set the line width
	12.18.2. Set or get the line alignment
	12.18.3. Set or get the line indentation
	12.18.4. Set or get the line length
	12.18.5. Set or get the line's font size
	12.18.6. Set or get the suppression flag for the line
	12.18.7. Set or get the line color

	12.19. The OpenCReport\Image class
	12.19.1. Set or get the file name of the image
	12.19.2. Set or get the suppression flag for the image
	12.19.3. Set or get the image type
	12.19.4. Set or get the image width
	12.19.5. Set or get the image height
	12.19.6. Set or get the image alignment
	12.19.7. Set or get the image background color
	12.19.8. Set or get the image "text width"

	12.20. The OpenCReport\Text class
	12.20.1. Set literal value
	12.20.2. Set or get expression value
	12.20.3. Set or get delayed flag for the field expression
	12.20.4. Set or get the format string for the field expression
	12.20.5. Set or get the translation flag for the field expression
	12.20.6. Set or get the field width
	12.20.7. Set or get the field alignment
	12.20.8. Set or get the field text color
	12.20.9. Set or get the field background color
	12.20.10. Set or get the field font name
	12.20.11. Set or get the field font size
	12.20.12. Set or get the field's bold flag
	12.20.13. Set or get the field's italic flag
	12.20.14. Set or get the field's link
	12.20.15. Set or get the field's memo flag
	12.20.16. Set or get the field's "hyphenate" flag
	12.20.17. Set or get the field's "wrap at characters" flag
	12.20.18. Set or get the field's maximum number of lines

	12.21. The OpenCReport\Barcode class
	12.21.1. Set or get the barcode value
	12.21.2. Set or get the barcode value delayed
	12.21.3. Set or get the barcode suppression
	12.21.4. Set or get the barcode type
	12.21.5. Set or get the barcode width
	12.21.6. Set or get the barcode height
	12.21.7. Set or get the barcode image line color
	12.21.8. Set or get the barcode image background color

	12.22. The OpenCReport\OutputElement class
	12.23. The OpenCReport\LineElement class
	12.24. RLIB compatibility API
	12.24.1. Initialize a report
	12.24.2. Destroy a report
	12.24.3. Get library version
	12.24.4. Add a MySQL/MariaDB datasource
	12.24.5. Add a MySQL/MariaDB datasource from an INI group
	12.24.6. Add a PostgreSQL datasource
	12.24.7. Add an ODBC datasource
	12.24.8. Add an array datasource
	12.24.9. Add an XML datasource
	12.24.10. Add a CSV datasource
	12.24.11. Add a query
	12.24.12. Add a resultset follower
	12.24.13. Add a resultset N:1 follower
	12.24.14. Set datasource encoding
	12.24.15. Add a report XML
	12.24.16. Add a report XML from buffer
	12.24.17. Add a search path
	12.24.18. Set locale
	12.24.19. Setup translation
	12.24.20. Set output format
	12.24.21. Add a custom report function
	12.24.22. Set output encoding
	12.24.23. Add a report parameter
	12.24.24. Set an output parameter
	12.24.25. Refresh array query contents
	12.24.26. Add an event callback
	12.24.27. Execute the report
	12.24.28. Dump the report output
	12.24.29. Get content type
	12.24.30. Set radix character
	12.24.31. Compile and evaluate an expression
	12.24.32. Add graph background region
	12.24.33. Clear graph background region
	12.24.34. Set graph minor tick
	12.24.35. Set graph minor tick by location

	Chapter 13. Examples
	13.1. Simple report example
	13.1.1. Data
	13.1.2. C program code
	13.1.3. PHP program code
	13.1.4. RLIB compatible PHP program code
	13.1.5. Report description
	13.1.6. Report PDF result

	13.2. Simple report example with data access in code
	13.2.1. Data
	13.2.2. C program code
	13.2.3. PHP program code
	13.2.4. RLIB compatible PHP program code
	13.2.5. Report description
	13.2.6. Report PDF result

	13.3. Colors, images, horizontal lines and fonts
	13.3.1. Data
	13.3.2. C program code
	13.3.3. PHP program code
	13.3.4. RLIB compatible PHP program code
	13.3.5. Report description
	13.3.6. Report PDF result

	13.4. Report variables and breaks
	13.4.1. Data
	13.4.2. C program code
	13.4.3. PHP program code
	13.4.4. RLIB compatible PHP program code
	13.4.5. Report description
	13.4.6. Report PDF result

	13.5. Follower queries
	13.5.1. Data
	13.5.2. C program code
	13.5.3. PHP program code
	13.5.4. RLIB compatible PHP program code
	13.5.5. Report description
	13.5.6. Report PDF result

	13.6. N:1 follower queries
	13.6.1. Data
	13.6.2. C program code
	13.6.3. PHP program code
	13.6.4. RLIB compatible PHP program code
	13.6.5. Report description
	13.6.6. Report PDF result

	13.7. N:1 follower queries (RLIB compatibility limits)
	13.7.1. Data
	13.7.2. C program code
	13.7.3. PHP program code
	13.7.4. RLIB compatible PHP program code
	13.7.5. Report description
	13.7.6. Report PDF result

	Chapter 14. GNU Free Documentation License

